WIP: plot based simulation
parent
60f028e25b
commit
13935940b4
|
@ -1,208 +0,0 @@
|
||||||
cmake_minimum_required(VERSION 2.8.3)
|
|
||||||
project(husky_mpc)
|
|
||||||
|
|
||||||
## Compile as C++11, supported in ROS Kinetic and newer
|
|
||||||
# add_compile_options(-std=c++11)
|
|
||||||
|
|
||||||
## Find catkin macros and libraries
|
|
||||||
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
|
|
||||||
## is used, also find other catkin packages
|
|
||||||
find_package(catkin REQUIRED COMPONENTS
|
|
||||||
geometry_msgs
|
|
||||||
nav_msgs
|
|
||||||
roscpp
|
|
||||||
rospy
|
|
||||||
std_msgs
|
|
||||||
)
|
|
||||||
|
|
||||||
## System dependencies are found with CMake's conventions
|
|
||||||
# find_package(Boost REQUIRED COMPONENTS system)
|
|
||||||
|
|
||||||
|
|
||||||
## Uncomment this if the package has a setup.py. This macro ensures
|
|
||||||
## modules and global scripts declared therein get installed
|
|
||||||
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
|
|
||||||
# catkin_python_setup()
|
|
||||||
|
|
||||||
################################################
|
|
||||||
## Declare ROS messages, services and actions ##
|
|
||||||
################################################
|
|
||||||
|
|
||||||
## To declare and build messages, services or actions from within this
|
|
||||||
## package, follow these steps:
|
|
||||||
## * Let MSG_DEP_SET be the set of packages whose message types you use in
|
|
||||||
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
|
|
||||||
## * In the file package.xml:
|
|
||||||
## * add a build_depend tag for "message_generation"
|
|
||||||
## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
|
|
||||||
## * If MSG_DEP_SET isn't empty the following dependency has been pulled in
|
|
||||||
## but can be declared for certainty nonetheless:
|
|
||||||
## * add a exec_depend tag for "message_runtime"
|
|
||||||
## * In this file (CMakeLists.txt):
|
|
||||||
## * add "message_generation" and every package in MSG_DEP_SET to
|
|
||||||
## find_package(catkin REQUIRED COMPONENTS ...)
|
|
||||||
## * add "message_runtime" and every package in MSG_DEP_SET to
|
|
||||||
## catkin_package(CATKIN_DEPENDS ...)
|
|
||||||
## * uncomment the add_*_files sections below as needed
|
|
||||||
## and list every .msg/.srv/.action file to be processed
|
|
||||||
## * uncomment the generate_messages entry below
|
|
||||||
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
|
|
||||||
|
|
||||||
## Generate messages in the 'msg' folder
|
|
||||||
# add_message_files(
|
|
||||||
# FILES
|
|
||||||
# Message1.msg
|
|
||||||
# Message2.msg
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Generate services in the 'srv' folder
|
|
||||||
# add_service_files(
|
|
||||||
# FILES
|
|
||||||
# Service1.srv
|
|
||||||
# Service2.srv
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Generate actions in the 'action' folder
|
|
||||||
# add_action_files(
|
|
||||||
# FILES
|
|
||||||
# Action1.action
|
|
||||||
# Action2.action
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Generate added messages and services with any dependencies listed here
|
|
||||||
# generate_messages(
|
|
||||||
# DEPENDENCIES
|
|
||||||
# geometry_msgs# navigation_msgs# std_msgs
|
|
||||||
# )
|
|
||||||
|
|
||||||
################################################
|
|
||||||
## Declare ROS dynamic reconfigure parameters ##
|
|
||||||
################################################
|
|
||||||
|
|
||||||
## To declare and build dynamic reconfigure parameters within this
|
|
||||||
## package, follow these steps:
|
|
||||||
## * In the file package.xml:
|
|
||||||
## * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
|
|
||||||
## * In this file (CMakeLists.txt):
|
|
||||||
## * add "dynamic_reconfigure" to
|
|
||||||
## find_package(catkin REQUIRED COMPONENTS ...)
|
|
||||||
## * uncomment the "generate_dynamic_reconfigure_options" section below
|
|
||||||
## and list every .cfg file to be processed
|
|
||||||
|
|
||||||
## Generate dynamic reconfigure parameters in the 'cfg' folder
|
|
||||||
# generate_dynamic_reconfigure_options(
|
|
||||||
# cfg/DynReconf1.cfg
|
|
||||||
# cfg/DynReconf2.cfg
|
|
||||||
# )
|
|
||||||
|
|
||||||
###################################
|
|
||||||
## catkin specific configuration ##
|
|
||||||
###################################
|
|
||||||
## The catkin_package macro generates cmake config files for your package
|
|
||||||
## Declare things to be passed to dependent projects
|
|
||||||
## INCLUDE_DIRS: uncomment this if your package contains header files
|
|
||||||
## LIBRARIES: libraries you create in this project that dependent projects also need
|
|
||||||
## CATKIN_DEPENDS: catkin_packages dependent projects also need
|
|
||||||
## DEPENDS: system dependencies of this project that dependent projects also need
|
|
||||||
catkin_package(
|
|
||||||
# INCLUDE_DIRS include
|
|
||||||
# LIBRARIES husky_mpc
|
|
||||||
# CATKIN_DEPENDS geometry_msgs navigation_msgs roscpp rospy std_msgs
|
|
||||||
# DEPENDS system_lib
|
|
||||||
)
|
|
||||||
|
|
||||||
###########
|
|
||||||
## Build ##
|
|
||||||
###########
|
|
||||||
|
|
||||||
## Specify additional locations of header files
|
|
||||||
## Your package locations should be listed before other locations
|
|
||||||
include_directories(
|
|
||||||
# include
|
|
||||||
${catkin_INCLUDE_DIRS}
|
|
||||||
)
|
|
||||||
|
|
||||||
## Declare a C++ library
|
|
||||||
# add_library(${PROJECT_NAME}
|
|
||||||
# src/${PROJECT_NAME}/husky_mpc.cpp
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Add cmake target dependencies of the library
|
|
||||||
## as an example, code may need to be generated before libraries
|
|
||||||
## either from message generation or dynamic reconfigure
|
|
||||||
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
|
|
||||||
|
|
||||||
## Declare a C++ executable
|
|
||||||
## With catkin_make all packages are built within a single CMake context
|
|
||||||
## The recommended prefix ensures that target names across packages don't collide
|
|
||||||
# add_executable(${PROJECT_NAME}_node src/husky_mpc_node.cpp)
|
|
||||||
|
|
||||||
## Rename C++ executable without prefix
|
|
||||||
## The above recommended prefix causes long target names, the following renames the
|
|
||||||
## target back to the shorter version for ease of user use
|
|
||||||
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
|
|
||||||
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")
|
|
||||||
|
|
||||||
## Add cmake target dependencies of the executable
|
|
||||||
## same as for the library above
|
|
||||||
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})
|
|
||||||
|
|
||||||
## Specify libraries to link a library or executable target against
|
|
||||||
# target_link_libraries(${PROJECT_NAME}_node
|
|
||||||
# ${catkin_LIBRARIES}
|
|
||||||
# )
|
|
||||||
|
|
||||||
#############
|
|
||||||
## Install ##
|
|
||||||
#############
|
|
||||||
|
|
||||||
# all install targets should use catkin DESTINATION variables
|
|
||||||
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
|
|
||||||
|
|
||||||
## Mark executable scripts (Python etc.) for installation
|
|
||||||
## in contrast to setup.py, you can choose the destination
|
|
||||||
# install(PROGRAMS
|
|
||||||
# scripts/my_python_script
|
|
||||||
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Mark executables for installation
|
|
||||||
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
|
|
||||||
# install(TARGETS ${PROJECT_NAME}_node
|
|
||||||
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Mark libraries for installation
|
|
||||||
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
|
|
||||||
# install(TARGETS ${PROJECT_NAME}
|
|
||||||
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
|
|
||||||
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
|
|
||||||
# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Mark cpp header files for installation
|
|
||||||
# install(DIRECTORY include/${PROJECT_NAME}/
|
|
||||||
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
|
|
||||||
# FILES_MATCHING PATTERN "*.h"
|
|
||||||
# PATTERN ".svn" EXCLUDE
|
|
||||||
# )
|
|
||||||
|
|
||||||
## Mark other files for installation (e.g. launch and bag files, etc.)
|
|
||||||
# install(FILES
|
|
||||||
# # myfile1
|
|
||||||
# # myfile2
|
|
||||||
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
|
|
||||||
# )
|
|
||||||
|
|
||||||
#############
|
|
||||||
## Testing ##
|
|
||||||
#############
|
|
||||||
|
|
||||||
## Add gtest based cpp test target and link libraries
|
|
||||||
# catkin_add_gtest(${PROJECT_NAME}-test test/test_husky_mpc.cpp)
|
|
||||||
# if(TARGET ${PROJECT_NAME}-test)
|
|
||||||
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
|
|
||||||
# endif()
|
|
||||||
|
|
||||||
## Add folders to be run by python nosetests
|
|
||||||
# catkin_add_nosetests(test)
|
|
|
@ -1,74 +0,0 @@
|
||||||
<?xml version="1.0"?>
|
|
||||||
<package format="2">
|
|
||||||
<name>husky_mpc</name>
|
|
||||||
<version>0.0.0</version>
|
|
||||||
<description>The husky_mpc package</description>
|
|
||||||
|
|
||||||
<!-- One maintainer tag required, multiple allowed, one person per tag -->
|
|
||||||
<!-- Example: -->
|
|
||||||
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
|
|
||||||
<maintainer email="marcello@todo.todo">marcello</maintainer>
|
|
||||||
|
|
||||||
|
|
||||||
<!-- One license tag required, multiple allowed, one license per tag -->
|
|
||||||
<!-- Commonly used license strings: -->
|
|
||||||
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
|
|
||||||
<license>TODO</license>
|
|
||||||
|
|
||||||
|
|
||||||
<!-- Url tags are optional, but multiple are allowed, one per tag -->
|
|
||||||
<!-- Optional attribute type can be: website, bugtracker, or repository -->
|
|
||||||
<!-- Example: -->
|
|
||||||
<!-- <url type="website">http://wiki.ros.org/husky_mpc</url> -->
|
|
||||||
|
|
||||||
|
|
||||||
<!-- Author tags are optional, multiple are allowed, one per tag -->
|
|
||||||
<!-- Authors do not have to be maintainers, but could be -->
|
|
||||||
<!-- Example: -->
|
|
||||||
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
|
|
||||||
|
|
||||||
|
|
||||||
<!-- The *depend tags are used to specify dependencies -->
|
|
||||||
<!-- Dependencies can be catkin packages or system dependencies -->
|
|
||||||
<!-- Examples: -->
|
|
||||||
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
|
|
||||||
<!-- <depend>roscpp</depend> -->
|
|
||||||
<!-- Note that this is equivalent to the following: -->
|
|
||||||
<!-- <build_depend>roscpp</build_depend> -->
|
|
||||||
<!-- <exec_depend>roscpp</exec_depend> -->
|
|
||||||
<!-- Use build_depend for packages you need at compile time: -->
|
|
||||||
<!-- <build_depend>message_generation</build_depend> -->
|
|
||||||
<!-- Use build_export_depend for packages you need in order to build against this package: -->
|
|
||||||
<!-- <build_export_depend>message_generation</build_export_depend> -->
|
|
||||||
<!-- Use buildtool_depend for build tool packages: -->
|
|
||||||
<!-- <buildtool_depend>catkin</buildtool_depend> -->
|
|
||||||
<!-- Use exec_depend for packages you need at runtime: -->
|
|
||||||
<!-- <exec_depend>message_runtime</exec_depend> -->
|
|
||||||
<!-- Use test_depend for packages you need only for testing: -->
|
|
||||||
<!-- <test_depend>gtest</test_depend> -->
|
|
||||||
<!-- Use doc_depend for packages you need only for building documentation: -->
|
|
||||||
<!-- <doc_depend>doxygen</doc_depend> -->
|
|
||||||
<buildtool_depend>catkin</buildtool_depend>
|
|
||||||
<build_depend>geometry_msgs</build_depend>
|
|
||||||
<build_depend>nav_msgs</build_depend>
|
|
||||||
<build_depend>roscpp</build_depend>
|
|
||||||
<build_depend>rospy</build_depend>
|
|
||||||
<build_depend>std_msgs</build_depend>
|
|
||||||
<build_export_depend>geometry_msgs</build_export_depend>
|
|
||||||
<build_export_depend>nav_msgs</build_export_depend>
|
|
||||||
<build_export_depend>roscpp</build_export_depend>
|
|
||||||
<build_export_depend>rospy</build_export_depend>
|
|
||||||
<build_export_depend>std_msgs</build_export_depend>
|
|
||||||
<exec_depend>geometry_msgs</exec_depend>
|
|
||||||
<exec_depend>nav_msgs</exec_depend>
|
|
||||||
<exec_depend>roscpp</exec_depend>
|
|
||||||
<exec_depend>rospy</exec_depend>
|
|
||||||
<exec_depend>std_msgs</exec_depend>
|
|
||||||
|
|
||||||
|
|
||||||
<!-- The export tag contains other, unspecified, tags -->
|
|
||||||
<export>
|
|
||||||
<!-- Other tools can request additional information be placed here -->
|
|
||||||
|
|
||||||
</export>
|
|
||||||
</package>
|
|
|
@ -1,84 +0,0 @@
|
||||||
#! /usr/bin/env python
|
|
||||||
|
|
||||||
import rospy
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from nav_msgs.msg import Odometry
|
|
||||||
|
|
||||||
from geometry_msgs.msg import Twist
|
|
||||||
|
|
||||||
from utils import compute_path_from_wp
|
|
||||||
from cvxpy_mpc import optimize
|
|
||||||
|
|
||||||
# classes
|
|
||||||
class Node():
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
|
|
||||||
rospy.init_node('mpc_node')
|
|
||||||
|
|
||||||
N = 5 #number of state variables
|
|
||||||
M = 2 #number of control variables
|
|
||||||
T = 20 #Prediction Horizon
|
|
||||||
dt = 0.25 #discretization step
|
|
||||||
|
|
||||||
# State for the robot mathematical model
|
|
||||||
self.state = None
|
|
||||||
|
|
||||||
# starting guess output
|
|
||||||
self.opt_u = np.zeros((M,T))
|
|
||||||
self.opt_u[0,:] = 1 #m/s
|
|
||||||
self.opt_u[1,:] = np.radians(0) #rad/s
|
|
||||||
|
|
||||||
# Interpolated Path to follow given waypoints
|
|
||||||
self.path = compute_path_from_wp([0,20,30,30],[0,0,10,20])
|
|
||||||
|
|
||||||
self._cmd_pub = rospy.Publisher(rospy.get_namespace() + 'husky_velocity_controller/cmd_vel', Twist, queue_size=10)
|
|
||||||
self._odom_sub = rospy.Subscriber(rospy.get_namespace() +'husky_velocity_controller/odom', Odometry, self._odom_cb, queue_size=1)
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
while 1:
|
|
||||||
if self.state is not None:
|
|
||||||
|
|
||||||
#optimization loop
|
|
||||||
self.opt_u = optimize(self.state,
|
|
||||||
self.opt_u,
|
|
||||||
self.path)
|
|
||||||
|
|
||||||
msg = Twist()
|
|
||||||
msg.linear.x=self.opt_u[0,1]
|
|
||||||
msg.angular.z=self.opt_u[0,1]
|
|
||||||
|
|
||||||
self._cmd_pub(msg)
|
|
||||||
|
|
||||||
def _odom_cb(self,odom):
|
|
||||||
'''
|
|
||||||
Updates state with latest odometry.
|
|
||||||
|
|
||||||
:param odom: nav_msgs.msg.Odometry
|
|
||||||
'''
|
|
||||||
|
|
||||||
state = np.zeros(3)
|
|
||||||
|
|
||||||
# Update current position
|
|
||||||
state[0] = odom.pose.pose.position.x
|
|
||||||
state[1] = odom.pose.pose.position.y
|
|
||||||
|
|
||||||
# Update current orientation
|
|
||||||
_, _, state[2] = euler_from_quaternion(
|
|
||||||
[odom.pose.pose.orientation.x,
|
|
||||||
odom.pose.pose.orientation.y,
|
|
||||||
odom.pose.pose.orientation.z,
|
|
||||||
odom.pose.pose.orientation.w])
|
|
||||||
|
|
||||||
self.state = state
|
|
||||||
|
|
||||||
def main():
|
|
||||||
ros_node=Node()
|
|
||||||
try:
|
|
||||||
ros_node.run()
|
|
||||||
except rospy.exceptions.ROSException as e:
|
|
||||||
sys.exit(e)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -19,16 +19,16 @@ def get_linear_model(x_bar,u_bar):
|
||||||
theta = x_bar[2]
|
theta = x_bar[2]
|
||||||
psi = x_bar[3]
|
psi = x_bar[3]
|
||||||
cte = x_bar[4]
|
cte = x_bar[4]
|
||||||
|
|
||||||
v = u_bar[0]
|
v = u_bar[0]
|
||||||
w = u_bar[1]
|
w = u_bar[1]
|
||||||
|
|
||||||
A = np.zeros((N,N))
|
A = np.zeros((N,N))
|
||||||
A[0,2]=-v*np.sin(theta)
|
A[0,2]=-v*np.sin(theta)
|
||||||
A[1,2]=v*np.cos(theta)
|
A[1,2]=v*np.cos(theta)
|
||||||
A[4,3]=v*np.cos(-psi)
|
A[4,3]=v*np.cos(-psi)
|
||||||
A_lin=np.eye(N)+dt*A
|
A_lin=np.eye(N)+dt*A
|
||||||
|
|
||||||
B = np.zeros((N,M))
|
B = np.zeros((N,M))
|
||||||
B[0,0]=np.cos(theta)
|
B[0,0]=np.cos(theta)
|
||||||
B[1,0]=np.sin(theta)
|
B[1,0]=np.sin(theta)
|
||||||
|
@ -36,10 +36,10 @@ def get_linear_model(x_bar,u_bar):
|
||||||
B[3,1]=-1
|
B[3,1]=-1
|
||||||
B[4,0]=np.sin(-psi)
|
B[4,0]=np.sin(-psi)
|
||||||
B_lin=dt*B
|
B_lin=dt*B
|
||||||
|
|
||||||
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w,-w,v*np.sin(-psi)]).reshape(N,1)
|
f_xu=np.array([v*np.cos(theta),v*np.sin(theta),w,-w,v*np.sin(-psi)]).reshape(N,1)
|
||||||
C_lin = dt*(f_xu - np.dot(A,x_bar.reshape(N,1)) - np.dot(B,u_bar.reshape(M,1)))
|
C_lin = dt*(f_xu - np.dot(A,x_bar.reshape(N,1)) - np.dot(B,u_bar.reshape(M,1)))
|
||||||
|
|
||||||
return A_lin,B_lin,C_lin
|
return A_lin,B_lin,C_lin
|
||||||
|
|
||||||
def calc_err(state,path):
|
def calc_err(state,path):
|
||||||
|
@ -58,7 +58,7 @@ def calc_err(state,path):
|
||||||
|
|
||||||
try:
|
try:
|
||||||
v = [path[0,nn_idx+1] - path[0,nn_idx],
|
v = [path[0,nn_idx+1] - path[0,nn_idx],
|
||||||
path[1,nn_idx+1] - path[1,nn_idx]]
|
path[1,nn_idx+1] - path[1,nn_idx]]
|
||||||
v /= np.linalg.norm(v)
|
v /= np.linalg.norm(v)
|
||||||
|
|
||||||
d = [path[0,nn_idx] - state[0],
|
d = [path[0,nn_idx] - state[0],
|
||||||
|
@ -74,17 +74,17 @@ def calc_err(state,path):
|
||||||
|
|
||||||
path_ref_vect = [np.cos(path[2,target_idx] + np.pi / 2),
|
path_ref_vect = [np.cos(path[2,target_idx] + np.pi / 2),
|
||||||
np.sin(path[2,target_idx] + np.pi / 2)]
|
np.sin(path[2,target_idx] + np.pi / 2)]
|
||||||
|
|
||||||
#heading error w.r.t path frame
|
#heading error w.r.t path frame
|
||||||
psi = path[2,target_idx] - state[2]
|
psi = path[2,target_idx] - state[2]
|
||||||
|
|
||||||
# the cross-track error is given by the scalar projection of the car->wp vector onto the faxle versor
|
# the cross-track error is given by the scalar projection of the car->wp vector onto the faxle versor
|
||||||
#cte = np.dot([dx[target_idx], dy[target_idx]],front_axle_vect)
|
#cte = np.dot([dx[target_idx], dy[target_idx]],front_axle_vect)
|
||||||
cte = np.dot([dx[target_idx], dy[target_idx]],path_ref_vect)
|
cte = np.dot([dx[target_idx], dy[target_idx]],path_ref_vect)
|
||||||
|
|
||||||
return target_idx,psi,cte
|
return target_idx,psi,cte
|
||||||
|
|
||||||
def optimize(starting_state,u_bar,track);
|
def optimize(starting_state,u_bar,track):
|
||||||
'''
|
'''
|
||||||
:param starting_state:
|
:param starting_state:
|
||||||
:param u_bar:
|
:param u_bar:
|
||||||
|
@ -100,7 +100,7 @@ def optimize(starting_state,u_bar,track);
|
||||||
M = 2 #number of control variables
|
M = 2 #number of control variables
|
||||||
T = 20 #Prediction Horizon
|
T = 20 #Prediction Horizon
|
||||||
dt = 0.25 #discretization step
|
dt = 0.25 #discretization step
|
||||||
|
|
||||||
#Starting Condition
|
#Starting Condition
|
||||||
x0 = np.zeros(N)
|
x0 = np.zeros(N)
|
||||||
x0[0] = starting_state[0]
|
x0[0] = starting_state[0]
|
||||||
|
@ -141,7 +141,7 @@ def optimize(starting_state,u_bar,track);
|
||||||
idx,_,_ = calc_err(x_bar[:,t],track)
|
idx,_,_ = calc_err(x_bar[:,t],track)
|
||||||
delta_x = track[:,idx]-x[0:3,t]
|
delta_x = track[:,idx]-x[0:3,t]
|
||||||
cost+= cp.quad_form(delta_x,10*np.eye(3))
|
cost+= cp.quad_form(delta_x,10*np.eye(3))
|
||||||
|
|
||||||
# Tracking last time step
|
# Tracking last time step
|
||||||
if t == T:
|
if t == T:
|
||||||
idx,_,_ = calc_err(x_bar[:,t],track)
|
idx,_,_ = calc_err(x_bar[:,t],track)
|
||||||
|
@ -151,26 +151,26 @@ def optimize(starting_state,u_bar,track);
|
||||||
# Actuation rate of change
|
# Actuation rate of change
|
||||||
if t < (T - 1):
|
if t < (T - 1):
|
||||||
cost += cp.quad_form(u[:, t + 1] - u[:, t], 25*np.eye(M))
|
cost += cp.quad_form(u[:, t + 1] - u[:, t], 25*np.eye(M))
|
||||||
|
|
||||||
# Actuation effort
|
# Actuation effort
|
||||||
cost += cp.quad_form( u[:, t],1*np.eye(M))
|
cost += cp.quad_form( u[:, t],1*np.eye(M))
|
||||||
|
|
||||||
# Constrains
|
# Constrains
|
||||||
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
|
A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])
|
||||||
constr += [x[:,t+1] == A*x[:,t] + B*u[:,t] + C.flatten()]
|
constr += [x[:,t+1] == A*x[:,t] + B*u[:,t] + C.flatten()]
|
||||||
|
|
||||||
# sums problem objectives and concatenates constraints.
|
# sums problem objectives and concatenates constraints.
|
||||||
constr += [x[:,0] == x_sim[:,sim_time]] # starting condition
|
constr += [x[:,0] == x0] # starting condition
|
||||||
constr += [u[0, :] <= MAX_SPEED]
|
constr += [u[0, :] <= MAX_SPEED]
|
||||||
constr += [u[0, :] >= MIN_SPEED]
|
constr += [u[0, :] >= MIN_SPEED]
|
||||||
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
|
constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]
|
||||||
|
|
||||||
# Solve
|
# Solve
|
||||||
prob = cp.Problem(cp.Minimize(cost), constr)
|
prob = cp.Problem(cp.Minimize(cost), constr)
|
||||||
solution = prob.solve(solver=cp.ECOS, verbose=False)
|
solution = prob.solve(solver=cp.ECOS, verbose=False)
|
||||||
|
|
||||||
#retrieved optimized U and assign to u_bar to linearize in next step
|
#retrieved optimized U and assign to u_bar to linearize in next step
|
||||||
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
|
u_bar=np.vstack((np.array(u.value[0, :]).flatten(),
|
||||||
(np.array(u.value[1, :]).flatten())))
|
(np.array(u.value[1, :]).flatten())))
|
||||||
|
|
||||||
return u_bar
|
return u_bar
|
|
@ -0,0 +1,91 @@
|
||||||
|
#! /usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib import animation
|
||||||
|
|
||||||
|
from utils import compute_path_from_wp
|
||||||
|
from cvxpy_mpc import optimize
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
# classes
|
||||||
|
class MPC():
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
|
||||||
|
# State for the robot mathematical model [x,y,heading]
|
||||||
|
self.state = np.zeros(3)
|
||||||
|
# Sim step
|
||||||
|
self.dt = 0.25
|
||||||
|
|
||||||
|
# starting guess output
|
||||||
|
N = 5 #number of state variables
|
||||||
|
M = 2 #number of control variables
|
||||||
|
T = 20 #Prediction Horizon
|
||||||
|
self.opt_u = np.zeros((M,T))
|
||||||
|
self.opt_u[0,:] = 1 #m/s
|
||||||
|
self.opt_u[1,:] = np.radians(0) #rad/s
|
||||||
|
|
||||||
|
# Interpolated Path to follow given waypoints
|
||||||
|
self.path = compute_path_from_wp([0,20,30,30],[0,0,10,20])
|
||||||
|
|
||||||
|
#Initialise plot
|
||||||
|
# First set up the figure, the axis, and the plot element we want to animate
|
||||||
|
plt.style.use("ggplot")
|
||||||
|
self.fig = plt.figure()
|
||||||
|
plt.ion()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
'''
|
||||||
|
'''
|
||||||
|
|
||||||
|
while 1:
|
||||||
|
if self.state is not None:
|
||||||
|
|
||||||
|
#optimization loop
|
||||||
|
start=time.time()
|
||||||
|
self.opt_u = optimize(self.state,
|
||||||
|
self.opt_u,
|
||||||
|
self.path)
|
||||||
|
|
||||||
|
print("CVXPY Optimization Time: {:.4f}s".format(time.time()-start))
|
||||||
|
|
||||||
|
self.update_sim(self.opt_u[0,1],self.opt_u[1,1])
|
||||||
|
|
||||||
|
self.plot_sim()
|
||||||
|
|
||||||
|
def update_sim(self,lin_v,ang_v):
|
||||||
|
'''
|
||||||
|
Updates state.
|
||||||
|
|
||||||
|
:param lin_v: float
|
||||||
|
:param ang_v: float
|
||||||
|
'''
|
||||||
|
|
||||||
|
self.state[0] = self.state[0] +lin_v*np.cos(self.state[2])*self.dt
|
||||||
|
self.state[1] = self.state[1] +lin_v*np.sin(self.state[2])*self.dt
|
||||||
|
self.state[2] = self.state[2] +ang_v*self.dt
|
||||||
|
|
||||||
|
def plot_sim(self):
|
||||||
|
plt.clf()
|
||||||
|
self.ax = plt.axes(xlim=(np.min(self.path[0,:])-1, np.max(self.path[0,:])+1),
|
||||||
|
ylim=(np.min(self.path[1,:])-1, np.max(self.path[1,:])+1))
|
||||||
|
|
||||||
|
self.track, = self.ax.plot(self.path[0,:],self.path[1,:], "g-", label="reference track")
|
||||||
|
self.vehicle, = self.ax.plot([self.state[0]], [self.state[1]], "r*", label="vehicle path")
|
||||||
|
plt.legend()
|
||||||
|
plt.draw()
|
||||||
|
plt.pause(0.1)
|
||||||
|
|
||||||
|
def do_sim():
|
||||||
|
sim=MPC()
|
||||||
|
try:
|
||||||
|
sim.run()
|
||||||
|
except Exception as e:
|
||||||
|
sys.exit(e)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
do_sim()
|
|
@ -1,12 +1,10 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.integrate import odeint
|
|
||||||
from scipy.interpolate import interp1d
|
from scipy.interpolate import interp1d
|
||||||
import cvxpy as cp
|
|
||||||
|
|
||||||
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
|
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
|
||||||
"""
|
"""
|
||||||
Interpolation range is computed to assure one point every fixed distance step [m].
|
Interpolation range is computed to assure one point every fixed distance step [m].
|
||||||
|
|
||||||
:param start_xp: array_like, list of starting x coordinates
|
:param start_xp: array_like, list of starting x coordinates
|
||||||
:param start_yp: array_like, list of starting y coordinates
|
:param start_yp: array_like, list of starting y coordinates
|
||||||
:param step: float, interpolation distance [m] between consecutive waypoints
|
:param step: float, interpolation distance [m] between consecutive waypoints
|
||||||
|
@ -21,13 +19,15 @@ def compute_path_from_wp(start_xp, start_yp, step = 0.1):
|
||||||
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
|
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
|
||||||
|
|
||||||
interp_range = np.linspace(0,1,section_len/delta)
|
interp_range = np.linspace(0,1,section_len/delta)
|
||||||
|
|
||||||
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
|
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
|
||||||
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
|
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
|
||||||
|
|
||||||
final_xp=np.append(final_xp,fx(interp_range))
|
final_xp=np.append(final_xp,fx(interp_range))
|
||||||
final_yp=np.append(final_yp,fy(interp_range))
|
final_yp=np.append(final_yp,fy(interp_range))
|
||||||
|
|
||||||
dx = np.append(0, np.diff(final_xp))
|
dx = np.append(0, np.diff(final_xp))
|
||||||
dy = np.append(0, np.diff(final_yp))
|
dy = np.append(0, np.diff(final_yp))
|
||||||
theta = np.arctan2(dy, dx)
|
theta = np.arctan2(dy, dx)
|
||||||
|
|
||||||
|
return np.vstack((final_xp,final_yp,theta))
|
|
@ -1158,13 +1158,6 @@
|
||||||
"plt.tight_layout()\n",
|
"plt.tight_layout()\n",
|
||||||
"plt.show()"
|
"plt.show()"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|
|
@ -1158,13 +1158,6 @@
|
||||||
"plt.tight_layout()\n",
|
"plt.tight_layout()\n",
|
||||||
"plt.show()"
|
"plt.show()"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|
Loading…
Reference in New Issue