use neogen for docstrings

master
mcarfagno 2023-10-25 14:17:25 +01:00
parent 6239e769b1
commit 3158f88d66
5 changed files with 91 additions and 58 deletions

View File

@ -10,15 +10,16 @@ class MPC:
self, vehicle, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost
):
"""
:param vehicle:
:param T:
:param DT:
:param state_cost:
:param final_state_cost:
:param input_cost:
:param input_rate_cost:
"""
Args:
vehicle ():
T ():
DT ():
state_cost ():
final_state_cost ():
input_cost ():
input_rate_cost ():
"""
self.nx = 4 # number of state vars
self.nu = 2 # umber of input/control vars
@ -44,9 +45,13 @@ class MPC:
def get_linear_model_matrices(self, x_bar, u_bar):
"""
Computes the LTI approximated state space model x' = Ax + Bu + C
:param x_bar:
:param u_bar:
:return:
Args:
x_bar ():
u_bar ():
Returns:
"""
x = x_bar[0]
@ -96,13 +101,16 @@ class MPC:
verbose=False,
):
"""
Optimisation problem defined for the linearised model,
:param initial_state:
:param target:
:param verbose:
:return:
"""
Args:
initial_state ():
target ():
prev_cmd ():
verbose ():
Returns:
"""
assert len(initial_state) == self.nx
# Create variables needed for setting up cvxpy problem

View File

@ -4,11 +4,14 @@ from scipy.interpolate import interp1d
def compute_path_from_wp(start_xp, start_yp, step=0.1):
"""
Computes a reference path given a set of waypoints
:param start_xp:
:param start_yp:
:param step:
:return:
Args:
start_xp ():
start_yp ():
step ():
Returns:
"""
final_xp = []
final_yp = []
@ -34,10 +37,13 @@ def compute_path_from_wp(start_xp, start_yp, step=0.1):
def get_nn_idx(state, path):
"""
Computes the index of the waypoint closest to vehicle
:param state:
:param path:
:return:
Args:
state ():
path ():
Returns:
"""
dx = state[0] - path[0, :]
dy = state[1] - path[1, :]
@ -61,11 +67,16 @@ def get_nn_idx(state, path):
def get_ref_trajectory(state, path, target_v, T, DT):
"""
Reinterpolate the trajectory to get a set N desired target states
:param state:
:param path:
:param target_v:
:return:
Args:
state ():
path ():
target_v ():
T ():
DT ():
Returns:
"""
K = int(T / DT)
@ -98,7 +109,13 @@ def get_ref_trajectory(state, path, target_v, T, DT):
def fix_angle_reference(angle_ref, angle_init):
"""
This function returns a "smoothened" angle_ref wrt angle_init so there are no jumps.
Args:
angle_ref ():
angle_init ():
Returns:
"""
diff_angle = angle_ref - angle_init
diff_angle = np.unwrap(diff_angle)

View File

@ -3,7 +3,14 @@ import numpy as np
class VehicleModel:
"""
Helper class to hold vehicle info
Attributes:
wheelbase:
max_speed:
max_acc:
max_d_acc:
max_steer:
max_d_steer:
"""
def __init__(self):

View File

@ -70,9 +70,9 @@ class MPCSim:
def preview(self, mpc_out):
"""
[TODO:summary]
[TODO:description]
Args:
mpc_out ():
"""
predicted = np.zeros((2, self.K))
predicted[:, :] = mpc_out[0:2, 1:]
@ -85,7 +85,7 @@ class MPCSim:
predicted = (predicted.T.dot(Rotm)).T
predicted[0, :] += self.state[0]
predicted[1, :] += self.state[1]
self.predicted = predicted
return predicted
def run(self):
"""
@ -124,10 +124,10 @@ class MPCSim:
# only the first one is used to advance the simulation
self.action[:] = [u_mpc.value[0, 0], u_mpc.value[1, 0]]
self.predict([self.action[0], self.action[1]], DT)
self.state = self.predict([self.action[0], self.action[1]], DT)
# use the state trajectory to preview the optimizer output
self.preview(x_mpc.value)
self.predicted = self.preview(x_mpc.value)
self.plot_sim()
def predict(self, u, dt):
@ -141,14 +141,9 @@ class MPCSim:
# solve ODE
tspan = [0, dt]
self.state = odeint(kinematics_model, self.state, tspan, args=(u[:],))[1]
return odeint(kinematics_model, self.state, tspan, args=(u[:],))[1]
def plot_sim(self):
"""
[TODO:summary]
[TODO:description]
"""
self.sim_time = self.sim_time + DT
self.x_history.append(self.state[0])
self.y_history.append(self.state[1])
@ -243,18 +238,11 @@ class MPCSim:
def plot_car(x, y, yaw):
"""
[TODO:summary]
[TODO:description]
Parameters
----------
x : [TODO:type]
[TODO:description]
y : [TODO:type]
[TODO:description]
yaw : [TODO:type]
[TODO:description]
Args:
x ():
y ():
yaw ():
"""
LENGTH = 0.5 # [m]
WIDTH = 0.25 # [m]

View File

@ -18,7 +18,14 @@ DT = 0.2 # discretization step [s]
def get_state(robotId):
""" """
"""
Args:
robotId ():
Returns:
"""
robPos, robOrn = p.getBasePositionAndOrientation(robotId)
linVel, angVel = p.getBaseVelocity(robotId)
@ -33,6 +40,14 @@ def get_state(robotId):
def set_ctrl(robotId, currVel, acceleration, steeringAngle):
"""
Args:
robotId ():
currVel ():
acceleration ():
steeringAngle ():
"""
gearRatio = 1.0 / 21
steering = [0, 2]
wheels = [8, 15]
@ -56,7 +71,6 @@ def set_ctrl(robotId, currVel, acceleration, steeringAngle):
def plot_results(path, x_history, y_history):
""" """
plt.style.use("ggplot")
plt.figure()
plt.title("MPC Tracking Results")
@ -78,7 +92,6 @@ def plot_results(path, x_history, y_history):
def run_sim():
""" """
p.connect(p.GUI)
p.resetDebugVisualizerCamera(
cameraDistance=1.0,