From 07cff0e3041e34b9de57634727dfe8b19bab63fc Mon Sep 17 00:00:00 2001 From: 12345qiupeng <qpeng0504@163.com> Date: Wed, 23 Oct 2024 16:26:31 +0800 Subject: [PATCH] =?UTF-8?q?feat:=20=E7=BF=BB=E8=AF=91mpc=E5=9F=BA=E7=A1=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- notebooks/1.0-lti-system-modelling.ipynb | 112 ++++---- notebooks/2.0-MPC-base.ipynb | 337 +++++++++++++++-------- 2 files changed, 280 insertions(+), 169 deletions(-) diff --git a/notebooks/1.0-lti-system-modelling.ipynb b/notebooks/1.0-lti-system-modelling.ipynb index 65d7e3b..5fa3d00 100644 --- a/notebooks/1.0-lti-system-modelling.ipynb +++ b/notebooks/1.0-lti-system-modelling.ipynb @@ -11,11 +11,11 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.338138Z", - "start_time": "2024-10-22T09:43:55.319761Z" + "end_time": "2024-10-23T07:18:06.003291Z", + "start_time": "2024-10-23T07:18:05.220024Z" } }, "outputs": [], @@ -182,11 +182,11 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.339159Z", - "start_time": "2024-10-22T09:43:55.327823Z" + "end_time": "2024-10-23T07:18:06.008037Z", + "start_time": "2024-10-23T07:18:06.005433Z" } }, "outputs": [], @@ -230,20 +230,23 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.355431Z", - "start_time": "2024-10-22T09:43:55.333525Z" + "end_time": "2024-10-23T07:18:06.167910Z", + "start_time": "2024-10-23T07:18:06.008459Z" } }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 1.37 ms, sys: 7 μs, total: 1.38 ms\n", - "Wall time: 1.42 ms\n" + "ename": "NameError", + "evalue": "name 'M' is not defined", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)", + "File \u001B[0;32m<timed exec>:1\u001B[0m\n", + "\u001B[0;31mNameError\u001B[0m: name 'M' is not defined" ] } ], @@ -265,18 +268,29 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.414551Z", - "start_time": "2024-10-22T09:43:55.354098Z" + "end_time": "2024-10-23T07:18:06.382763Z", + "start_time": "2024-10-23T07:18:06.166338Z" } }, "outputs": [ + { + "ename": "NameError", + "evalue": "name 'x_bar' is not defined", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[4], line 3\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[38;5;66;03m# plot trajectory\u001B[39;00m\n\u001B[1;32m 2\u001B[0m plt\u001B[38;5;241m.\u001B[39msubplot(\u001B[38;5;241m2\u001B[39m, \u001B[38;5;241m2\u001B[39m, \u001B[38;5;241m1\u001B[39m)\n\u001B[0;32m----> 3\u001B[0m plt\u001B[38;5;241m.\u001B[39mplot(x_bar[\u001B[38;5;241m0\u001B[39m, :], x_bar[\u001B[38;5;241m1\u001B[39m, :])\n\u001B[1;32m 4\u001B[0m plt\u001B[38;5;241m.\u001B[39mplot(np\u001B[38;5;241m.\u001B[39mlinspace(\u001B[38;5;241m0\u001B[39m, \u001B[38;5;241m10\u001B[39m, T \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m), np\u001B[38;5;241m.\u001B[39mzeros(T \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m), \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mb-\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 5\u001B[0m plt\u001B[38;5;241m.\u001B[39maxis(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mequal\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n", + "\u001B[0;31mNameError\u001B[0m: name 'x_bar' is not defined" + ] + }, { "data": { - "text/plain": "<Figure size 640x480 with 2 Axes>", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAEDCAYAAABTZPIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAi0lEQVR4nO3deXwU9f3H8ddMDghHDo6QYDiCIVzKIVY8sCCWQ0yLsRar9UA51FCrtlTF+KtgOUqtihXwAgStWASJKKBcXiCtVCvEGuSQUyAkMYSEhJBjvr8/VqIhCSQhyWQ37+fjwcPsHLufT8advHf2OzOWMcYgIiIiIl7NdrsAERERETl3CnUiIiIiPkChTkRERMQHKNSJiIiI+ACFOhEREREfoFAnIiIi4gMU6kRERER8gEKdiIiIiA9QqBMRERHxAf5uF+CWo0ePUlRUdNblWrduTXp6eh1UVPfUm3fy5d6g8v35+/sTFhZWBxV5F+3b1Js38+X+6mLf1mBDXVFREYWFhWdcxrKskmV97W5q6s07+XJv4Pv91QXt29Sbt/Ll/uqqN339KiIiIuIDFOpEREREfIBCnYiIiIgPUKgTERER8QEKdSIiIiK1yOTn1cnJHwp1IiIiIrXEfLuX4sn3kZP0Wq2/lkKdiIiISC0wn3+C85cHIT2V3HffxBScrNXXa7DXqRMRERGpDcYpxixfhFm1BACrWy/C//QkabknavVrWIU6ERERkRpi8o7jzH0KvvwMAGvIddi/HIVfcCjknqjV11aoExEREakB5vABnFlTIe0QBARi3fZb7EsHltxRorYp1ImIiIicI7Pl3zjznob8E9CiFXZCIlaH8+u0BoU6ERERkWoyjoNZsRjzzuueCbEXYN/1IFZwaJ3XolAnIiIiUg3mRB7O/Kdhy6cAWIPisH51J5a/O/FKoU5ERESkikzqQZw50+DwAfD3x7olAfuKn7lak1dfpy4pKYmRI0eyYMECt0sRERGRBsJ8+RnOtAmeQBfaAvuP010PdODFR+p27drFunXr6NChg9uliIiISANgjMG8uxTz1j/AGDi/K/Y9E7FCwtwuDfDSI3X5+fk8++yz3HXXXTRt2tTtckRERMTHmfwTOC/MwCS9CsZg/XQY9oSp9SbQgZceqZs7dy59+vShZ8+eLFu27IzLFhYWUlhYWPLYsiyCgoJKfj6TU/Pr6voydUm9eSdf7g18vz8R8U4mPRVn9lQ4uA/8/LFuGoc9YJjbZZXhdaHuk08+Yc+ePUyfPr1SyyclJbF06dKSx9HR0cyYMYPWrVtX+jUjIiKqXKe3UG/eyZd7A9/vT0S8h0n5AueFJyDvOISEYd/9EFZMd7fLKpdXhbqMjAwWLFhAYmIigYGBlVonPj6euLi4ksenjgCkp6dTVFR0xnUtyyIiIoLU1NRavVebG9Sbd/Ll3qBq/fn7+1fpw5mISFUYYzBr3sK8uRCMA9GxnvFzYS3dLq1CXhXqdu/ezbFjx3j44YdLpjmOw7Zt23jvvfdYtGgRtl16mGBAQAABAQHlPl9l/ygaY3zyDyioN2/ly72B7/cnIvWbOXkS88oszOaPALCuuBrrN/dgBVTugJJbvCrUXXjhhfztb38rNe25556jbdu2jBgxokygExEREakK812a5/pz+3eDnx/WjWOwBg73irG+XhXqgoKCaN++falpjRo1onnz5mWmi4iIiFSF2f4lzvMz4Hg2NAvGvvthrC4XuF1WpXlVqBMRERGpacYYzPsrMG/MA8eB9udjJzyC1dK7xu16faibNGmS2yWIiIiIlzKFBZhX52D+9T4A1qUDsW4djxXYyOXKqs7rQ52ISH1WXFzMkiVL2LBhA1lZWYSFhTFw4ECuv/76knHAxhiWLFnC+vXrOX78OJ07d2b06NG0a9fO5epFfJvJzMB5bjrs3QmWjXXDKKzBI7xi/Fx5FOpERGrR8uXLWbt2LePHjycqKordu3czZ84cmjRpwvDhw0uWWblyJQkJCURGRrJs2TKmTJnCzJkzSy6WLiI1y+xM8QS6nGPQtDn2uD9ide/tdlnnRKeLiojUoh07dnDxxRdz0UUXER4ezqWXXkrPnj355ptvAM9RulWrVhEfH0+/fv1o374948eP5+TJk2zcuNHl6kV8jzEG58N3cZ5M9AS6qI7YiU96faADHakTEalVXbt2Ze3atRw6dIi2bduyd+9etm/fzu233w5AWloaWVlZ9OrVq2SdgIAAunfvzvbt2xk8eHC5z6tbIJZPvXmvuujPFBZiXn8B8/Fqz2td3B/7jvuwGjWutdeEutt2CnUiIrVoxIgR5OXl8cADD2DbNo7j8Otf/5r+/fsDkJWVBUBISEip9UJCQsjIyKjweXULxDNTb96rtvorzswg42+JFH+dDJZFyO3jaX7D7XUakmt72ynUiYjUok2bNrFhwwZ+97vf0a5dO/bu3cuCBQtKTpg45fQ/LGe7o4ZugVg+9ea9arM/883XFM+ZDscyoUlT7HF/JPeCvuSmptbo61Skrm6BqFAnIlKL/vGPfzBixAiuuOIKANq3b096ejpvvfUWAwcOJDQ0FKDkzNhTsrOzyxy9+zHdAvHM1Jv3qun+nA1rMIueh6IiaNsee/wjWOFtXfkd1va204kSIiK16OTJk2VuYWjbdsmOPTw8nNDQUJKTk0vmFxUVkZKSQpcuXeq0VhFfYooKcV57HvPKLE+g63Mp9sS/YoW3dbu0WqMjdSIitahv374sW7aMVq1aERUVxd69e1mxYgVXXXUV4PlaZvjw4SQlJREZGUlERARJSUk0atSoZNydiFSNyc7Cef4vsDMFAGvEb7CG/wrLx+8Rr1AnIlKL7rzzThYvXszcuXM5duwYLVq0YPDgwdxwww0ly4wYMYKCggLmzp1Lbm4uMTExJCYm6hp1ItVg9u3CmT0NjmZA4yDsMX/A6nWJ22XVCYU6EZFaFBQUxKhRoxg1alSFy1iWxciRIxk5cmTdFSbig5x/fYB5dTYUFkCb87DHJ2JFRrldVp1RqBMRERGvZoqLMUtfxqx72zOh50+wR/8eq0lTdwurYwp1IiIi4rVMTjbOi3+Frz0nG1lxN2L9/CafHz9XHoU6ERER8Upm/26cOdPguzRo1Bj7zvuxLrrc7bJco1AnIiIiXsfZ/DFm4d+hoABaR3jGz53Xwe2yXKVQJyIiIl7DOMWYZa9iVi/zTOjRB3vsH7GaNnO3sHpAoU5EBLj99turtd7kyZPp2LFjzRYjIuUyuTk4L/0NvvoCAGvYL7Hib8Gy/VyurH5QqBMRAfLz8+nTpw/BwcGVWt5xHDZs2IDjOLVcmYgAmIP7cGZPhfRUCAzEGnUf9k+udLusekWhTkTkezfccAMxMTGVWra4uJgNGzbUckUiAmD+uwln/kw4mQ8twz3j59pFu11WvaNQJyICXHPNNYSGhlZ6edu2q7yOiFSNcRzM24swK9/wTOjaE3vcg1jNK3dEvaFRqBMRgTPe8aE8lmVVeR0RqTyTl4sz7ylI/g8A1uARWL8cheWn8XMVUagTERGResUc/hZnzlRIPQgBgVi3jce+9Cq3y6r3FOpERE6TkpJS4TzbtmnSpAnnnXcefjpiIFLjnC2bceb+DfJPQItW2AmPYHWo3FjXhk6hTkTkNJMnTz7rMo0bNyYuLo5f/epXdVCRiO8zjsOx1+fi/ON5z4TYHth3PYQVHOpqXd5EoU5E5DQPPfQQ8+fPp23btlxxxRWEhISQlZXFJ598wqFDh7jxxhvZtm0bb775Js2aNeOaa65xu2QRr2by8zDznyH7i38BYF11LdbI0Vj+iilVod+WiMhptmzZQrdu3Rg/fnyp6QMHDmTWrFl8/fXX3HXXXQCsX79eoU7kHJi0QzizpsLhA+AfgH3LPVhX/MztsryS7XYBIiL1zaZNm7jiiivKnde/f38+/fRTAPr27cvhw4frsjQRn2L+9znO1D94Al1oC8JnvITdf7DbZXktHakTETnNyZMnyc7OLnfesWPHKCgoADzj6nSyhEjVGWMw772JSXoVjIHzu+J3z0Qade0B+qBUbQp1IiKn6dKlC4sXLyYmJoa2bduWTD948CBvvPEGXbt2BSAtLY2WLVu6VaaIVzIn8zEL/o75bCMA1k+HYv16HFZgoMuVeT+FOhGR04waNYrHHnuM3//+97Rr147Q0FCysrI4cOAATZs25fbbbwcgMzOTAQMGuFytiPcw6ak4c6bBt3vBzx/rpnHYA4a5XZbPUKgTETlNVFQUTz75JCtWrGDbtm0cOXKE5s2bExcXx7XXXktYWBjguVesiFSO2bYV54W/Qm4OBIdi3/0wVufubpflUxTqRETKERoayi233OJ2GSJezxiDWfc2ZsnLYBzo2Bn7nolYLVq5XZrPUagTEalAXl4eO3bsICcnhz59+tCsWTO3SxLxKqbgJObV2Zh/fwiAdfnVWLfcgxWg8XO1watCXVJSEps3b+bgwYMEBgYSGxvLLbfcUmogs4hITVi6dCnLly8vOdN1+vTpNGvWjMcff5yePXty3XXXuVugSD1nvkv3jJ/b/w3YNtaNYzwXFbYst0vzWV51nbqUlBSGDh3K1KlTefTRR3EchylTppCfn+92aSLiQ1avXs3SpUu56qqrePjhh0vNu+iii/jvf//rUmUi3sFs/x/O1N97Al2zYOzf/xl7UJwCXS3zqiN1iYmJpR4nJCQwZswYdu/eTffuGmwpIjXjvffeIy4ujltuuQXHcUrNi4yM1AWHRSpgjMF8sBLzxjwoLob2nbATHsFqGe52aQ2CV4W60+Xl5QGccZxLYWEhhYWFJY8tyyIoKKjk5zM5Nd8XP1moN+/ky71B/ekvLS2NXr16lTsvKCioZN8jIj8whQWY157HfLIOAKvfAKxbf4vVqJHLlTUcXhvqjDEsXLiQrl270r59+wqXS0pKYunSpSWPo6OjmTFjBq1bt670a0VERJxTrfWZevNOvtwbuN9fkyZNOHbsWLnz0tLSCA4OruOKROo3c/Q7nOemw54dYNlYN4zCGjzC9Q9oDY3Xhrp58+axf/9+Hn/88TMuFx8fT1xcXMnjU/+DpaenU1RUdMZ1LcsiIiKC1NRUjDHnXnQ9ot68ky/3BlXrz9/fv0ofzqriggsuYPny5Vx88cUEfn+Ve8uyKC4uZu3atRUexRNpiMyuFJzn/gLZWdC0Ofa4P2J17+12WQ2SV4a6+fPn8/nnnzN58uSz3qInICCAgICAcudV9o+iMcYn/4CCevNWvtwbuN/fjTfeyMSJE/n973/PJZdcAnjG2e3du5eMjAweeOCBKj1fZmYm//jHP9iyZQsFBQVERkZyzz330KlTJ8DT75IlS1i/fj3Hjx+nc+fOjB49mnbt2tV4byI1yfn4PcyiF6G4CM7rgD0+Eau1b3+TUJ95VagzxjB//nw2b97MpEmTCA/XwEsRqXkRERH8+c9/ZuHChaxevRqAjz/+mB49enDvvffSqlXlL5p6/Phx/u///o8ePXrwyCOPEBwczJEjR2jSpEnJMsuXL2flypUkJCQQGRnJsmXLmDJlCjNnziwZAyxSn5iiQszrL2E+fg8Aq+8VWHfch9WoscuVNWxeFermzZvHxo0befDBBwkKCiIrKwvwjH8J1I2ARaQGRUVFkZiYSGFhITk5OTRr1qxa+5nly5fTsmVLEhISSqb9+AOpMYZVq1YRHx9Pv379ABg/fjxjx45l48aNDB48+NybEalB5thRnOf/Aru2gWVhxd+KNeyXGj9XD3hVqFuzZg0AkyZNKjU9ISGBgQMH1n1BIuLzAgICaNGiRbXX/+yzz+jVqxdPPfUUKSkptGjRgiFDhvCzn/0M8Jx4kZWVVWqcXkBAAN27d2f79u0Vhjqd2V8+9Va7zO4dOHOmQlYmBDXFHjcB+8KLa+S560N/taWuevOqUPfGG2+4XYKI+KgfnyVfGTfccEOllktLS2Pt2rVce+21xMfHs2vXLl5++WUCAgIYMGBAyTcOISEhpdYLCQkhIyOjwufVmf1npt5q3vG1b3N01nQoKsS/XTSt/u9JAs6r+OoT1aVtV31eFepERGrLkiVLqrR8ZUOd4zicf/753HzzzYAnfB04cIA1a9YwYMCAkuVO/wR/thNFdGZ/+dRbzTNFRThvzMO8v8JTR59LMaMfIMMOgBq8ELe2nce5nNmvUCciAixevLjk58OHDzNt2jQGDRpE//79CQ0NJSsriw0bNvDBBx/wyCOPVPp5w8LCiIqKKjUtKiqKTz/9FIDQ0FAAsrKyCAsLK1kmOzu7zNG7H9OZ/Wem3mrotbKzcF74K+z4HwDWL27GunYk2Hat1aBtV31ede9XEZG6sGDBAgYMGEB8fDytW7cmICCA1q1bc/311/PTn/6Ul19+udLP1aVLFw4dOlRq2qFDh0o+iYeHhxMaGkpycnLJ/KKiIlJSUujSpUvNNCRSDWbfLs/9W3f8DxoHYY9PxP75r7FsRYf6SltGROQ027ZtqzBQdenSha+//rrSz3Xttdeyc+dOli1bRmpqKhs3bmT9+vUMHToU8HwtM3z4cJKSkti8eTP79+9n9uzZNGrUiP79+9dIPyJV5fz7Q5wZD0NmBrQ5D/uRv2H17ud2WXIW+vpVROQ0AQEBfPPNN1x44YVl5u3evRt//8rvOmNiYpgwYQKLFi3izTffJDw8nNtvv50rr7yyZJkRI0ZQUFDA3Llzyc3NJSYmhsTERF2jTuqcKS7GvLkAs3a5Z8KFF2OP+QNWk6buFiaVolAnInKan/zkJyxdupTGjRvTv39/mjVrxvHjx9m4cSNLly6t8hG0vn370rdv3wrnW5bFyJEjGTly5LmWLlJt5ng2zotPwLatAFjDR2KNuFlft3oRhToRkdPcfvvtHDlyhJdffpmXX34ZPz8/iouLAejWrRu33367yxWK1CxzYA/O7KnwXRo0aox9x31Yfa9wuyypIoU6EZHTBAUF8dhjj7Flyxa++uorcnJyaN68OT169KBXr14+eXFUabic/2zELHgGCk5C6wjshEewojq6XZZUg0KdiEgFevfuTe/evd0uQ6RWGKcYk/QPzHtveiZ074097o9YTZu7W5hUm0KdiIhIA2Nyj+O89AR89QUA1tB4rPjbsPz8XK5MzoVGP4qIABMmTGD//v2VXt5xHCZMmMC3335bi1WJ1DxzcL/n+nNffQGBgVhjJ2DfcIcCnQ/QkToREeDAgQMUFBTU+joibjL//RfO/Jlw8gS0DPeMn2vfye2ypIYo1ImIfO+JJ56o8NZbIt7MOA7mndcxK76/HV6XC7HvegirebC7hUmNUqirgHGKoagIJz8fU3ASgwWWBbYFlq2z30R8zIABA6q1XnCw/ihK/WbycnHmPQXJ/wHA+tkvsPR1q09SqKvI7h0Uz3iIgxXNt2zw8wM/f/Czv//v948DAiEwEAIbff9zI6wf/VwyL6gJBDX1XKn7+58JagpNvp8eEFiXHYs0aAkJCW6XIFLjTOq3nuvPpR4E/wCsW8djXz7I7bKklijUVZdxoMiBosLKLV6def4BP4S9Jk2haTOs5qEQ/MM/69TPzUOgeYg+eYmICABm639w5j0JJ/IgrBV2wkSsjp3dLktqkUJdRTrF4jd7CREREaQePoRxjCfIGQOOA8XF3/8rAudHPxcVQWGh5yKOhScxBQXf//z9f089LsiHE3mYvFzPG+5E7vf/8jz/wBMYc455/n3v9ABY6rFlQdPmZQPfqcctWkPLcGjRSkcBRUR8lHEczKolmLcXef5mxXTHvuchrOAwt0uTWqZQVwHL9sNq5I/dOAircRPPG6M6z1ONdYzjQP6JH4Jenif0meM5kJ1V8s/k/PAzx7M9NR7P9vw7tL/iAGhZOKEtOdI2iuLmoZ6g1zIcq1WbH0KfvwaLi4h4G5Ofh/PyM/DffwFgDRyOdeNo7dMbCIW6esiybc/XrU2alp5+hnWMU+wJc6cC34/CH9lZmGNZkJnuua9fYQEczaDgaEbp5/ihAAhr4Ql6LdtAq+9DX8twaNUGWrTW17wiIvWMSTuEM3saHNoP/v5YN9+NfeUQt8uSOqRQ5yMs2w+Cwzz/qDgAGmMgJwvru3RCiws4ums7JuMI5rs0yEj7IfRlZkBmBmZnyg/rnvrB3x/anIfVtj20bff9f9tD60iFPRERF5j//ddzh4i8XAhpgX3Pw1jnd3W7LKljCnUNjGVZEByGFdKCJpGRHOt8oSfofe9U6CMj7UdBr5zQd3Af5uA+zzqnVlbYExGpU8YYzHvLMEmvesZ9d+riCXShLd0uTVygUCelnAp9BIdhdepSZr5xHE+wO3wAc2i/Z+zeoQNw+IDnBBCFPfEhhw4dIjMzk4KCAoKDg2nbti1NmjRxuywRAMzJfMyCv2M+2wiA1X8w1s13Y+kC2g2WQp1UiWXb0DoCWkdg9fxJyfRzDnsdzseKjoUOMViNGtd9YyLf27FjB2vXrmXLli1kZ2eXmmfbNh07duTKK69k4MCBCnjiGpOeijNnGny7F/z8sH49FmvANbowfgNXrVC3e/duOnXSveLkB+cc9v6zwRP2bBvadsDqFAvRsVjRXSAyyvP8IrVo7969LFiwgG3btnHeeefRr18/OnXqRHBwMIGBgRw/fpwjR46wc+dOXn/9dRYvXkx8fDxxcXH4++vzsdQdZ9tWnOdnQG4ONA/BvvthrNgebpcl9UC19kQTJ04kJiaGYcOGcdlll2mHJhWqVNg7uA+zdyfs3gFZ38G3ezDf7oGPV3uCXuOg7wOe5x+dYnW9JalxjzzyCP379+e2224764fW/Px8Nm3axPLlyykuLuaXv/xlHVUpDZkxhpyk13DmPeMZP9chxnNB4Rat3S5N6olqpbGEhARWr17NrFmzeOWVV7j66qsZPHgwLVtqYKZUToVh7+h3sGc7Zvd2zJ4dsHeX55p927Zitm394avbluGegBcd6zmq1/58z63YRKrpySefJDIyslLLNm7cmEGDBjFw4EAyMjLOvoLIOTIFJzGvzibr3x8CYF12FdYtCdrvSSnVCnUDBgxgwIAB7Nq1i/fee4933nmH5cuX07dvX6655hp69NBhYKkeK6wlhF2OddHlAJjiYs9Xtnu2w+4dnqB3+AB89/3ZuZ9t9AQ9Pz+IivYczevUhcJ+V2CsAM9dNkQqobKB7sds2yY8PLwWqhH5gfku3TN+bv83YPthj7wTBsVp/JyUYRlTzVsl/Eh2djbr1q1j3bp1fPfdd0RFRTFs2DAGDBhAYGD9vB1Veno6hYVnvm+rZVlERkZy+PBhauDXVK94c2/mRB7s3YnZ833I273dc5Hl0zVpCh1jsc7vitW9l+dnLx8q4M3brTKq0l9AQACtW9fO106//e1vmTBhAh07diwzb//+/fz1r39l1qxZtfLa50r7Nt/qzez4n2f8XM4xaNac1o88wdHw83yit9P52rb7sbrat9XIXzh/f38aNWpUMrbu5MmTzJ07l2XLlvHAAw8QGxtbEy8jAoAV1AS69cLq1gv4/tp6memY3Ts8X93u2YG1f7fnvropX2BSvsC887pnbF6XC7F69MHq1hvatNUnXSlXeno6RUVF5c4rLCwkPT29jiuShsYYg/lwFWbxXM+9xdtF4zc+kcYX9obDh90uT+qpcwp1+/btY/Xq1WzcuJGioiIuvfRSfve73xETE8O+fft48cUXeemll3jiiSdqql6RMizL+uE2Zj/pj2VZRLRuzeHP/oWzezvs+AqzbQscz4GtmzFbN3u+sm0ZjtW9N3TrjdWtJ1azYHcbEa9w5MgRgoKC3C5DfJgpLMC89jzmk3UAWJf8FOu2e7Ea63JPcmbVCnWbNm1i9erVfP311wQHBxMXF8eQIUMIDQ0tWaZDhw7cdNNNTJ06taZqFak0y98fq0MMdvvzYeBwz9m2B3ZjUrZgvvoCvtnmGZe3YQ1sWIOxLM/JFj36eILe+V11A+wG5sMPP+Sjjz4qeTx37twy4a2goIB9+/bRvXv3ui5PGghz9Duc56bDnh1g2Vi/vB1ryHX6VkEqpVqh7plnnqFjx47cc8899O/fv8JLmrRu3Zorr7zynAoUqQmWbXsubNwhBq65AXMyH3Z+hflqi+co3sF9sG8XZt8uzKolENjI81Vt915Y3fp47oShnapPKygoKHWx4dzc3DJj0wICArj88ssZOXJkXZcnDYDZtQ3n+b/AsaPQpBn2uD9i9ejjdlniRaoV6iZPnkzXrme/UXCbNm1ISEiozkuI1CqrUWO4oC/WBX0BMFnfYVK2wrYtmJQtnhMvvvwM8+Vnnq9qQ1t4xuH16IPVrRdWcKhrtUvtGDJkCEOGDAFg/Pjx/OEPfyj3RAmR2uB8vBqz6AUoLoLzOmAnPIIVXvUzsqVhq1aoq0ygq02rV6/m7bffJisri6ioKEaNGkW3bt1crUm8mxXaEuvyQXD5IM+JFwf3fv9V7RbY+RVkZWL+9T78631PyIuKxurR2/NVbUx3XSvKx8yePbvWnjspKYnXX3+d4cOHM2rUKMAzKH7JkiWsX7+e48eP07lzZ0aPHk27du1qrQ6pH0xRIeb1lzAfv+eZcNHl2Hfch9VY4zal6rzu+g6bNm1iwYIFjBkzhi5durBu3TqmTZvG008/TatWrdwuT3yAZVme0BYVDUPiMYUFsGsb5qsvPF/V7t9dctcLszoJAgKhc3es7r2x+g3ECm3hdgtSDRkZGdXah2RmZtKiReW2+a5du1i3bh0dOnQoNX358uWsXLmShIQEIiMjWbZsGVOmTGHmzJk6KcOHmWNHPV+37toGloU14jdYw3+loR5SbV4X6lasWMGgQYO4+uqrARg1ahRbt25lzZo13HzzzTX2OsbAiRMWubmQl2fhY5fMwbLUW+U1gg69Pf+Gg8nOwmz/ErYnY7YlQ1YmJH8NyV9jR/fFCqy9O6v48naDH/pzo7f77ruPn/3sZ1xzzTVERESccdmioiL+85//sGzZMvr168cNN9xw1ufPz8/n2Wef5a677mLZsmUl040xrFq1ivj4ePr16wd4vv4dO3YsGzduZPDgwefWmNRLZs8OnDnTPbdGDGqKPfYPWBde7HZZ4uW8KtQVFRWxe/durrvuulLTe/bsyfbt28tdp7CwsNRgZ8uySj75nunT0IkTFjExp3bsZ97Bezf1VnWRQDegnMHya2rpJcvw5e0G33xjExTk1OlrPvrooyxcuJD33nuPmJgYevToQXR0NCEhIQQEBHD8+HGOHDnCjh072Lp1K/n5+QwfPpy4uLhKPf/cuXPp06cPPXv2LBXq0tLSyMrKolevXiXTAgIC6N69O9u3b68w1FV33/bj+b54RMgbenM+WYfz6hwoKoTIdviNT8SKOO+s63lDb+fCl/urq968KtRlZ2fjOA4hISGlpoeEhJCVlVXuOklJSSxdurTkcXR0NDNmzDjr1Zpzc8+5XBGppjZt2tC0ad2+Zrdu3fjLX/7CF198wdq1a3n33XcpKCgos1x4eDhDhw5l8ODBhIWFVeq5P/nkE/bs2cP06dPLzDu17ypvv3am+8pWd9/2Y2c7IunN6mNvpqiIrHkzOf72PwFo3O+ntJzwOHaTZlV6nvrYW03y5f5quzevCnWnlJd0K0q/8fHxpT5Jn1ruTFeMB8/XP998Y9OmTRuOHDnik7csUW/ex5d7gx/6y85OJTv7zP35+/vXym3C+vTpQ58+fSgqKmLv3r0cPXqUgoICmjdvTlRUVKXHz52SkZHBggULSExMPONtE0/fh51t+1Z333Zq2YiICFJTU33u/6P62pvJOUbxc3+BHf8DwP7FzRTG3ciRYzlwLKdSz1Ffe6spvtxfVXo7l32bV4W64OBgbNsuc1Tu2LFjZT7lnhIQEEBAQPkXkT3bLzYoyKFpU89/ffF/MPXmfXy5N/ihv+xs43p//v7+xMTEnPPz7N69m2PHjvHwww+XTHMch23btvHee+8xc+ZMwHPE7sdH/rKzsyvcr8G57dt+vJzbv+faUp96M/u+wZkzDTLToVEQ9pgHsHpf6plXjRrrU2+1wZf7q+3evCrU+fv706lTJ5KTk7nkkktKpicnJ/OTn/zExcpERMp34YUX8re//a3UtOeee462bdsyYsQI2rRpQ2hoKMnJyURHRwOe8cMpKSn85je/caNkqUHOvz/EvDILCgsgvC32+Eew2rZ3uyzxUV4V6gDi4uJ49tln6dSpE7Gxsaxbt46MjAydISYiNerw4cOsXbuWgwcPlhlbZ1kWf/rTnyr1PEFBQbRvX/qPeKNGjWjevHnJ9OHDh5OUlERkZCQREREkJSXRqFEj+vfvXzPNSJ0zxcWYZQsxa97yTLjwYuwxv8eq4vg5karwulB3+eWXk5OTw5tvvsnRo0dp164dEydOrJWxNSLSMO3fv5/ExERatGhBamoqHTp0ICcnh8zMTFq2bEmbNm1q9PVGjBhBQUEBc+fOJTc3l5iYGBITE3WNOi9ljmfjvPgEbNsKgDV8JNaIm7BsP5crE1/ndaEOYOjQoQwdOtTtMkTER73++uv06tWLBx54gJtvvpm7776bTp068d///pfnnnuOX//61+f0/JMmTSr12LIsRo4cqXvK+gDz7R6c2dMg4wgENvLcHeJiHXGVumG7XYCISH2zZ88eBg4cWHJG6amBzRdddBE///nPWbRokZvlST1lPtuIM/1BT6Br1QZ74hMKdFKnFOpERE6Tm5tLs2bNsG0bPz8/cn904cpOnTqxZ88eF6uT+sY4xTjLXsF54a9QcBK698Z+9CmsqI5ulyYNjFd+/SoiUptatGhBdnY24LlYaEpKCj179gQ84+0aN27sZnlSj5i84zgvPQn/+xwAa0g81vW3Yflp/JzUPYU6EZHTdOnShR07dnDJJZfQv39/lixZQlZWFv7+/nz44YdceeWVbpco9YA5tN8zfi7tEAQGYt12L3a/AW6XJQ2YQp2IyGmuv/56jh49CsB1111HVlYWGzduxLIsLrvsMm699VaXKxS3mS/+jTPvaTh5Alq09lx/rv35bpclDZxCnYjIaSIiIkru0WjbNnfeeSd33nmny1VJfWAcB/POPzErPPdvpcuF2Hc9iNW84rt/iNQVnSghInKaOXPmkJaWVu689PR05syZU8cVSX1gTuThzJlWEuisq3+Off9kBTqpNxTqRERO89FHH5WcKHG6nJwcPvroozquSNxmUg/iTJsAWzeDfwDWqPuwfz0Wy19feEn9of8bRUSq4Pjx4wQEBLhdhtQhk/wfnLlPwok8CG2JnfAIVnRnt8sSKUOhTkQESElJISUlpeTx+vXr2bJlS6llCgoK+M9//kNUVFQdVyduMMZgVi3BLH8NjIGY7tj3PIQVHOZ2aSLlUqgTEQG++uorli5dWvL4/fffL3e5Vq1aMXr06LoqS1xi8k/gvPwM/HcTANbAa7BuHIPlr6O0Un8p1ImIACNGjGDYsGEYYxg7diyJiYlER0eXWiYgIEAXHm4ATNphnDnT4OA+8PPHuvku7J/qfuNS/ynUiYgAgYGBBAYGAjBr1izCwsLw1yD4Bsd89QXOi09A3nEICcO++2GsmG5ulyVSKdpjiYicpnXr1gAcPHiQlJQUcnJyGDRoEKGhoWRmZtKsWbOSACi+wRiDWfMW5s2FYByIjsVOmIgV2tLt0kQqTaFOROQ0juPwwgsv8OGHH5ZM6927N6Ghobz44otER0dz4403uleg1Chz8iTmlWcxmz8GwOo/GOvmu7F0lrN4GV2nTkTkNMuWLWPjxo3ceuutPPnkk6Xm9enTp8xZseK9TMYRnBkPegKdn58nzN32WwU68Uo6UicicpoPP/yQX/7yl8TFxeE4Tql54eHhFd5tQryL+ToZ54UZcDwHmodg3/0QVuwFbpclUm0KdSIip8nMzCQ2NrbceQEBAeTn59dxRVKTjDGY9e9glswHx4EOMZ7xcy1au12ayDlRqBMROU1ISEiFR+MOHTpEixYt6rgiqSmm4CTmH3Mw//oAAOvSq7BuTcAKbORyZSLnTqFOROQ0ffr0YdmyZSUnRwBYlkVeXh7vvvsuffv2dbdAqRaTmY4zZzrs2wW2jfWrO7Gu/jmWZbldmkiNUKgTETnNyJEj+eKLL3jggQfo0aMHAK+//joHDhzAz8+PG264weUKparMjq9wnv8L5ByDZs2xxz2I1a2X22WJ1CiFOhGR04SGhjJ9+nTeeOMNvvjiC2zbZt++fVx00UXceOONNGvWzO0SpZKMMZiP3sX88yUoLoaoaM/4udYRbpcmUuMU6kREyhEaGsq4cePcLkPOgSksxLz+AmbDGgCsn1yJdfu9WI10qzfxTQp1IiLic0zWd57xc7u3g2VjXX8r1tDrNX5OfJpCnYhIOb7++ms2btxIeno6BQUFpeZZlsWf/vQnlyqTszm5LZniP0+AY5nQpCn22D9iXXCR22WJ1DqFOhGR03zwwQc8//zzNGvWjMjISAJOu7uAMcalyuRsnI9Xk7boeSgqgrbtscc/ghXe1u2yROqEQp2IyGnefvttLrvsMsaPH18m0En9ZIoKMYvnYT5cBYB10WVYd9yH1biJy5WJ1B2FOhGR06Snp3PHHXco0HkJk30U5/kZsDMFLIvgW+4i98prQOPnpIFRqBMROc15553HsWPHauS5kpKS2Lx5MwcPHiQwMJDY2FhuueUW2rb94StBYwxLlixh/fr1HD9+nM6dOzN69GjatWtXIzX4MrNnJ85z0+FoBgQ1wR7zB0KGjSDv8GF9TS4Nju12ASIi9c1NN93EW2+9RWZm5jk/V0pKCkOHDmXq1Kk8+uijOI7DlClTSt0/dvny5axcuZI777yT6dOnExoaypQpUzhx4sQ5v74vcza9j/PXhz2BLuI87Ef+ht3rErfLEnGNjtSJiAAzZswo9TgvL4/77ruPjh07lrnYsGVZPPjgg5V63sTExFKPExISGDNmDLt376Z79+4YY1i1ahXx8fH069cPgPHjxzN27Fg2btzI4MGDz6Er32SKijBLX8asf8czodcl2Hc+gNWkqbuFibhMoU5EBNi/f3+px7ZtExwcTGZmZo0csTslLy8PoCQopqWlkZWVRa9eP9yyKiAggO7du7N9+/YKQ11hYSGFhYUljy3LIigoqOTnMzk13xuv2WZyjmFe+Cvm62QArJ//GvvnN2HZni+evLm3s/Hl3sC3+6ur3hTqRESA2bNn1/prGGNYuHAhXbt2pX379gBkZWUBEBISUmrZkJAQMjIyKnyupKQkli5dWvI4OjqaGTNm0Lp160rXExHhXbfKKvhmOxnT/4hJO4wV1IQWv59Mk8uvKndZb+utKny5N/Dt/mq7N68JdWlpabz55pv873//IysrixYtWnDllVdy/fXX4+/vNW2IiBdISUmhU6dONG5c9nZS+fn5JV+dVtW8efPYv38/jz/+eJl5p3+CP9sg//j4eOLi4sqsn56eTlFR0RnXtSyLiIgIUlNTveZkAufTj3AW/h0KCiA8Ent8IsfO68Cxw4dLLeeNvVWWL/cGvt1fVXrz9/ev0oezUutWay0XHDp0CGMM48aNIyIiggMHDvDCCy+Qn5/Pbbfd5nZ5IuJDJk+ezNSpU4mJiSkz79ChQ0yePJnFixdX6Tnnz5/P559/zuTJk2nZsmXJ9NDQUMBzxC4sLKxkenZ2dpmjdz8WEBBQ4SVXKvsH0RhT7/94GqcYs+wVzOokz4QLLsIeMwGaNjtj7d7QW3X5cm/g2/3Vdm9eE+p69+5N7969Sx63adOGQ4cOsWbNGoU6EakzRUVF2HblLxxgjGH+/Pls3ryZSZMmER4eXmp+eHg4oaGhJCcnEx0dXfIaKSkp/OY3v6nR2r2Nyc3BefFvkPIFANY1v8S67hYs28/lykTqJ68JdeXJy8src1ba6RrqYOKzUW/eyZd7A3f7y8vLKzmJATxHzk4f01ZQUMBHH31UcnStMubNm8fGjRt58MEHCQoKKhlD16RJEwIDA7Esi+HDh5OUlERkZCQREREkJSXRqFEj+vfvXxOteSXz7V6cOdMgPRUCG2GNug/7Jw339yFSGV4b6lJTU3n33XfPepSuIQ4mrgr15p18uTdwp7+VK1eW2lc88cQTFS4bHx9f6edds2YNAJMmTSo1PSEhgYEDBwIwYsQICgoKmDt3Lrm5ucTExJCYmFjyAbShMZ9/gvPyM3AyH1qGY49PxGoX7XZZIvWeZVz+4vqNN94otSMtz/Tp0zn//PNLHmdmZjJp0iS6d+/O3XfffcZ1KzpS56uDiStLvXknX+4N6m4wcXl27NjB9u3bMcbw2muvMWzYMFq1alVqmYCAANq3b1+tkyTqSnp6eql9XnksyyIyMpLD9eyuC8YpxixfhFm1xDOhWy/scX/EahZc6eeor73VBF/uDXy7v6r0FhAQ4L0nSgwbNowrrrjijMv8uLnMzEwmT55MbGws48aNO+vzN5TBxNWl3ryTL/cG7vQXGxtLbGwsACdPnuTqq6+mRYsWdVpDQ2byjuPMfQq+/AwAa8h1WNffjuWn8XMileV6qAsODiY4uHKfwk4FuujoaBISEqo0WFlEpLJ+9atfuV1Cg2IOH8CZPQ2OHISAQKzbxmNfWv7150SkYq6Huso69ZVrq1atuO2228jOzi6ZV5VByyIiUn+YLZ/izHsK8k9Ai1bYCYlYHc4/+4oiUobXhLrk5GRSU1NJTU0tM47ujTfecKkqERGpDuM4mBWLMe+87pkQewH2XQ9iBYe6WpeIN/OaUDdw4MCSM8VERMR7mRN5OPOfhi2fAmANisP61Z1YujuQyDnRO0hEROqMST3ouf7c4QPg7491SwL2FT9zuywRn6BQJyIidcJ8+RnOS0/CiVwIbYF9z0SsTl3cLkvEZyjUiYhIrTLGYN5dinnrH2AMnN/VE+hCws6+sohUmkKdiIjUGpN/AmfBM/D5JgCsnw7Dumksln/51w8VkepTqBMRkVph0lNxZk+Fg/vAzx/rpnHYA4a5XZaIz1KoExGRGmdSvsB54QnIOw7Bodj3PIwVU39vrybiCxTqRESkxhhjMGvfwixdCMaB6FjP+Lmwlm6XJuLzFOpERKRGmJMnMa/Mwmz+CADriquxfnMPVkCgy5WJNAwKdSIics7Md2me68/t3w1+flg3jsEaOBzLstwuTaTBUKgTEZFzYrZ/ifP8DDieDc2Cse9+GKvLBW6XJdLgKNSJiEi1GGMw76/AvDEPHAfad8JOSMRq2drt0kQaJIU6ERGpMlNYgHl1DuZf7wNgXToQ69bxWIGNXK5MpOFSqBMRkSoxmRk4z02HvTvBsrF+dQfWz36h8XMiLlOoExGRSjM7UzyBLucYNG2OPe6PWN17u12WiKBQJyIileR8+C7mny9CcTFEdcROeASrdYTbZYnI9xTqRETkjExhIeb1FzAb1gBgXdwfa9TvsBo1drkyEfkxhToREamQycrEef4v8M3XYFlY8bdhDbte4+dE6iGFOhERKZf55muc5/4CxzKhSVPssROwLujrdlkiUgGFOhERKcPZuBbz2nNQVASR7bDHJ2K1aet2WSJyBgp1IiJSwhQVYd6Yi/lglWdC70uxR9+P1biJu4WJyFkp1ImICAAmO8szfm5nCgDWiJuxho/Esm2XKxORylCoExERzL5dOHOmQWYGNA7CHvMHrF6XuF2WiFSBQp2ISAPn/OsDzKuzobAA2pznGT8XGeV2WSJSRQp1IiL1xOrVq3n77bfJysoiKiqKUaNG0a1bt1p7PVNcjLNkPmbd254JF17sOULXpGmtvaaI1B4NlBARqQc2bdrEggULuP7665kxYwbdunVj2rRpZGRk1MrrFR/Lwnn6TyWBzrp2JPZvH1WgE/FiCnUiIvXAihUrGDRoEFdffXXJUbpWrVqxZs2aGn8ts383R+6/FfN1MjRqjH3Pw9jX3aITIkS8nL5+FRFxWVFREbt37+a6664rNb1nz55s37693HUKCwspLCwseWxZFkFBQSU/V8Ts+IrimY9BwUkIj8RvfCLWeR3OvYl64lTvvnjHC1/uDXy7v7rqTaFORMRl2dnZOI5DSEhIqekhISFkZWWVu05SUhJLly4teRwdHc2MGTNo3br1GV/LCQ0hLTIKv5bhtHxwKnbz4HOuvz6KiIhwu4Ra48u9gW/3V9u9KdSJiNQT5X2Kr+iTfXx8PHFxcWWWS09Pp6io6MwvdN8kWsXEciQ9HXM8t/oF10OWZREREUFqairGGLfLqVG+3Bv4dn9V6c3f3/+sH84qXLdaa4mISI0JDg7Gtu0yR+WOHTtW5ujdKQEBAQQEBJQ772x/NKzgUCw/P4wxPvfH8xT15r18ub/a7k2jYkVEXObv70+nTp1ITk4uNT05OZkuXbq4VJWIeBsdqRMRqQfi4uJ49tln6dSpE7Gxsaxbt46MjAwGDx7sdmki4iUU6kRE6oHLL7+cnJwc3nzzTY4ePUq7du2YOHFitcfWiEjDo1AnIlJPDB06lKFDh7pdhoh4KY2pExEREfEBDfZInb9/5VuvyrLeRr15J1/uDSrXn6//DqpL+zYP9ea9fLm/2t63WcZXzxsWERERaUD09esZnDhxgoceeogTJ064XUqNU2/eyZd7A9/vr77w5d+zevNevtxfXfWmUHcGxhj27NnjkxdBVG/eyZd7A9/vr77w5d+zevNevtxfXfWmUCciIiLiAxTqRERERHyAQt0ZBAQEcMMNN1R4f0Vvpt68ky/3Br7fX33hy79n9ea9fLm/uupNZ7+KiIiI+AAdqRMRERHxAQp1IiIiIj5AoU5ERETEByjUiYiIiPgA373BWiWtXr2at99+m6ysLKKiohg1ahTdunWrcPmUlBQWLlzIt99+S1hYGL/4xS8YMmRIHVZ8dklJSWzevJmDBw8SGBhIbGwst9xyC23btq1wna+++orJkyeXmf70009z3nnn1Wa5VfLGG2+wdOnSUtNCQkJ46aWXKlzHG7YZwPjx40lPTy8zfciQIYwZM6bM9Pq+zVJSUnj77bfZs2cPR48eZcKECVxyySUl840xLFmyhPXr13P8+HE6d+7M6NGjadeu3Rmf99///jeLFy/myJEjtGnThptuuqnU84qH9m0e9f19coov79vAt/Zv9Xnf1qBD3aZNm1iwYAFjxoyhS5curFu3jmnTpvH000/TqlWrMsunpaUxffp0rr76au699162b9/O3LlzCQ4O5tJLL3Whg/KlpKQwdOhQzj//fIqLi/nnP//JlClTeOqpp2jcuPEZ1505cyZNmjQpeRwcHFzb5VZZu3bt+L//+7+Sx7Zd8QFnb9lmANOnT8dxnJLH+/fvZ8qUKVx22WVnXK++brOTJ0/SsWNHrrrqKp588sky85cvX87KlStJSEggMjKSZcuWMWXKFGbOnElQUFC5z7ljxw5mzpzJjTfeyCWXXMLmzZt5+umnefzxx+ncuXNtt+Q1tG8rq76+T37MV/dt4Fv7t/q8b2vQoW7FihUMGjSIq6++GoBRo0axdetW1qxZw80331xm+TVr1tCqVStGjRoFQFRUFN988w3vvPNOvXoTJSYmlnqckJDAmDFj2L17N927dz/juiEhITRt2rQ2yztntm0TGhpaqWW9ZZtB2Z3VW2+9RZs2bbx2m/Xp04c+ffqUO88Yw6pVq4iPj6dfv36A55P82LFj2bhxI4MHDy53vZUrV9KzZ0/i4+MBiI+PJyUlhZUrV3L//ffXSh/eSPu2surr++THfHXfBr61f6vP+7YGG+qKiorYvXs31113XanpPXv2ZPv27eWus3PnTnr27FlqWu/evfnggw8oKirC379+/jrz8vIAaNas2VmXffDBByksLCQqKorrr7+eCy64oLbLq7LU1FTuuusu/P396dy5MzfddBNt2rQpd1lv3WZFRUVs2LCBa6+9FsuyzrisN2yz06WlpZGVlUWvXr1KpgUEBNC9e3e2b99e4Y5vx44dXHvttaWm9erVi1WrVtVqvd5E+7byecP7pCHs28C3929u79vq71avZdnZ2TiOQ0hISKnpISEhZGVllbtOVlZWucsXFxeTk5NDWFhYbZVbbcYYFi5cSNeuXWnfvn2Fy4WFhTFu3Dg6depEUVERH3/8MX/+85957LHHzvpJqi517tyZ8ePH07ZtW7Kysli2bBmPPvooTz31FM2bNy+zvDduM4DNmzeTm5vLwIEDK1zGW7ZZeU69x8rbNhkZGWdc7/QjGaGhoRW+Zxsi7dtK85b3SUPZt4Fv79/c3rc12FB3SnmfEs70yeH0eaduyHG2TxtumTdvHvv37+fxxx8/43Jt27YtNdg4NjaWjIwM3nnnnXr1BvrxIe/27dsTGxvLvffey0cffURcXFy563jbNgP44IMP6N27Ny1atKhwGW/ZZmdS0bapCmNMvd6WbtG+zcNb3icNZd8GDWP/5ta+rcFe0iQ4OBjbtsuk4GPHjpVJ2KeUl5qzs7Px8/Or1OH/ujZ//nw+//xzHnvsMVq2bFnl9WNjY0lNTa2FympO48aNad++PYcPHy53vrdtM4D09HSSk5NLxkNVhTdsM6DkE2l526ai99+p9arynm2ItG87O294n/jivg18f//m9r6twYY6f39/OnXqRHJycqnpycnJdOnSpdx1OnfuXGb5rVu30qlTp3o1fsEYw7x58/j000/505/+RHh4eLWeZ8+ePZUetOuWwsJCDh48WOFXDd6yzX7sgw8+ICQkhIsuuqjK63rDNgMIDw8nNDS01LYpKioiJSWlwvcfeHbqX375ZalpycnJxMbG1lqt3kb7trPzhveJL+7bwPf3b27v2xpsqAOIi4tj/fr1vP/++3z77bcsWLCAjIyMkoGMixYtYtasWSXLDxkyhIyMjJLrAr3//vu8//77/PznP3erhXLNmzePDRs2cN999xEUFERWVhZZWVkUFBSULHN6bytXrmTz5s0cPnyYAwcOsGjRIj799FOGDRvmRgsVeuWVV0hJSSEtLY2dO3fy5JNPcuLECQYMGAB47zY7xXEcPvzwQwYMGICfn1+ped62zfLz89m7dy979+4FPAOI9+7dS0ZGBpZlMXz48JLrju3fv5/Zs2fTqFEj+vfvX/Ics2bNYtGiRSWPhw8fztatW3nrrbc4ePAgb731Fl9++WWZAcYNnfZt3vM+OcXX923gO/u3+rxvq79xvg5cfvnl5OTk8Oabb3L06FHatWvHxIkTad26NQBHjx4tNbAxPDyciRMnsnDhQlavXk1YWBh33HFHvTt9fM2aNQBMmjSp1PSEhISSgamn91ZUVMSrr75KZmYmgYGBtGvXjocffrhan6ZqU2ZmJs888wzZ2dkEBwfTuXNnpk6d6vXb7JQvv/ySjIwMrrrqqjLzvG2bffPNN6UuHvrKK68AMGDAAMaPH8+IESMoKChg7ty55ObmEhMTQ2JiYqnrOJ3aSZ7SpUsX7r//fv75z3+yePFiIiIiuP/++3WNutNo3+Y975NTfH3fBr6zf6vP+zbLVGf0noiIiIjUKw3661cRERERX6FQJyIiIuIDFOpEREREfIBCnYiIiIgPUKgTERER8QEKdSIiIiI+QKFORERExAco1ImIiIj4AIU6ERERER+gUCciIiLiAxTqRERERHyAQp34hIKCAh588EHuvfde8vLySqZnZWUxduxYJk2ahOM4LlYoIiJSuxTqxCcEBgbywAMPkJ2dzZw5cwBwHIe///3vANx3333Ytv53FxER36W/cuIzIiMjueuuu9i8eTOrVq1i6dKlfPXVV9x7772EhYW5XZ6IiEit8ne7AJGadPnll5OSksKrr76K4zjEx8fTs2dPt8sSERGpdTpSJz7nqquuori4GD8/P4YPH+52OSIiInVCoU58Sn5+PrNmzSIyMpLAwECef/55t0sSERGpEwp14lNeeuklMjIymDBhAnfffTefffYZK1ascLssERGRWqdQJz5j/fr1bNiwgdGjR9OuXTsuvfRShg0bxmuvvcauXbvcLk9ERKRWKdSJT9i/fz8vv/wyAwYMYODAgSXTb731Vjp06MDTTz9Nbm6uewWKiIjUMssYY9wuQkRERETOjY7UiYiIiPgAhToRERERH6BQJyIiIuIDFOpEREREfIBCnYiIiIgPUKgTERER8QEKdSIiIiI+QKFORERExAco1ImIiIj4AIU6ERERER+gUCciIiLiA/4fPu/8mGRyMxYAAAAASUVORK5CYII=" + "text/plain": "<Figure size 640x480 with 1 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASAAAADZCAYAAACAae3lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAXA0lEQVR4nO3df0yTZwIH8O+LvAswoaKFUAfuZGht3CHsnDdxiROGfyzMWSOXxrClMyZ3mztMiObGxSwzubirW9yPw53ZglTicZcMwo1xyWgQk1M5XDYzmwvCDIVkzVVGvRbYiVwL7/1h6K1rmb617dPXfT8Jf/TZ+7z9dtJvnvelfV9JURQFREQCpIkOQEQ/XiwgIhKGBUREwrCAiEgYFhARCcMCIiJhWEBEJAwLiIiEYQERkTAsICISJl3thMHBQXR1dWF0dBQ+nw8HDx7Epk2b7jjn9OnTcLvdyM3NxY4dO7B9+/aYQxPR/UH1Cmh2dhY/+clPsHfv3rva/ptvvsEbb7wBk8kEm80Gs9mMlpYWDAwMqA5LRPcX1Sug8vJylJeX3/X2DocDer0eVqsVAFBYWIiRkRF88skneOKJJ9Q+PRHdRxJ+DujatWsoLS0NGysrK4PL5UIwGIw6JxAI4ObNm2E/gUAg0VGJKMlUr4DU8vv90Ol0YWM6nQ5zc3OYnp5Gbm5uxJzOzk60t7eHHm/ZsgUHDhxIdFQiSrKEFxAASJIU9njhEkTfH19gNptRU1MTMd/n8y26ako1kiRBr9fD6/VCK5dcYubk0GLm9PT0qIuFe95v3Pf4PcuWLYPf7w8bm5qawpIlS7B06dKoc2RZhizLEePBYFAzh2ILpRkIBDTzS8bMyaHFzImS8HNAa9asgdPpDBu7cuUKiouLkZ6elAUYEaUo1QV069YtjI2NYWxsDMDtP7OPjY3B6/UCANra2tDU1BTafvv27fB6vaHPAfX19aGvrw/PPvtsfF4BEWmW6iXIyMgIjhw5Enrc2toKANi6dSv2798Pn88XKiMAyM/PR2NjI06fPo2enh7k5ubixRdf5J/giQiSli5KPzExoalzQAaDAR6PRzPH+cycHFrMLMsy8vLy4r5ffheMiIRhARGRMCwgIhKGBUREwrCAiEgYFhARCcMCIiJhWEBEJAwLiIiEYQERkTAsICIShgVERMKwgIhIGBYQEQnDAiIiYVhARCQMC4iIhGEBEZEwLCAiEoYFRETCsICISBgWEBEJwwIiImFiujdyT08Purq64Pf7UVhYCKvVCpPJtOj258+fR1dXFzweD7KyslBWVobnn38e2dnZMQcnIu1TvQLq7++H3W7Hrl27YLPZYDKZcPTo0bC7oX7X0NAQmpqasG3bNhw/fhwNDQ0YGRnByZMn7zk8EWmb6gLq7u5GZWUlqqqqQqsfvV4Ph8MRdfuvvvoK+fn5eOaZZ5Cfn49169bh6aefhsvluufwRKRtqg7BgsEgXC4Xdu7cGTZeWlqK4eHhqHOMRiP+8pe/4PLlyygvL8fk5CQGBgZQXl6+6PMEAoGwWzBLkoTMzExIkgRJktREFmYhp1byAsycLFrOHG+qCmhqagrz8/PQ6XRh4zqdDn6/P+oco9GI+vp6vPPOOwgEApibm8PGjRuxd+/eRZ+ns7MT7e3tocerV6+GzWaDXq9XEzclFBQUiI6gGjMnhxYzx1tMJ6GjteFiDel2u9HS0oLdu3djw4YN8Pl8OHPmDD788EO89NJLUeeYzWbU1NRE7Nvr9YatjFKZJEkoKCjA9evXoSiK6Dh3hZmTQ4uZZVlOyAJAVQHl5OQgLS0tYrUzOTkZsSpa0NnZCaPRiB07dgAAHn74YWRkZOC1116DxWJBbm5uxBxZliHLcsS4oiia+QdbwMzJwcyJlaicqk5Cp6eno7i4GE6nM2zc6XTCaDRGnTM7OxuxOkpLu/20WvmfT0SJofqvYDU1NTh79iz6+vrgdrtht9vh9XpRXV0NAGhra0NTU1No+40bN+Kzzz6Dw+HA+Pg4hoaG0NLSgpKSEixfvjx+r4SINEf1OaCKigpMT0+jo6MDPp8PRUVFaGxsRF5eHgDA5/OFfSboqaeewszMDD799FO0trbiwQcfxPr161FXVxe/V0FEmiQpGjoOmpiY0NRJaIPBAI/Ho5lDTWZODi1mlmU5tMiIJ34XjIiEYQERkTAsICIShgVERMKwgIhIGBYQEQnDAiIiYVhARCQMC4iIhGEBEZEwLCAiEoYFRETCsICISBgWEBEJwwIiImFYQEQkDAuIiIRhARGRMCwgIhKGBUREwrCAiEgYFhARCRPTveF7enrQ1dUFv9+PwsJCWK1WmEymRbcPBAJob2/H+fPn4ff7sWLFCpjNZlRWVsYcnIi0T3UB9ff3w263Y9++fTAajejt7cXRo0fx9ttvL3rz+rfffhuTk5P41a9+hYKCAkxNTWFubu6ewxORtqkuoO7ublRWVqKqqgoAYLVaceXKFTgcDuzZsydi+y+//BKDg4NoamrC0qVLAQD5+fn3GJuI7geqCigYDMLlcmHnzp1h46WlpRgeHo465/PPP8cjjzyCjz/+GH//+9+RkZGBn/3sZ7BYLHjggQeizgkEAmF3QJUkCZmZmZAkCZIkqYkszEJOreQFmDlZtJw53lQV0NTUFObn56HT6cLGdTod/H5/1Dnj4+MYGhqCLMs4dOgQpqam0NzcjG+//RYvv/xy1DmdnZ1ob28PPV69ejVsNtuih3iprKCgQHQE1Zg5ObSYOd5iOgkdrQ0Xa8iFe1/X19cjKysLwO0VzvHjx7Fv376oqyCz2YyampqIfXu9Xk3dG76goADXr1/XzP2/mTk5tJhZluWELABUFVBOTg7S0tIiVjuTk5MRq6IFy5Ytw/Lly0PlAwAPPfQQFEXBjRs3YDAYIubIsgxZliPGFUXRzD/YAmZODmZOrETlVPU5oPT0dBQXF8PpdIaNO51OGI3GqHPWrVsHn8+HW7duhcY8Hg8kScKKFStiiExE9wvVH0SsqanB2bNn0dfXB7fbDbvdDq/Xi+rqagBAW1sbmpqaQts/+eSTyM7Oxvvvvw+3243BwUGcOXMG27ZtW/QkNBH9OKg+B1RRUYHp6Wl0dHTA5/OhqKgIjY2NyMvLAwD4fD54vd7Q9hkZGTh8+DBOnTqFV199FdnZ2di8eTMsFkv8XgURaZKkaOUgFMDExISmTkIbDAZ4PB7NHOczc3JoMbMsy6FFRjzxu2BEJAwLiIiEYQERkTAsICIShgVERMKwgIhIGBYQEQnDAiIiYVhARCQMC4iIhGEBEZEwLCAiEoYFRETCsICISBgWEBEJwwIiImFYQEQkDAuIiIRhARGRMCwgIhKGBUREwrCAiEgYFhARCaP6xoQA0NPTg66uLvj9fhQWFsJqtcJkMt1x3tDQEF5//XUUFRXhzTffjOWpieg+onoF1N/fD7vdjl27dsFms8FkMuHo0aNhd0ON5ubNmzhx4gR++tOfxhyWiO4vqguou7sblZWVqKqqCq1+9Ho9HA7HD8774IMPsGXLFqxZsybmsER0f1F1CBYMBuFyubBz586w8dLSUgwPDy8679y5cxgfH8evf/1rdHR03PF5AoFA2C2YJUlCZmYmJEmCJElqIguzkFMreQFmThYtZ443VQU0NTWF+fl56HS6sHGdTge/3x91jsfjQVtbG44cOYIlS5bc1fN0dnaivb099Hj16tWw2WzQ6/Vq4qaEgoIC0RFUY+bk0GLmeIvpJHS0Now2Nj8/j/feew+1tbVYuXLlXe/fbDajpqYmYt9erzdsZZTKJElCQUEBrl+/DkVRRMe5K8ycHFrMLMtyQhYAqgooJycHaWlpEaudycnJiFURAMzMzGBkZASjo6M4deoUAEBRFCiKAovFgsOHD+PRRx+NmCfLMmRZjhhfmKslzJwczJxYicqpqoDS09NRXFwMp9OJTZs2hcadTicef/zxiO0zMzPx1ltvhY05HA7885//RENDA/Lz82OMTUT3A9WHYDU1NfjDH/6A4uJirF27Fr29vfB6vaiurgYAtLW14d///jdeeeUVpKWlYdWqVWHzc3JyIMtyxDgR/fioLqCKigpMT0+jo6MDPp8PRUVFaGxsRF5eHgDA5/Pd8TNBREQAIClaOQgFMDExoamT0AaDAR6PRzPH+cycHFrMLMtyaJERT/wuGBEJwwIiImFYQEQkDAuIiIRhARGRMCwgIhKGBUREwrCAiEgYFhARCcMCIiJhWEBEJAwLiIiEYQERkTAsICIShgVERMKwgIhIGBYQEQnDAiIiYVhARCQMC4iIhGEBEZEwLCAiEiame8P39PSgq6sLfr8fhYWFsFqtMJlMUbe9dOkSHA4HxsbGEAwGUVhYiNraWpSVld1LbiK6D6heAfX398Nut2PXrl2w2WwwmUw4evToojcjvHr1KkpLS9HY2Ijf//73WL9+PWw2G0ZHR+85PBFpm+oC6u7uRmVlJaqqqkKrH71eD4fDEXV7q9WK5557DiUlJTAYDNizZw8MBgO++OKLew5PRNqmqoCCwSBcLhc2bNgQNl5aWorh4eG72sf8/DxmZmawdOlSNU9NRPchVeeApqamMD8/D51OFzau0+ng9/vvah/d3d2YnZ3F5s2bF90mEAiE3YJZkiRkZmZCkiRIkqQmsjALObWSF2DmZNFy5niL6SR0tDB3E/DChQv46KOPcOjQoYgS+67Ozk60t7eHHq9evRo2mw16vT6WuEIVFBSIjqAaMyeHFjPHm6oCysnJQVpaWsRqZ3Jy8gcLBbh98vrkyZNoaGhAaWnpD25rNptRU1MTerxQbl6vN2xllMokSUJBQQGuX78ORVFEx7krzJwcWswsy3JCFgCqCig9PR3FxcVwOp3YtGlTaNzpdOLxxx9fdN6FCxfwxz/+EQcOHMBjjz12x+eRZRmyLEeMK4qimX+wBcycHMycWInKqfqvYDU1NTh79iz6+vrgdrtht9vh9XpRXV0NAGhra0NTU1No+wsXLuDEiRN44YUXsHbtWvj9fvj9fty8eTN+r4KINEn1OaCKigpMT0+jo6MDPp8PRUVFaGxsRF5eHgDA5/OFfSaot7cXc3NzaG5uRnNzc2h869at2L9/fxxeAhFplaRoZQ0IYGJiQlPngAwGAzwej2aW2cycHFrMLMtyaJERT/wuGBEJwwIiImFYQEQkDAuIiIRhARGRMCwgIhKGBUREwrCAiEgYFhARCcMCIiJhWEBEJAwLiIiEYQERkTAsICIShgVERMKwgIhIGBYQEQnDAiIiYVhARCQMC4iIhGEBEZEwLCAiEoYFRETCqL4xIQD09PSgq6sLfr8fhYWFsFqtMJlMi24/ODiI06dPw+12Izc3Fzt27MD27dtjDk1E9wfVK6D+/n7Y7Xbs2rULNpsNJpMJR48eDbsb6nd98803eOONN2AymWCz2WA2m9HS0oKBgYF7Dk9E2qa6gLq7u1FZWYmqqqrQ6kev18PhcETd3uFwQK/Xw2q1orCwEFVVVdi2bRs++eSTew5PRNqm6hAsGAzC5XJh586dYeOlpaUYHh6OOufatWsoLS0NGysrK8O5c+cQDAaRnh4ZIRAIhN2CWZIkZGZmRt02VUmSBOD2LW21cvtdZk4OLWZO1HtP1V6npqYwPz8PnU4XNq7T6eD3+6PO8fv9Ubefm5vD9PQ0cnNzI+Z0dnaivb099HjLli04cOBA1G1TnV6vFx1BNWZODi1mDgQCkGU5bvuL6a9gCw1+p7HF/ttC6y82x2w2w263h37q6urw7rvvYmZmJpa4QszMzOA3v/kNMycYMyfHzMwM3n333bAjk3hQVUA5OTlIS0uLWO1MTk5GrHIWLFu2LGL7qakpLFmyBEuXLo06R5ZlZGVlhX4yMzNx8eJFzSxXgdslOzo6yswJxszJoSgKLl68GPf9qiqg9PR0FBcXw+l0ho07nU4Yjcaoc9asWROx/ZUrV1BcXKypczpEFH+qD8Fqampw9uxZ9PX1we12w263w+v1orq6GgDQ1taGpqam0Pbbt2+H1+sNfQ6or68PfX19ePbZZ+P3KohIk1QvQSoqKjA9PY2Ojg74fD4UFRWhsbEReXl5AACfzxf2maD8/Hw0Njbi9OnT6OnpQW5uLl588UU88cQTd/2csixj9+7dcT35lWjMnBzMnByJyiwpWjoQJaL7Cr8LRkTCsICISBgWEBEJwwIiImFS5oM4WrzEh5rMly5dgsPhwNjYGILBIAoLC1FbW4uysrKUzfxdQ0NDeP3111FUVIQ333wzCUn/T23mQCCA9vZ2nD9/Hn6/HytWrIDZbEZlZWXKZj5//jy6urrg8XiQlZWFsrIyPP/888jOzk5K3sHBQXR1dWF0dBQ+nw8HDx7Epk2b7jjnnt+DSgq4ePGiYrFYlN7eXuXrr79WWlpalLq6OmViYiLq9uPj40pdXZ3S0tKifP3110pvb69isViUf/zjHymbuaWlRfnrX/+qXLt2TfnXv/6l/OlPf1IsFovicrlSNvOC//znP8orr7yi/O53v1MOHjyYpLS3xZLZZrMpv/3tb5UrV64o4+PjyrVr15ShoaGUzXz16lXlF7/4hfK3v/1NGR8fV65evao0NDQox44dS1rmy5cvK3/+85+VgYEBpba2Vrl06dIPbh+v92BKHIJp8RIfajNbrVY899xzKCkpgcFgwJ49e2AwGPDFF1+kbOYFH3zwAbZs2YI1a9YkKen/qc385ZdfYnBwEI2NjSgtLUV+fj5KSkoW/aR+KmT+6quvkJ+fj2eeeQb5+flYt24dnn76abhcrqRlLi8vh8Viwc9//vO72j5e70HhBbRwiY8NGzaEjcdyiQ+Xy4VgMJiwrAtiyfx98/PzmJmZWfT7cPEWa+Zz585hfHwctbW1iY4YIZbMn3/+OR555BF8/PHH+OUvf4kDBw6gtbUV//3vf5MROabMRqMRN27cwOXLl6EoCvx+PwYGBlBeXp6MyDGJ13tQ+DmgZF3iI55iyfx93d3dmJ2dxebNmxOQMFIsmT0eD9ra2nDkyBEsWbIkCSnDxZJ5fHwcQ0NDkGUZhw4dwtTUFJqbm/Htt9/i5ZdfTsnMRqMR9fX1eOeddxAIBDA3N4eNGzdi7969Cc8bq3i9B4UX0IJEX+IjEdRmXnDhwgV89NFHOHTo0KJXEUiUu808Pz+P9957D7W1tVi5cmUyoi1Kzf/nhd+D+vp6ZGVlAbh9Uvr48ePYt28fHnjggcQFvUO+xTK73W60tLRg9+7d2LBhA3w+H86cOYMPP/wQL730UqKjxiwe70HhBZSsS3zEUyyZF/T39+PkyZNoaGiIWMImktrMMzMzGBkZwejoKE6dOgXg9i+YoiiwWCw4fPgwHn300ZTKDNz+3Vi+fHmofADgoYcegqIouHHjBgwGQyIjx5S5s7MTRqMRO3bsAAA8/PDDyMjIwGuvvQaLxZKSF+KL13tQ+DkgLV7iI5bMwO2Vz4kTJ1BfX4/HHnss0THDqM2cmZmJt956C8eOHQv9VFdXY+XKlTh27BhKSkpSLjMArFu3Dj6fD7du3QqNeTweSJKEFStWJDQvEFvm2dnZiFVDWtrtt6aSol/VjNd7UHgBAdq8xIfazAvl88ILL2Dt2rXw+/3w+/24efNmSmZOS0vDqlWrwn5ycnIgyzJWrVqFjIyMlMsMAE8++SSys7Px/vvvw+12Y3BwEGfOnMG2bduSdvilNvPGjRvx2WefweFwhM5htbS0oKSkBMuXL09K5lu3bmFsbAxjY2MAbt/NZmxsLHRli0S9B4UfggFiLvGR7My9vb2Ym5tDc3MzmpubQ+Nbt27F/v37UzJzKlCbOSMjA4cPH8apU6fw6quvIjs7G5s3b4bFYknZzE899RRmZmbw6aeforW1FQ8++CDWr1+Purq6pGUeGRnBkSNHQo9bW1sB/P/3M1HvQV6Og4iESYlDMCL6cWIBEZEwLCAiEoYFRETCsICISBgWEBEJwwIiImFYQEQkDAuIiIRhARGRMCwgIhKGBUREwvwPtFl6YNPSi+wAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" @@ -310,23 +324,14 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 17, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.415384Z", - "start_time": "2024-10-22T09:43:55.412871Z" + "end_time": "2024-10-23T07:18:54.770415Z", + "start_time": "2024-10-23T07:18:54.762519Z" } }, - "outputs": [ - { - "data": { - "text/plain": "'\\n控制问题描述\\n'" - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "\"\"\"\n", "Control problem statement.\n", @@ -334,17 +339,17 @@ "\n", "N = 4 # number of state variables\n", "M = 2 # number of control variables\n", - "T = 20 # Prediction Horizon\n", + "T = 40 # Prediction Horizon\n", "DT = 0.2 # discretization step" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 18, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.419986Z", - "start_time": "2024-10-22T09:43:55.419039Z" + "end_time": "2024-10-23T07:18:55.153233Z", + "start_time": "2024-10-23T07:18:55.151535Z" } }, "outputs": [], @@ -389,11 +394,11 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 21, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.424811Z", - "start_time": "2024-10-22T09:43:55.422385Z" + "end_time": "2024-10-23T07:19:24.277670Z", + "start_time": "2024-10-23T07:19:24.269670Z" } }, "outputs": [ @@ -401,25 +406,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.81 ms, sys: 361 μs, total: 2.17 ms\n", - "Wall time: 576 μs\n" + "CPU times: user 4.69 ms, sys: 3.46 ms, total: 8.15 ms\n", + "Wall time: 5.45 ms\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:17: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:17: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " A[0, 2] = np.cos(theta)\n", - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:18: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:18: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " A[0, 3] = -v * np.sin(theta)\n", - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:19: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:19: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " A[1, 2] = np.sin(theta)\n", - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:20: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:20: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " A[1, 3] = v * np.cos(theta)\n", - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:21: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:21: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " A[3, 2] = v * np.tan(delta) / L\n", - "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_33582/46870782.py:26: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_16440/2229978461.py:26: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", " B[3, 1] = v / (L * np.cos(delta) ** 2)\n" ] } @@ -453,18 +458,18 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 22, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.586059Z", - "start_time": "2024-10-22T09:43:55.425290Z" + "end_time": "2024-10-23T07:19:24.878011Z", + "start_time": "2024-10-23T07:19:24.817493Z" } }, "outputs": [ { "data": { "text/plain": "<Figure size 640x480 with 2 Axes>", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAEDCAYAAABTZPIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8QElEQVR4nO3deXQV9f3/8edMNsKSDQgJJEAQgqKyaCsuWFDKUqTFWIt1R1HUUKv+qlZNF/CLUOpGK+AGCi64gASsoGyKlWKlWhVrFERWgZDEcAkkhORmPr8/LlyNSSCBJJM7eT3O4SR37sy973eGTF535jMzljHGICIiIiIhzXa7ABERERE5cQp1IiIiIh6gUCciIiLiAQp1IiIiIh6gUCciIiLiAQp1IiIiIh6gUCciIiLiAQp1IiIiIh6gUCciIiLiAeFuF+CWvXv34vf7jzlf+/btyc/Pb4SKGp96C01e7g1q3194eDjx8fGNUFFo0bZNvYUyL/fXGNu2Zhvq/H4/5eXlR53HsqzgvF67m5p6C01e7g28319j0LZNvYUqL/fXWL3p8KuIiIiIByjUiYiIiHiAQp2IiIiIByjUiYiIiHiAQp2IiIhIAzKlJY1y8odCnYiIiEgDMd9spWLibezPfrHB30uhTkRERKQBmI/+hfOXuyE/l+I3X8OUHWrQ92u216kTERERaQjGqcAsnodZOh8A65Q+JP7pYfKKDzboYViFOhEREZF6YkoO4Mx6BD77EABr6MXYvxxDWEwcFB9s0PdWqBMRERGpB2b3DpwZk2HPToiIxLpmPPbZFwTvKNHQFOpERERETpD55AOc2Y9A6UFIaIedmYXV5aRGrUGhTkREROQ4GcfBvPEK5h8vBSakn4Z9091YMXGNXotCnYiIiMhxMAdLcJ55FD75AADrwpFYv7oeK9ydeKVQJyIiIlJHJncnzszJsHsHhIdjXZWJfd5PXa0ppK9Tl52dzejRo5kzZ47bpYiIiEgzYT77EGfynYFAF5eAfdcU1wMdhPCeuk2bNrFy5Uq6dOnidikiIiLSDBhjMG8uwCx6AYyBk07GvuVerNh4t0sDQnRPXWlpKY899hg33XQTrVq1crscERER8ThTehDnyamY7OfBGKyfDMe+84EmE+ggRPfUzZo1i379+tG7d28WLlx41HnLy8spLy8PPrYsi+jo6OD3R3Pk+ca6vkxjUm+hycu9gff7E5HQZPJzcWY8ADu3QVg41uXjsAcOd7usKkIu1P3rX/9iy5YtTJkypVbzZ2dns2DBguDjtLQ0pk6dSvv27Wv9nklJSXWuM1Sot9Dk5d7A+/2JSOgwOR/jPPkglByAmDjsW+7B6t7L7bKqFVKhrqCggDlz5pCVlUVkZGStlsnIyGDkyJHBx0f2AOTn5+P3+4+6rGVZJCUlkZub26D3anODegtNXu4N6tZfeHh4nT6ciYjUhTEGs3wR5rW5YBxISw+Mn4tv63ZpNQqpULd582b27dvHPffcE5zmOA5ffPEFb731FvPmzcO2Kw8TjIiIICIiotrXq+0fRWOMJ/+AgnoLVV7uDbzfn4g0bebQIcxz0zHr3gXAOm8w1pW3YEXUboeSW0Iq1J1++uk89NBDlaY9/vjjdOzYkVGjRlUJdCIiIiJ1Yb7NC1x/bvtmCAvDuuwGrEEjQmKsb0iFuujoaDp37lxpWlRUFG3atKkyXURERKQuzIbPcJ6YCgeKoHUM9s33YPU8ze2yai2kQp2IiIhIfTPGYN5egnl1FjgOdO6GnZmF1Ta0xu2GfKibMGGC2yWIiIhIiDLlZZjnZ2LefxsAq/9ArKt/gxUV5XJldRfyoU5EpCmrqKhg/vz5vPfee/h8PuLj4xk0aBCXXHJJcBywMYb58+ezatUqDhw4QI8ePRg7diypqakuVy/ibaawAOfxKbD1K7BsrEvHYA0ZFRLj56qjUCci0oAWL17MihUrGD9+PCkpKWzevJmZM2fSsmVLRowYEZxnyZIlZGZmkpyczMKFC5k0aRLTpk0LXixdROqX+SonEOj274NWbbDH3YXVq6/bZZ0QnS4qItKANm7cyI9+9CPOOOMMEhMTOfvss+nduzdff/01ENhLt3TpUjIyMujfvz+dO3dm/PjxHDp0iDVr1rhcvYg3OavfxHk4KxDoUrpiZz0c8oEOtKdORKRBnXzyyaxYsYJdu3bRsWNHtm7dyoYNG7j22msByMvLw+fz0adPn+AyERER9OrViw0bNjBkyJBqX1e3QKyeegtdjdGfKS/HeelJzD+XBd7rRwOwr7sNK6pFg70nNN66U6gTEWlAo0aNoqSkhDvuuAPbtnEch1//+tcMGDAAAJ/PB0BsbGyl5WJjYykoKKjxdXULxKNTb6GrofqrKCyg4KEsKr5cD5ZF7LXjaXPptY0akht63SnUiYg0oLVr1/Lee+/x29/+ltTUVLZu3cqcOXOCJ0wc8cM/LMe6o4ZugVg99Ra6GrI/8/WXVMycAvsKoWUr7HF3UXzamRTn5tbr+9SksW6BqFAnItKAXnjhBUaNGsV5550HQOfOncnPz2fRokUMGjSIuLg4gOCZsUcUFRVV2Xv3fboF4tGpt9BV3/05a1ZgXnwc/H5ITsUen4XVoaMrP8OGXnc6UUJEpAEdOnSoyi0MbdsObtgTExOJi4tj/fr1wef9fj85OTn07NmzUWsV8RLj9+PMewIz97FAoOt7NvZ9D2J16Oh2aQ1Ge+pERBrQmWeeycKFC2nXrh0pKSls3bqVN954gwsuuAAIHJYZMWIE2dnZJCcnk5SURHZ2NlFRUcFxdyJSN6bIh/PEX+CrHACsUVdgjRiN5fF7xCvUiYg0oOuvv55XXnmFWbNmsW/fPhISEhgyZAiXXnppcJ5Ro0ZRVlbGrFmzKC4upnv37mRlZekadSLHwWzbhDNjMuwtgBbR2GP/H1bf/m6X1SgU6kREGlB0dDRjxoxhzJgxNc5jWRajR49m9OjRjVeYiAc577+DeX4GlJdBh06B8XPJKW6X1WgU6kRERCSkmYoKzII5mJWLAxNO/xH2Db/DatnK3cIamUKdiIiIhCyzvwjnqb/Cl4GTjayLRmP94grPj5+rjkKdiIiIhCSzfTPOzMnwbR5EtcC+/nasM851uyzXKNSJiIhIyHHW/RMz9+9QVgbtkwLj5zp1cbssVynUiYiISMgwTgVm4fOYZQsDE07th33jXVitWrtbWBOgUCciIiIhwRTvx3n6Ifj8YwCs4b/EyrgKyw5zubKmQaFOREREmjyzcxvOjAcgPxciI7Gu/S32WT9xu6wmRaFOREREmjTz37U4z0yDQ6XQNjEwfi41ze2ymhyFOhEREWmSjONgXp+HWfJqYMLJvbHH3Y3VJsbdwpoohToRERFpckxJMc7sR2D9fwCwfjoK69IxWGEaP1cThToRERFpUszub3BmPgC5OyEiEuua8dhnX+B2WU2eQp2IiIg0Gc4n63BmPQSlByGhHXbmfVhdurtdVkhQqBMRERHXGcdh30uzcF54IjAh/VTsm36PFRPnal2hRKFOREREXGVKSzDP/I2ij98HwLrgIqzRY7HCFVPqQj8tERERcY3J24Uz/QHYvQPCI7CvugXrvJ+6XVZIUqgTERERV5j/fRS4Q0RJMcQlkPjHRyiMbYsxxu3SQpJCnYiIiDQqYwzmrdcw2c+DMXDSyYTdci9RJ58Ku3e7XV7IUqgTERGRRmMOlWLm/B3z4RoArJ8Mw/r1OKzISJcrC30KdSIiItIoTH4uzszJ8M1WCAvHunwc9sDhbpflGQp1IiIi0uDMF5/iPPlXKN4PMXHYN9+D1aOX22V5ikKdiIiINBhjDGbFYsyCOWAcSEsPBLqEdm6X5jkKdSIiItIgTNkhzHPTMR+8C4B17mCsq27BitD4uYYQUqEuOzubdevWsXPnTiIjI0lPT+eqq66iY8eObpcmIiIi32O+zQ+Mn9v+Ndg21mU3BC4qbFlul+ZZIRXqcnJyGDZsGCeddBIVFRW8/PLLTJo0iUceeYQWLVq4XZ6IiIgAZsP/cJ6cCvv3QesY7Jt/j9XzdLfL8ryQCnVZWVmVHmdmZnLDDTewefNmevXSYEsRERE3GWMw7yzBvDobKiqgczfszPuw2ia6XVqzEFKh7odKSkoAaN26dY3zlJeXU15eHnxsWRbR0dHB74/myPNe3FWs3kKTl3sD7/cn4mWmvAzz4uOYf60CwOo/EOvq32BFRblcWfMRsqHOGMPcuXM5+eST6dy5c43zZWdns2DBguDjtLQ0pk6dSvv27Wv9XklJSSdUa1Om3kKTl3sD7/cn4jVm77c4j0+BLRvBsrEuHYM1ZJQ+oDWykA11s2fPZvv27dx///1HnS8jI4ORI0cGHx/5D5afn4/f7z/qspZlkZSURG5urufuQ6feQpOXe4O69RceHl6nD2ci0jDMphycx/8CRT5o1QZ73F1Yvfq6XVazFJKh7plnnuGjjz5i4sSJtG3b9qjzRkREEBERUe1ztf2jaIzx5B9QUG+hysu9gff6Kyws5IUXXuCTTz6hrKyM5ORkbrnlFrp16wYE+p0/fz6rVq3iwIED9OjRg7Fjx5Kamupy5SJH5/zzLcy8p6DCD526YI/PwmqvPe1uCalQZ4zhmWeeYd26dUyYMIHERA28FJGm7cCBA/zxj3/k1FNP5b777iMmJoY9e/bQsmXL4DyLFy9myZIlZGZmkpyczMKFC5k0aRLTpk0LjgEWaUqMvxzz0tOYf74FgHXmeVjX3YYVpStRuCmkQt3s2bNZs2YNd999N9HR0fh8PgBatmxJpG4ELCJN0OLFi2nbti2ZmZnBad//QGqMYenSpWRkZNC/f38Axo8fz4033siaNWsYMmRIo9cscjTGV4jzxF/g6y/BsrAyrsYa/kuNn2sCQirULV++HIAJEyZUmp6ZmcmgQYMavyAR8bxdu3ZRWFhIWVkZMTExdOzYsdJetmP58MMP6dOnD4888gg5OTkkJCQwdOhQfvrTnwKQl5eHz+ejT58+wWUiIiLo1asXGzZsqDHU6cz+6qm3hmU2b8SZ+QD4CiG6Ffa4O7FP/1G9vHZT6K+hNFZvIRXqXn31VbdLEJFmYOPGjaxYsYJPPvmEoqKiSs/Ztk3Xrl05//zzGTRo0DEDXl5eHitWrOCiiy4iIyODTZs28eyzzxIREcHAgQODRxxiY2MrLRcbG0tBQUGNr6sz+49OvdW/AyteZ+/0KeAvJzw1jXZ/fJiITjVffeJ4ad0dv5AKdSIiDWnr1q3MmTOHL774gk6dOtG/f3+6detGTEwMkZGRHDhwgD179vDVV1/x0ksv8corrwTPsA8Pr35z6jgOJ510EldccQUQCF87duxg+fLlDBw4MDjfDz/BH+tEEZ3ZXz31Vv+M34/z6mzM228E6uh3NmbsHRTYEbB7d729j9ZdwImc2a9QJyJy2H333ceAAQO45pprgmem1qS0tJS1a9eyePFiKioq+OUvf1ntfPHx8aSkpFSalpKSwgcffABAXFwcAD6fj/j4+OA8RUVFVfbefZ/O7D869VZP71XkC9zua+PnAFi/uALrotFg2w1Wg9bd8VOoExE57OGHHyY5OblW87Zo0YILL7yQQYMGHfUwac+ePdm1a1elabt27Qp+Ek9MTCQuLo7169eTlpYGgN/vJycnhyuvvPI4OxE5cWbbJpyZk6GwAFpEY4/9f1h9+7tdlhyF7XYBIiJNRW0D3ffZtn3UyytddNFFfPXVVyxcuJDc3FzWrFnDqlWrGDZsGBA4LDNixAiys7NZt24d27dvZ8aMGURFRTFgwIDj7kXkRDj/Xo0z9Z5AoEvsiH3fQwp0IUB76kREqvGb3/yGO++8k65du1Z5bvv27fz1r39l+vTpx3yd7t27c+eddzJv3jxee+01EhMTufbaazn//POD84waNYqysjJmzZpFcXEx3bt3JysrS9eok0ZnKiowr83BrFgcmHD6j7Bv+H9YLWu+x7o0HQp1IiLVONoJB+Xl5eTn59f6tc4880zOPPPMGp+3LIvRo0czevToOtcpUl/MgSKcpx6ELz4FwBoxGmvU5Vh2mMuVSW0p1ImI1NGePXu0F008xezYgjPjAfg2D6JaYF93G9aZ57ldltSRQp2IyGGrV6/m3XffDT6eNWtWlfBWVlbGtm3b6NWrV2OXJ9IgnP+swcz5G5QdgvZJ2Jn3YaV0dbssOQ4KdSIih5WVlVW62HBxcXGluzZA4FIi5557rg6VSsgzTgVm0QuYN18LTOjVF3vcXVit2rhbmBw3hToRkcOGDh3K0KFDgcD9V3/3u99Ve6KESKgzxQdwZj0E//svANbQDKxLrsEK0/i5UKZQJyJSjRkzZrhdgkiDMDu348yYBPm5EBmJdc2t2P0HHntBafIU6kREDisoKKBdu3Z1Xq6wsJCEhIQGqEikfpn/vo/zzDQ4dBDaJmJn3ovV+SS3y5J6oosPi4gcdtttt/Hss8+Sm5t7zHn9fj/vv/8+d911F2+//XYjVCdy/Izj4Cyeh/P4lECg63k6dtYjCnQeoz11NTBOBfj9OKWlmEOlGANYgGUF/mGBbYFlV7kRt4iEpj/84Q/MnTuXt956i+7du3PqqaeSlpZGbGwsERERHDhwgD179rBx40Y+/fRTSktLGTFiBCNHjnS7dJEamZJinGcehU/XAWAN/jnWpddhhSsCeI3WaE02b6Ri6u/ZWZt5bRvsMAgLhzA78NUO++778AiIiITIyMNfo7AiIr83Leq751q0gOhWWNEtIboV/OCrVcMNvEXkxJ1yyin85S9/4eOPP2bFihW8+eablJWVVZkvMTGRYcOGMWTIEOLj412oVKR2TO43gevP5e6E8Aisq8djn3uh22VJA1Goqw+OE/jnLz/2vIeZ430+PKJy0GsZ+Gq1bA1tYiEmDmLisNrEQkw8xMRCqzZYto60i9RWv3796NevH36/n61bt7J3717Kyspo06YNKSkpGj8nIcF8+h+c2Q/DwRKIbxcYP9e1h9tlSQNSqKtJt3TCZswnKSmJ3NxcjDHww3+YQJirqAj8cyqgwg8VTuCrc3h6eVngX1kZpvwQlH33OPhceVngwo+HSjEHS+BgceAXsaQ48H3pwUBd/nLYvy/w73t+GAIrPbZsaBMTCHxtYrEOB7+iTqk4hAWCX5tYiEuAmHgFQJHDwsPD6d69u9tliNSJcRzM0vmY1+cF/lZ174V9y++xYrRX2esU6mpg2WFYUeHYLaKxolocDnH18LrHuZxxKgLB7kjgKymBgyWYI+GveH8g6BX5MIe/st8HB/aDcQKPi3yB1zr8mvuqe6PwcEhoD20TsdomQttEaJeIlRD4SlyC7gMoItJEmdISnGf/Bv99HwBr0Aisy8ZihWvoTnOgUBciLDsMWrYO/Pv+9GMsZ/x+OFB0OOTtwxwJe0X7iPaXcXDPLkzR4RBYtBf8fsjbDXm7K+3tC34fFgbx7aqGviPfx7fTxSvFM3bv3s2KFSvYuXNnlbF1lmXxpz/9yaXKRKoyebtwZkyGXdshPBzripuxzx/qdlnSiBTqPM4KDw8cVo0LjAE6EgIty6JtcjK7d+8OHFoGTEUF+L6Fb/MwBXmBGzt/m4c5/JXCgsBh5YI9ULCn+tBn2RDfNhD0OnSCjqlYyZ0hORXi2+pMYQkZ27dvJysri4SEBHJzc+nSpQv79++nsLCQtm3b0qFDB7dLFAky//svztMPBobsxCZg33IP1kknu12WNDKFOgmywsICe9vaJmKlV33eOBXg21s56B35viAPCvMCe/oK86EwH7Px88ByR14guiUkp2IlpwbCXsfOkNwZEtop7EmT89JLL9GnTx/uuOMOrrjiCm6++Wa6devGf//7Xx5//HF+/etfu12iCMYYzLKFmIXPB4badOsZCHRxbd0uTVygUCe1ZtlhkNAuEMJ69KryvHEOj937Ng9TsAdyv8Hs2hE4FJC3KzD2b/MGzOYNgfmPLBgVfXiPXur3vnaGhPY6aUNcs2XLFm644YbgB44je7TPOOMMfv7znzNv3jwmTpzoZonSzJlDpZi5j2H+8x4A1vlDsS6/SZe+asYU6qTeWLYdPNT7w93+xl8Oe3Zjdm2H3dth1w7M7h2wZ1fg6uZbNmK2bAzMe2ShyKjv7dnrjNUxNXAYt10HhT1pcMXFxbRu3RrbtgkLC6O4uDj4XLdu3ViwYIGL1UlzZ/JzcWZOgW+2QFgY1q/HYQ0crqMezdxxhbrNmzfTrVu3+q5FPMwKj4BOnbE6da403fj9kL/7cMg7HPZ2bYc9OwOXeNm2CbNtU2DeIwu1iIYu3bG6pWN1TYdu6TrUIPUuISGBoqIiAJKSksjJyaF3795AYLxdixYt3CxPmjHni09xnpgauOpBm1jsm+/BSj/V7bKkCTiuUHfvvffSvXt3hg8fzjnnnEO4bjUix8kKDw/sfUtOxeLc4HRTUfG9sLfju7CX+03g0i4bPsNs+Oy7oBffDtLSsdJ6YHfriRMX60o/4h09e/Zk48aNnHXWWQwYMID58+fj8/kIDw9n9erVnH/++W6XKM2MMYb9i+bhzJ4WuEZql+6BCwontHe7NGkijiuNZWZmsmzZMqZPn85zzz3H4MGDGTJkCG3bam+J1A8rLAySUiApBYtzgtONUxEIeFs2fnfIdud22FsAewsw/11LBbDTtgOHbNPSD4e99MB4PV1jT2rpkksuYe/evQBcfPHF+Hw+1qxZg2VZnHPOOVx99dUuVyjNiSk7hHlhJr733wHAOucCrKsysSKjXK5MmhLLmOO/qu6mTZt46623eP/993EchzPPPJOf/exnnHpq098NnJ+fT3n50W/rZVkWyT+47IdXeKk3U3oQtn2N2bIBs+Ur2LIxEPJ+KKpF4LBtWjpWt3Tomo6V0K7xCz4BXlpv1alLfxEREbRvrz0UP6Rtm/d6M9/m4zw+BbZtAjsMe/T1cOFIz42f8+K6O6Kxtm0ndNy0e/fu/OY3v+Gaa65h5cqVrFy5kvvvv5+UlBSGDx/OwIEDiYyMPJG3EDkmq0U09DwNq+dpgceWRWJkOLn/fi8Q9DZvhK2bAidkbPwfZuP/vjtsG5cQ3JNnpaVD1+5YLVq61os0HTNnzuTSSy8lMTGxynP5+fnMnz+fzMxMFyqT5sRs/F9g/Nz+fdC6De3ve5C9iZ08F3qkftTLYLjw8HCioqKCY+sOHTrErFmzWLhwIXfccQfp6dVc9EykAYW1bY99xjmYfmcDhw/b7v7mu8O2mzfCzm3gK4SP/435+N+BoGdZgcO2XXtgXXmLLg3QjL377rsMHTq02lC3f/9+3n33XYU6aTDGGMzqpZhXZgXuIZ6aRtj4LFqc3hd273a7PGmiTijUbdu2jWXLlrFmzRr8fj9nn302v/3tb+nevTvbtm3jqaee4umnn+bBBx+sr3pFjotlh0GnLlidusCAIUDgGk+Bw7YbMVs2BA7bFhbAzm2Y4gPYCnRSgwMHDhCh/x/SQEx5OebFxzH/WgmAddZPsK65FUtnXMsxHFeoW7t2LcuWLePLL78kJiaGkSNHMnToUOLi4oLzdOnShcsvv5wHHnigvmoVqVdWVAtIP7XSpQCMrxC2bgyM05NmJycnh5ycnODjVatW8cknn1Sap6ysjP/85z+kpKQ0cnXSHJi93wbGz23ZCJaNdem1WEMu9tz4OWkYxxXq/va3v9G1a1duueUWBgwYUOMlTdq3b6/T/iWkWHEJ0PdstPlsnj7//PNKFxV+++23q52vXbt2jB07trHKkmbCbPoC54m/wL690LI19ri7sE7t53ZZEkKOK9RNnDiRk08+9o2CO3TooDEnIhIyRo0axfDhwzHGcOONN5KVlUVaWlqleSIiInThYal3zj+XYeY9CRV+6NQFO/M+rMRkt8uSEHNcoa42ga4hLVu2jNdffx2fz0dKSgpjxozhlFNOcbUmEQl9kZGRwTP2p0+fTnx8fL1fXD07O5uXXnqJESNGMGbMGCAwKH7+/PmsWrWKAwcO0KNHD8aOHUtqamq9vrc0PcZfjnn5acy7bwUmnHEu9nW3Bc7qF6mjkLuB5tq1a5kzZw6XXHIJU6dO5ZRTTmHy5MkUFFRzXTIRkePUvn17wsPD2blzJytWrGDhwoX4fD4ACgsLKSsrq/Nrbtq0iZUrV9KlS5dK0xcvXsySJUu4/vrrmTJlCnFxcUyaNImDBzW208vMvr04D/8hEOgsC+viq7Bv/r0CnRy3kLu/1xtvvMGFF17I4MGDARgzZgyffvopy5cv54orrqi39zEGDh60KC6GkhILr10SyLLUWyjycm/wXX9NoTfHcXjyySdZvXp1cFrfvn2Ji4vjqaeeIi0tjcsuu6zWr1daWspjjz3GTTfdxMKFC4PTjTEsXbqUjIwM+vfvD8D48eO58cYbWbNmDUOGDKm3nqTpMFs24sycAr5vIboV9o2/wzr9R26XJSEupEKd3+9n8+bNXHzxxZWm9+7dmw0bNlS7THl5eaWrq1uWRXR0dPD7mhw8aNG9e9LhR0k1zhf61Fto8nJv8PXXNtHRjqs1LFy4kDVr1nD11VfTt29ffve73wWf69evH6tXr65TqJs1axb9+vWjd+/elUJdXl4ePp+PPn36BKdFRETQq1cvNmzYUGOoO95t2/ef9+IZlaHQm/OvlTjPzwR/OSSnEjY+Cyup0zGXC4XeToSX+2us3kIq1BUVFeE4DrGxlW/WHhsbGzws8kPZ2dmVzmZLS0tj6tSpx7wFR3HxCZcrIsepQ4cOtGrlbg2rV6/ml7/8JSNHjsRxKgfMxMRE8vLyav1a//rXv9iyZQtTpkyp8tyRbVd127WjDSs53m3b9yUleffDQVPszfj9+GZP48DrLwPQov9PaHvn/dgtW9fpdZpib/XJy/01dG8hFeqOqC7p1pR+MzIyGDlyZJX58vPz8fv9Nb6HMYG9BR06dGDPnj2euyWLZVnqLQR5uTf4rr+iolyKio7eX3h4eIPe+7WwsLDGu+FERERQWlpaq9cpKChgzpw5ZGVlHfW2iT/chh1r/R7vtu3IvElJSeTm5nru/1FT7c3s34fzxFTMhs8AsH9xBeUjL2PPvv2wb3+tXqOp9lZfvNxfXXo7kW1bSIW6mJgYbNuusldu3759VT7lHhEREVHjld+P9YONjnZo1Srw1Yv/wdRb6PFyb/Bdf0VFxvX+YmNja9wbt2vXLhISEmr1Ops3b2bfvn3cc889wWmO4/DFF1/w1ltvMW3aNCCwxy4+Pj44T1FRUY3bNTixbdv353P759xQmlJvZtvXODMnQ2E+REVj33AHVt/DtzA8jhqbUm8Nwcv9NXRvIRXqwsPD6datG+vXr+ess84KTl+/fj0//vGPXaxMRLymX79+LFy4MHhyBARCZ0lJCW+++SZnnnlmrV7n9NNP56GHHqo07fHHH6djx46MGjWKDh06EBcXx/r164PXxPP7/eTk5HDllVfWa0/S+Jx/r8Y8Nx3KyyCxI/b4+7A6dna7LPGokAp1ACNHjuSxxx6jW7dupKens3LlSgoKCnSGmIjUq9GjR/Pxxx9zxx13cOqpgVvJvfTSS+zYsYOwsDAuvfTSWr1OdHQ0nTtX/iMeFRVFmzZtgtNHjBhBdnY2ycnJJCUlkZ2dTVRUFAMGDKjfpqTRmIoKzMK5mOWLAhNOOzNwhmsdx8+J1EXIhbpzzz2X/fv389prr7F3715SU1O59957G3RsjYg0P3FxcUyZMoVXX32Vjz/+GNu22bZtG2eccQaXXXYZrVvX3x/nUaNGUVZWxqxZsyguLqZ79+5kZWUFz2aV0GIOFOE89SB88SkA1ohfYY26AssOc7ky8bqQC3UAw4YNY9iwYW6XISIeFxcXx7hx4+r9dSdMmFDpsWVZjB49mtGjR9f7e0njMt9swZkxGQr2QGRU4O4QP9IeV2kcIRnqREREmhrz4RqcZ/8GZYegXQfs8VlYKV3dLkuaEYU6EZEafPnll6xZs4b8/PwqtwWzLIs//elPLlUmTYlxKjCLXsS8efi6gb36Yo+7C6tVG3cLk2ZHoU5EpBrvvPMOTzzxBK1btyY5ObnK5UO8eskFqRtTcgDn6Yfhfx8BYA29GOuSa7HCNH5OGp9CnYhINV5//XXOOeccxo8fX+P14KR5M7u2B8bP5e2CyEisa27F7j/Q7bKkGVOoExGpRn5+Ptddd50CnVTLfPxvnNmPwqGDkNA+cP25zie5XZY0cwp1IiLV6NSpE/v27XO7DGlijONg3ngZ84/A/VvpeTr2TXdjtan57h8ijcV2uwARkabo8ssvZ9GiRRQWFrpdijQR5mAJzszJwUBnDf459u0TFeikydCeOhGRw6ZOnVrpcUlJCbfddhtdu3atcrFhy7K4++67G7M8cZHJ3Ykz4wHI/QbCI7CuzsQ+d7DbZYlUolAnInLY9u3bKz22bZuYmBgKCwur7LGzLKsxSxMXmfX/wZn1MBwsgbi22Jn3YaX1cLsskSoU6kREDpsxY0bw+5ycHNLS0qq9VVdpaSmbN29uzNLEBcYYzNL5mMUvgjHQvRf2Lb/Hiol3uzSRamlMnYhINSZOnMjOnTurfW7Xrl1MnDixkSuSxmRKD+I8ORWz6AUwBmvQz7B/938KdNKkaU+diEgd+f1+bFufib3K5O3GmTkZdm6DsHCsK27C/onuNy5Nn0KdiMhhJSUllJSUBB/7fD4KCgoqzVNWVsa7775LXFxcI1cnjcF8/jHOUw9CyQGITcC+5R6sk052uyyRWlGoExE5bMmSJSxYsCD4+MEHH6xx3oyMjMYoSRqJMQazfBHmtblgHEhLx868FyuurdulidSaQp2IyGF9+vShRYsWGGN48cUXGT58OO3atas0T0REBJ07d6ZXr14uVSn1zRw6hHnuMcy6fwJgnfdTrCtvwdLdRCTEKNSJiByWnp5Oeno6AIcOHWLw4MEkJCS4XJU0JPNtXuD6czu2QFgY1mU3Yg36mS5ZIyFJoU5EpBq/+tWv3C5BGpj5cj3Ok3+FA0XQJhb75nuw0k91uyyR46ZQJyIizYoxBrPqH5j5z4DjQJfugfFzCe3dLk3khCjUiYhIs2HKDmFemIl5/x0ArLMvwLo6EysyyuXKRE6cQp2IiDQLpjAfZ+YU2LYJbBvrV9djDf65xs+JZyjUiYiI55mvcnAenwL790HrNtjj7sY6pY/bZYnUK4U6ERHxLGMM5t03MS8/DRUVkJKGPf4+rHYd3C5NpN4p1ImIiCeZ8nLMS09i3lsOgPXj87Gu/S1WlMbPiTcp1ImIiOcY37eB8XObN4BlY/3yGqyhGRo/J56mUCciIp5y6MvPqPi/38G+QmjZCvvGu7BOO8PtskQanEKdiIh4hvPPZeTNexL85dCxc2D8XGJHt8sSaRQKdSIiEvKMvxzzymzM6qUAWGecg3XdbVgtWrpcmUjjUagTEZGQZor24jwxFb7KAcsi9qqbOXD+cND4OWlmFOpERBpQdnY269atY+fOnURGRpKens5VV11Fx47fHRI0xjB//nxWrVrFgQMH6NGjB2PHjiU1NdXFykOD2fpV4ISIvQUQ3RL7xjuJGfYLinfvxhjjdnkijcp2uwARES/Lyclh2LBhPPDAA/zhD3/AcRwmTZpEaWlpcJ7FixezZMkSrr/+eqZMmUJcXByTJk3i4MGDLlbe9Dlr38aZek8g0CV1wr7vIezeP3a7LBHXKNSJiDSgrKwsBg0aRGpqKl27diUzM5OCggI2b94MBPbSLV26lIyMDPr370/nzp0ZP348hw4dYs2aNS5X3zQZvx/n5acxz04LnBDR5yzsex/CSkpxuzQRV+nwq4hIIyopKQGgdevWAOTl5eHz+ejT57tbVkVERNCrVy82bNjAkCFDqn2d8vJyysvLg48tyyI6Ojr4/dEceT4Ur9lm9u/DPPlXzJfrAbB+/mvsn1+OZQf2UYRyb8fi5d7A2/01Vm8KdSIijcQYw9y5czn55JPp3LkzAD6fD4DY2NhK88bGxlJQUFDja2VnZ7NgwYLg47S0NKZOnUr79u1rXU9SUlIdqndf2dcbKJhyFyZvN1Z0SxL+30RanntBtfOGWm914eXewNv9NXRvIRPq8vLyeO211/jf//6Hz+cjISGB888/n0suuYTw8JBpQ0SasdmzZ7N9+3buv//+Ks/98BP8sQb5Z2RkMHLkyCrL5+fn4/f7j7qsZVkkJSWRm5sbMicTOB+8izP371BWBonJ2OOz2NepC/t27640Xyj2Vlte7g283V9degsPD6/Th7NKyx7XUi7YtWsXxhjGjRtHUlISO3bs4Mknn6S0tJRrrrnG7fJERI7qmWee4aOPPmLixIm0bds2OD0uLg4I7LGLj48PTi8qKqqy9+77IiIiiIiIqPa52v5BNMY0+T+exqnALHwOsyw7MOG0M7BvuBNatT5q7aHQ2/Hycm/g7f4aureQCXV9+/alb9++wccdOnRg165dLF++XKFORJosYwzPPPMM69atY8KECSQmJlZ6PjExkbi4ONavX09aWhoAfr+fnJwcrrzySjdKbjJM8X6cpx6CnI8BsH72S6yLr8Kyw1yuTKRpCplQV52SkpLgYOOaNNfBxMei3kKTl3sDb/Y3e/Zs1qxZw9133010dHRwDF3Lli2JjIzEsixGjBhBdnY2ycnJJCUlkZ2dTVRUFAMGDHC3eBeZb7bizJwM+bkQGYU15jbsHzffn4dIbYRsqMvNzeXNN9885l665jiYuC7UW2jycm/grf6WL18OwIQJEypNz8zMZNCgQQCMGjWKsrIyZs2aRXFxMd27dycrKyv4AbS5MR+txXl2GhwqhbaJ2OOzsFLT3C5LpMmzjMsHrl999dVKoas6U6ZM4aSTTgo+LiwsZMKECfTq1Yubb775qMvWtKfOq4OJa0u9hSYv9waNN5jYy/Lz8ytt86pjWRbJycnsbmJ3XTBOBWbxS5ilrwYmnNIHe9xdWK1jav0aTbW3+uDl3sDb/dWlt4iIiNA9UWL48OGcd955R53n+80VFhYyceJE0tPTGTdu3DFfv7kMJj5e6i00ebk38H5/UpUpOYAz6xH47EMArKEXY11yLVaYxs+J1JbroS4mJoaYmNp9CjsS6NLS0sjMzMS2dUMMEZFQZ3bvwJkxGfbshIhIrGvGY59d/fXnRKRmroe62jpyyLVdu3Zcc801FBUVBZ87ckkAEREJLeaTD3BmPwKlByGhHXZmFlaXk469oIhUETKhbv369eTm5pKbm1tlHN2rr77qUlUiInI8jONg3ngF84+XAhPST8O+6W6smDhX6xIJZSET6gYNGhQ8U0xEREKXOViC88yj8MkHAFgXjsT61fVYujuQyAnRb5CIiDQak7szcP253TsgPBzrqkzs837qdlkinqBQJyIijcJ89iHO0w/DwWKIS8C+5V6sbj3dLkvEMxTqRESkQRljMG+9hsl+HoyBk04OBLrY+GMvLCK1plAnIiINxpQexMz5O+ajfwFg/WQ41uU3YoVXf/1QETl+CnUiItIgTH4uzowHYOc2CAvHunwc9sDhbpcl4lkKdSIiUu9Mzsc4Tz4IJQcgJg77lnuwuvdyuywRT1OoExGRemOMwaxYhFkwF4wDaemB8XPxbd0uTcTzFOpERKRemEOHMM9Nx6x7FwDrvMFYV96CFRHpcmUizYNCnYiInDDzbV7g+nPbN0NYGNZlN2ANGoFlWW6XJtJsKNSJiMgJMRs+w3liKhwogtYx2Dffg9XzNLfLEml2FOpEROS4GGMwby/BvDoLHAc6d8POzMJq297t0kSaJYU6ERGpM1NehnnhcczaVQBYZw/Cuno8VmSUy5WJNF8KdSIiUiemsADn8Smw9SuwbKxfXYf1019o/JyIyxTqRESk1sxXOYFAt38ftGqDPe4urF593S5LRFCoExGRWnJWv4l5+SmoqICUrtiZ92G1T3K7LBE5TKFORESOypSXY15+CvPPZQBYPxqANea3WFEtXK5MRL5PoU5ERGpkfIU4T/wFvv4SLAsr4xqs4Zdo/JxIE6RQJyIi1TJff4nz+F9gXyG0bIV9451Yp53pdlkiUgOFOhERqcJZswLz4uPg90NyKvb4LKwOHd0uS0SOQqFORESCjN+PeXUW5p2lgQn9zsa+/nasFi3dLUxEjkmhTkREADBFPpwnp8LGzwGwRl2JNeJXWLbtcmUiUhsKdSIigtm2CWfmZCgsgBbR2Df8DqvPWW6XJSJ1oFAnItLMOe+/g3l+BpSXQYdOgfFzySlulyUidaRQJyLSRCxbtozXX38dn89HSkoKY8aM4ZRTTmmw9zMVFTjzn8WsXByYcPqPAnvoWrZqsPcUkYajgRIiIk3A2rVrmTNnDpdccglTp07llFNOYfLkyRQUFDTI+1Xs8+E8+qdgoLMuGo39mz8o0ImEMIU6EZEm4I033uDCCy9k8ODBwb107dq1Y/ny5fX+XmbHFvbccQ3my/UQ1QL7lnuwL75KJ0SIhDgdfhURcZnf72fz5s1cfPHFlab37t2bDRs2VLtMeXk55eXlwceWZREdHR38viZm4+dUTPszlB2CxGTCxmdhdepy4k00EUd69+IdL7zcG3i7v8bqTaFORMRlRUVFOI5DbGxspemxsbH4fL5ql8nOzmbBggXBx2lpaUydOpX27dsf9b2cuFjyklMIa5tI27sfwG4Tc8L1N0VJSUlul9BgvNwbeLu/hu5NoU5EpImo7lN8TZ/sMzIyGDlyZJX58vPz8fv9R3+j2ybQrns6e/LzMQeKj7/gJsiyLJKSksjNzcUY43Y59crLvYG3+6tLb+Hh4cf8cFbjsse1lIiI1JuYmBhs266yV27fvn1V9t4dERERQURERLXPHeuPhhUThxUWhjHGc388j1BvocvL/TV0bxoVKyLisvDwcLp168b69esrTV+/fj09e/Z0qSoRCTXaUyci0gSMHDmSxx57jG7dupGens7KlSspKChgyJAhbpcmIiFCoU5EpAk499xz2b9/P6+99hp79+4lNTWVe++997jH1ohI86NQJyLSRAwbNoxhw4a5XYaIhCiNqRMRERHxgGa7py48vPat12XeUKPeQpOXe4Pa9ef1n8Hx0rYtQL2FLi/319DbNst49bxhERERkWZEh1+P4uDBg/z+97/n4MGDbpdS79RbaPJyb+D9/poKL/+c1Vvo8nJ/jdWbQt1RGGPYsmWLJy+CqN5Ck5d7A+/311R4+ees3kKXl/trrN4U6kREREQ8QKFORERExAMU6o4iIiKCSy+9tMb7K4Yy9RaavNwbeL+/psLLP2f1Frq83F9j9aazX0VEREQ8QHvqRERERDxAoU5ERETEAxTqRERERDxAoU5ERETEA7x7g7VaWrZsGa+//jo+n4+UlBTGjBnDKaecUuP8OTk5zJ07l2+++Yb4+Hh+8YtfMHTo0Eas+Niys7NZt24dO3fuJDIykvT0dK666io6duxY4zKff/45EydOrDL90UcfpVOnTg1Zbp28+uqrLFiwoNK02NhYnn766RqXCYV1BjB+/Hjy8/OrTB86dCg33HBDlelNfZ3l5OTw+uuvs2XLFvbu3cudd97JWWedFXzeGMP8+fNZtWoVBw4coEePHowdO5bU1NSjvu6///1vXnnlFfbs2UOHDh24/PLLK72uBGjbFtDUf0+O8PK2Dby1fWvK27ZmHerWrl3LnDlzuOGGG+jZsycrV65k8uTJPProo7Rr167K/Hl5eUyZMoXBgwdz6623smHDBmbNmkVMTAxnn322Cx1ULycnh2HDhnHSSSdRUVHByy+/zKRJk3jkkUdo0aLFUZedNm0aLVu2DD6OiYlp6HLrLDU1lT/+8Y/Bx7Zd8w7nUFlnAFOmTMFxnODj7du3M2nSJM4555yjLtdU19mhQ4fo2rUrF1xwAQ8//HCV5xcvXsySJUvIzMwkOTmZhQsXMmnSJKZNm0Z0dHS1r7lx40amTZvGZZddxllnncW6det49NFHuf/+++nRo0dDtxQytG2rqqn+nnyfV7dt4K3tW1PetjXrUPfGG29w4YUXMnjwYADGjBnDp59+yvLly7niiiuqzL98+XLatWvHmDFjAEhJSeHrr7/mH//4R5P6JcrKyqr0ODMzkxtuuIHNmzfTq1evoy4bGxtLq1atGrK8E2bbNnFxcbWaN1TWGVTdWC1atIgOHTqE7Drr168f/fr1q/Y5YwxLly4lIyOD/v37A4FP8jfeeCNr1qxhyJAh1S63ZMkSevfuTUZGBgAZGRnk5OSwZMkSbr/99gbpIxRp21ZVU/09+T6vbtvAW9u3prxta7ahzu/3s3nzZi6++OJK03v37s2GDRuqXearr76id+/elab17duXd955B7/fT3h40/xxlpSUANC6detjznv33XdTXl5OSkoKl1xyCaeddlpDl1dnubm53HTTTYSHh9OjRw8uv/xyOnToUO28obrO/H4/7733HhdddBGWZR113lBYZz+Ul5eHz+ejT58+wWkRERH06tWLDRs21Ljh27hxIxdddFGlaX369GHp0qUNWm8o0bateqHwe9Ictm3g7e2b29u2prvWG1hRURGO4xAbG1tpemxsLD6fr9plfD5ftfNXVFSwf/9+4uPjG6rc42aMYe7cuZx88sl07ty5xvni4+MZN24c3bp1w+/3889//pP/+7//489//vMxP0k1ph49ejB+/Hg6duyIz+dj4cKF/OEPf+CRRx6hTZs2VeYPxXUGsG7dOoqLixk0aFCN84TKOqvOkd+x6tZNQUHBUZf74Z6MuLi4Gn9nmyNt2yoLld+T5rJtA29v39zetjXbUHdEdZ8SjvbJ4YfPHbkhx7E+bbhl9uzZbN++nfvvv/+o83Xs2LHSYOP09HQKCgr4xz/+0aR+gb6/y7tz586kp6dz66238u677zJy5Mhqlwm1dQbwzjvv0LdvXxISEmqcJ1TW2dHUtG7qwhjTpNelW7RtCwiV35Pmsm2D5rF9c2vb1mwvaRITE4Nt21VS8L59+6ok7COqS81FRUWEhYXVavd/Y3vmmWf46KOP+POf/0zbtm3rvHx6ejq5ubkNUFn9adGiBZ07d2b37t3VPh9q6wwgPz+f9evXB8dD1UUorDMg+Im0unVT0+/fkeXq8jvbHGnbdmyh8HvixW0beH/75va2rdmGuvDwcLp168b69esrTV+/fj09e/asdpkePXpUmf/TTz+lW7duTWr8gjGG2bNn88EHH/CnP/2JxMTE43qdLVu21HrQrlvKy8vZuXNnjYcaQmWdfd8777xDbGwsZ5xxRp2XDYV1BpCYmEhcXFyldeP3+8nJyanx9w8CG/XPPvus0rT169eTnp7eYLWGGm3bji0Ufk+8uG0D72/f3N62NdtQBzBy5EhWrVrF22+/zTfffMOcOXMoKCgIDmScN28e06dPD84/dOhQCgoKgtcFevvtt3n77bf5+c9/7lYL1Zo9ezbvvfcet912G9HR0fh8Pnw+H2VlZcF5ftjbkiVLWLduHbt372bHjh3MmzePDz74gOHDh7vRQo2ee+45cnJyyMvL46uvvuLhhx/m4MGDDBw4EAjddXaE4zisXr2agQMHEhYWVum5UFtnpaWlbN26la1btwKBAcRbt26loKAAy7IYMWJE8Lpj27dvZ8aMGURFRTFgwIDga0yfPp158+YFH48YMYJPP/2URYsWsXPnThYtWsRnn31WZYBxc6dtW+j8nhzh9W0beGf71pS3bU03zjeCc889l/379/Paa6+xd+9eUlNTuffee2nfvj0Ae/furTSwMTExkXvvvZe5c+eybNky4uPjue6665rc6ePLly8HYMKECZWmZ2ZmBgem/rA3v9/P888/T2FhIZGRkaSmpnLPPfcc16ephlRYWMjf/vY3ioqKiImJoUePHjzwwAMhv86O+OyzzygoKOCCCy6o8lyorbOvv/660sVDn3vuOQAGDhzI+PHjGTVqFGVlZcyaNYvi4mK6d+9OVlZWpes4HdlIHtGzZ09uv/12Xn75ZV555RWSkpK4/fbbdY26H9C2LXR+T47w+rYNvLN9a8rbNsscz+g9EREREWlSmvXhVxERERGvUKgTERER8QCFOhEREREPUKgTERER8QCFOhEREREPUKgTERER8QCFOhEREREPUKgTERER8QCFOhEREREPUKgTERER8QCFOhEREREPUKgTTygrK+Puu+/m1ltvpaSkJDjd5/Nx4403MmHCBBzHcbFCERGRhqVQJ54QGRnJHXfcQVFRETNnzgTAcRz+/ve/A3Dbbbdh2/rvLiIi3qW/cuIZycnJ3HTTTaxbt46lS5eyYMECPv/8c2699Vbi4+PdLk9ERKRBhbtdgEh9Ovfcc8nJyeH555/HcRwyMjLo3bu322WJiIg0OO2pE8+54IILqKioICwsjBEjRrhdjoiISKNQqBNPKS0tZfr06SQnJxMZGckTTzzhdkkiIiKNQqFOPOXpp5+moKCAO++8k5tvvpkPP/yQN954w+2yREREGpxCnXjGqlWreO+99xg7diypqamcffbZDB8+nBdffJFNmza5XZ6IiEiDUqgTT9i+fTvPPvssAwcOZNCgQcHpV199NV26dOHRRx+luLjYvQJFREQamGWMMW4XISIiIiInRnvqRERERDxAoU5ERETEAxTqRERERDxAoU5ERETEAxTqRERERDxAoU5ERETEAxTqRERERDxAoU5ERETEAxTqRERERDxAoU5ERETEAxTqRERERDzg/wPCSlzg3E/bqwAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAEDCAYAAABTZPIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCUklEQVR4nO3deVxVdf7H8df3CCgugAsIJu7i0qRpi2WWpqM25ozRYlZajpYW1pQttthU9rMcq2mZzKbS1BYbV7LUUrPVFm0xqSjNJS0VhRBRkPV8f3/ckYkEQQUO9/J+Ph488p7l3s+nA+d+zvd8z/drrLUWEREREfFrjtcBiIiIiMiJU1EnIiIiEgBU1ImIiIgEABV1IiIiIgFARZ2IiIhIAFBRJyIiIhIAVNSJiIiIBAAVdSIiIiIBQEWdiIiISAAI8joAr+zbt4+CgoIyt4uMjCQ1NbUKIvKG8vNfgZwblD+/oKAgGjZsWAUR+R+d5wI7N1B+/q6iz3M1tqgrKCggPz//qNsYY4q2DcTZ1JSf/wrk3CDw86sqNf08F8i5gfLzd5WRn26/ioiIiAQAFXUiIiIiAUBFnYiIiEgAUFEnIiIiEgBU1ImIiIhUMZufhy3jQaZjpaJOREREpArZ9FQKp95JxguPV+j71tghTURERESqmt34De5zj8CB/WT/moo5fzCEV8xYmyrqRERERCqZtRa7+k3sghfBdSG2DU0nPUmqaypsnDoVdSIiIiKVyObmYl+ehl37AQCmR2+cq28kqGkz2L27wj5HRZ2IiIhIJbFpe3CnPww/bwPHwVw2CtPvzxin4h9rUFEnIiIiUgls8te4zz8KWQegQTjO2AmYDqdU2uepqBMRERGpQNZa7MpE7KKXwLrQsh3ODXdjGkdW6ueqqBMRERGpIDY3Bzv7X9gv1gBgevbDXHU9JqR2pX+2ijoRERGRCmD37vb1n9u5HWrVwlx+HabPnzDGVMnnq6gTEREROUH22y9xX3gMsrMgLALn+rsw7TtXaQwq6kRERESOk7UWu3wBdsmrYC20jvP1n2vYuMpjUVEnIiIichxsTjburKfgq08BMOcNxAwbgwkO9iQeFXUiIiIix8im7PT1n9v9MwQFYa4Yi3PeQE9jUlEnIiIicgzshs9xZ/4TDmVDRCNf/7m2Hb0OS0WdiIiISHlY18UunYd98zXfgnadca6/ExPe0NvA/ktFnYiIiEgZbHYW7otPwIZ1AJg+gzCXj8YEedN/riQq6kRERESOwu7agTt9CuzZCUHBmOEJOOf08zqsI6ioExERESmF/epT3BefhNxD0KiJb7iSVu29DqtEKupEREREfse6hdglc7HLF/gWdDgFZ8wdmLAIT+M6GhV1IiIiIr9hsw7izngMvv0KAPPHIZhLR2Jq1fI4sqNTUSciUkUKCwtZsGABH330ERkZGTRs2JA+ffpw8cUX4zgO4BudfsGCBaxevZqDBw/Svn17Ro8eTWxsrMfRi9QM9peffOPPpaZASAhmxI04Z/XxOqxyUVEnIlJFlixZwqpVqxg3bhzNmzdn69atTJ8+nbp16zJo0KCibZYtW0ZCQgIxMTEsXryYyZMn8+STTxIaGupxBiKBzf18DXb2U5CXC42jcBLuwbRo43VY5eZ4HYCISE2xadMmTj/9dLp3705UVBRnnXUWXbp0YcuWLYCvlW758uXEx8fTo0cPWrRowbhx48jNzWXNmjUeRy8SuGxhIe7CWdjnH/EVdJ264tz7uF8VdKCWOhGRKtOxY0dWrVrFrl27aNasGT/99BMbN27kmmuuAWDv3r1kZGTQtWvXon2Cg4Pp3LkzGzdupH///iW+b35+Pvn5+UWvjTFFrXrGmKPGdHh9Wdv5o0DODZRfRbEH9mOffxT7/Qbf511wCU78iErvP1cZ+amoExGpIkOGDCE7O5vx48fjOA6u6zJs2DB69eoFQEZGBgDh4eHF9gsPDyctLa3U901MTGThwoVFr1u3bs3UqVOJjIwsd2zR0dHHkIl/CeTcQPmdiLwtP5A25Q7s3t2Y2nVoNP5+6p5b8sVTZanI/FTUiYhUkU8++YSPPvqIv/3tb8TGxvLTTz8xe/bsogcmDvv9lbu19qjvGx8fz+DBg4/YPzU1lYKCgqPua4whOjqalJSUMj/H3wRybqD8TpT76Xu4L02D/DyIjMEZdw/7m7di/+7dFf5ZJTmW/IKCgsp1kaaiTkSkirzyyisMGTKEc845B4AWLVqQmprK66+/Tp8+fYiIiAAoejL2sMzMzCNa734rODiY4OCSpyoq75ehtTYgCwMI7NxA+R3z+xUUYBfOwq5+07fgD6fhXHsb1Kvvyf/HisxPD0qIiFSR3NzcoqFLDnMcp+iEHhUVRUREBElJSUXrCwoKSE5OpkOHDlUaq0ggspkZuE/cV1TQmUFDcW66F1OvvseRVQy11ImIVJHTTjuNxYsX06RJE5o3b85PP/3E0qVLOf/88wHf7ZhBgwaRmJhITEwM0dHRJCYmUrt27aJ+dyJyfOy2H3GfnQL70qB2KM6oWzDdz/Y6rAqlok5EpIqMGjWKefPmMWPGDPbv30+jRo3o378/l156adE2Q4YMIS8vjxkzZpCVlUW7du2YOHGixqgTOQHux6uxr0yHgnxoehLOuHswMYE3oLdfFXWJiYmsW7eOnTt3EhISQlxcHMOHD6dZs2ZehyYiUqbQ0FBGjhzJyJEjS93GGMPQoUMZOnRo1QUmEqBsQT523kzs+8t9C7qeiTNqPKZuPW8DqyR+VdQlJyczcOBA2rZtS2FhIf/5z3+YPHkyjz/+OHXq1PE6PBEREakm7P59uP+eCpuTATB/uRJz4VCME7iPE/hVUTdx4sRirxMSErj22mvZunUrnTt39igqERERqU7slh9w//0PyEiH0Lo4o2/FdD3T67AqnV8Vdb+XnZ0NQP36pT+1opHWS6f8/Fcg5waBn5+IVB73w7exc5+HwgKIifXN3xp9ktdhVQm/LeqstcyZM4eOHTvSokWLUrfTSOtlU37+K5Bzg8DPT0Qqjs3Px772HPajlb4F3c/G+evNmDp1vQ2sCvltUTdz5kx27NjBgw8+eNTtNNJ66ZSf/wrk3KByRloXkcBl9/3qG65k2yYwBnPRcMyfLq1xrf1+WdS9+OKLfPnll0yaNInGjRsfdVuNtF425ee/Ajk3CPz8ROTE2U3f4T43FTIzoG49nOtux/zhNK/D8oRfFXXWWl588UXWrVvHAw88QFRUlNchiYiIiAestdj3l2PnzYDCQjippa//XFSM16F5xq+KupkzZ7JmzRomTJhAaGgoGRkZANStW5eQkBBvgxMREZEqYfPzsK88i/1kNQDmjHMx19yEqV2zhzfzq6Ju5Upf58cHHnig2PKEhAT69OlT9QGJiIhIlbLpqbjTp8D2zWAczKXXYPpfVOP6z5XEr4q6+fPnex2CiIiIeMRu/Ab3uUfgwH6o3wDnujswnU/1Oqxqw6+KOhEREal5rLXY1W9gF8wC14UWbXBuuBvTpKnXoVUrKupERESk2rK5OdiXpmHXfgCAOasPZsQ4TEhtjyOrflTUiYiISLVUsGcXhf+4E37eCo6DGToa03ew+s+VQkWdiIiIVDtu8tfseeExX/+5BuE4Y+/EdPiD12FVayrqREREpNqw1mJXLMYufhmsC63a+frPNdLMMWVRUSciIiLVgs3Nwc7+F/aLNQDU6/9nci4eCUElzwwlxamoExEREc/Zvbt848/t3A61auEMG0PDK0YF7BzXlUFFnYiIiHjKfvMl7ozHIDsLwhvijL0TJ+5kPRBxjFTUiYiIiCestdjlC7BLXgVroU0HnBvuwkQ09jo0v6SiTkRERKqczcnGffFJWP8ZAOa8gZhhYzDB6j93vFTUiYiISJWyKb/4+s/t/hmCgjBXXo9z7gCvw/J7KupERESkytgN63BnPg6HsiGise92a5sOXocVEFTUiYiISKWzrotdOg/75mu+Be0641x/Jya8obeBBRAVdSIiIlKpbHaWr3Uu6XMAzPkXYoaOwmj8uQqloq4UNjcH+8UaDoaH4+7PxBrAccCphQkKglrBEBwMISEQUgfq1IE6dSG0njp5ioiI/JfdtcPXf27PTggKxoxIwOnZz+uwApKKutJkZ+HO/hf7SlhV5hCIwSFQrwHUbwANwjENIiAsAiIaQUQjTMMm0CTK92+nVoWHLiIiUh3Yrz7BffEpyD0EjZrgJNyDadnO67ACloq60gQHY7qcTu3adcjNycFaF1wXCgt9P/l5UJAPebm+n5wc3y8t+NZl/Or74cgisOh1rSBoHAlRMZioZtC0GSYmFpq1gLAIDbooIiJ+ybqF2CVzscsX+BZ0OAVn7ARMg3BvAwtwKupKYeqH4fztfiJjYti9e3e5piixbiHkHIKsg5B9EA4ewB7IgMwM2J8BGb9iM36F9DTYlwaFBbB3N+zdjeUr33scfrN6DSC2NSa2NcS2wbRqB01PwjhOJWUsIiJy4mzWQd/sEN/6vtfMH4dgLh2JqaU7U5VNRV0FMk4tqFvf93N4WSnbWrcQMtIhNQW7dzfs2YVN+cU3Zk/qHsg6AD8kYX9I8m0PEFoXWrXHtO6AiTsZ2nbA1Klb6XmJSMVJT0/nlVde4euvvyYvL4+YmBhuuOEG2rRpA/hG2F+wYAGrV6/m4MGDtG/fntGjRxMbG+tx5CJls79s8/WfS02BkBDMiBtxzurjdVg1hoo6jxinFjSKhEaRmA6nFFtn83Jh9y/Yn7fCz9uwO7bAji2+MX2+34D9fgN2Ob4HN2LbYDqegul8KrTrjAmp7Uk+IlK2gwcP8ve//52TTz6Ze+65h7CwMPbs2UPduv+7OFuyZAnLli0jISGBmJgYFi9ezOTJk3nyyScJDQ31MHqRo3M//wg7+1++LkmNo3z951q08TqsGkVFXTVkQmpDy7aYlm2LltmCAti1A7ttE2z5HrvpO/h1L2zfjN2+Gbsi0feARvuTMad0x3TtgYmM9jALEfm9JUuW0LhxYxISEoqWRUVFFf3bWsvy5cuJj4+nR48eAIwbN47rrruONWvW0L9//yqPWaQstrAQu/gl7MpE34JOXXHG3IGpH+ZtYDWQijo/YYKCoEUb31VP7wsAsL+mYn/8Fr5Pwiav993OTV6PTV6PnTcTmrXAdD0T0/1saNlOD16InKBdu3aRnp5OXl4eYWFhNGvWrFgrW1m++OILunbtyuOPP05ycjKNGjViwIAB/PGPfwRg7969ZGRk0LVr16J9goOD6dy5Mxs3biy1qMvPzyc/P7/otTGmqFWvrL/7w+sD8fwQyLlB9cjPHtiPff4x7Pdf+2K54BKci0dUyMgO1SG/ylQZ+amo82OmcSSm8flw1vm+Bzl2/4z9bj12wzr48Ttfy96uHdi3FkJkNOb0XpjTe/kewAjQPxKRirZp0yZWrVrF119/TWZmZrF1juPQqlUrzj33XPr06VNmgbd3715WrVrFhRdeSHx8PJs3b2bWrFkEBwfTu3dvMjIyAAgPL/6EYHh4OGlpaaW+b2JiIgsXLix63bp1a6ZOnUpkZGS584yODtyW/UDODbzLL2/LD6RNuQO7dzemdh0ajb+fuudWfGuyjl/5qagLEMYYX8tcsxbQfwg26yD22y9h/WfYb77wPZDx1kJfgRcTizmnH87ZfSEmxuvQRaqln376idmzZ/P9999z0kkn0aNHD9q0aUNYWBghISEcPHiQPXv28OOPP/Laa68xb9484uPjGTx4MEFBJZ9aXdelbdu2XHnllYCv+Pr5559ZuXIlvXv3Ltru9xddZT19f/hzf79/amoqBQUFR93XGEN0dDQpKSnlesrfnwRybuBtfu6n7+G+NM03hFdkDM64e9jfvBX7d++usM/Q8fufoKCgcl2kqagLUKZefUyP3tCjt292jKTPsV+sgW++9LXoLZxN4eKXSD2tJ+7p50LXM/W4uchv3HPPPfTq1Yurr7666MnU0uTk5PDJJ5+wZMkSCgsLueSSS0rcrmHDhjRv3rzYsubNm7N27VoAIiIiAMjIyKBhw//Nh5mZmXlE691vBQcHE1zKTDbl/TK01gbkFycEdm5QtfnZggLsotnYd97wLfjDaTjX3gb16ldaDDp+5aeirgYwtetgzjgXzjgXm52F/WIN9pPVsOUHcj5fA5+vgYZNMOcNxJw3ABOmyZVF/vnPfxJTzpbsOnXq0LdvX/r06XPU26QdOnRg165dxZbt2rWr6Ao8KiqKiIgIkpKSaN26NQAFBQUkJydz1VVXHWcmIhXDZmbgPv8obPwGAHPhUMxfrtDMSNWIiroaxtSthzlvIJw3EFJ+oe6GtRxY8TrsS8MueRW7dB7mtJ6Y/kMwrdp7Ha6IZ8pb0P2W4zjFnmb9vQsvvJC///3vLF68mJ49e7J582ZWr17NmDFjAN/tmEGDBpGYmEhMTAzR0dEkJiZSu3ZtevXqddy5iJwo+9OPuM9O8Q2eXzsUZ9QtvofwpFpRUVeDmZhYIrqfSXa/IbhffIR9/y3Y8gN23YfYdR9Cxy44F1wCnU/VgxVSo914443cfvvttGrV6oh1O3bs4JFHHmHatGllvk+7du24/fbbmTt3LosWLSIqKoprrrmGc889t2ibIUOGkJeXx4wZM8jKyqJdu3ZMnDhRY9SJZ9yPV2Nfme6bGrPpSTjj7vFNaSnVjoo6wQQH45z136dot2/BvvMG9vMP4Yck3B+SoEUbnD9dCt17apoyqZGO9sBBfn4+qamp5X6v0047jdNOO63U9cYYhg4dytChQ485TpGKZAvysfNmYt9f7lvQ9UycUeMxdet5G5iUSkWdFGNatsWMHo+9aDh21evYj1bCjq24zz0CzVvhDLkSuvZQy53If+3Zs0etaBJw7P59uP/+B2z+Hozx9Z0bNFQX9tWcijopkWkciRl2HXbw5dh3l/qedPrlJ9xnHoaW7XAuugpO7q7iTgLW+++/zwcffFD0esaMGUcUb3l5eWzfvp3OnTtXdXgilcZu+cFX0GWkQ2g9nGtvxXQ5w+uwpBxU1MlRmfphmL9cie33Z+zK17Gr34Ttm3GfmuTrc3f5aEzz1l6HKVLh8vLyig02nJWVVWzWBvANJdKzZ0/dKpWA4X74Nnbu81BYADGxOOMmYpo28zosKScVdVIupl4DTPwI7B//gn17EfbdZb4+dw+Ox/T6I+aiqzQUigSUAQMGMGDAAMA3/+ptt91W4oMSIoHA5udjX3vO1+UGoHtPnL/+DVOn/NPgifdU1MkxMQ3CMZeNwp5/IXbRHN+Ydx+txH7+ka+/Rf+/YIJKHgRVxF8988wzXocgUmnsvl99w5Vs2+TrPxc/AnPBJepe44f8sqhbsWIFb7zxBhkZGTRv3pyRI0fSqVMnr8OqUUyTppixE7B9B+POmwHbN2MXz8GufR9neAKmnY6H+Le0tDSaNGlyzPulp6fTqFGjSohIpOLZTd/hPjcVMjOgbn2c627H/KG712HJcfK7x1g++eQTZs+ezcUXX8zUqVPp1KkTDz/88FFHcZfKY9p3xrnnMcxfb4b6YbBzO+4jd+G+Mh2bfdDr8ESO280338ysWbNISUkpc9uCggI+/fRT7rjjDt59990qiE7kxFhrcd9bhvv4vb6C7qSWOBP/qYLOz/ldS93SpUvp27cv/fr1A2DkyJFs2LCBlStXFk2SXRGshUOHDFlZkJ1tCMRp54ypqPxqwal/xLY7E/v6y9hP34fV78MXG3CGjsKcelbFBHyMKi6/6ieQc4P/5edlbvfeey9z5szh7bffpl27dpx88sm0bt2a8PBwgoODOXjwIHv27GHTpk1s2LCBnJwcBg0axODBg70LWqQcbF4u9pVnsZ/6LkDMGedirrkJU7uOx5HJifKroq6goICtW7dy0UUXFVvepUsXNm7cWOI++fn5xZ5YM8YUDUtwtP4Chw4Z2rWL/u+r6FK3CwwVlV8MMLn4ogUV9NYnJJCPXyDnBlu2OISGup58dqdOnfjHP/7B+vXrWbVqFW+99RZ5eXlHbBcVFcXAgQPp378/DRvqYSGp3uyvqb7+c9s3g3Ewl16D6X+R+s8FCL8q6jIzM3Fdl/Dw8GLLw8PDycjIKHGfxMREFi5cWPS6devWTJ06tWgC7dJkZZ1wuCJygpo2bUo9jwev79atG926daOgoICffvqJffv2kZeXR4MGDWjevLn6z4nfsD8k+QaSP5gJ9RvgjJmA6dTV67CkAvlVUXdYSVcUpV1lxMfHF7sdcni7o037A77bPlu2ODRt2pQ9e/ZgA/AelzGm0vOzm7+n8KVpkLbH91RV38E4f7kCExxSKZ/3W1WRn1cCOTf4X36ZmSlkZh49v6CgoDIv0ipCUFAQ7dq1q/TPEalo1lrf9I8LZ4Hr+qZ+vOFuTJOmXocmFcyvirqwsDAcxzmiVW7//v1HtN4dFhwcTHBwyUNslPVlGBrqUq+e77+B+sVZ6fmd0gH7f1Ox81/0jX/0wQLY9hXO9XdiIiv31mGV5OeRQM4N/pdfZqYNyPxEqorNzcW+NA27zjc7ijmrD2bEOExIbY8jk8rgV0VdUFAQbdq0ISkpiTPPPLNoeVJSEmecoSlMqitTpy7m6huxXc/Enf0U7NiCO3k8zqhbMV113MQ/7N69m1WrVrFz584j+tYZY7jvvvs8ikykZDY1BXf6FPhlGzgOZuhoTN/B6j8XwPxuSJPBgwezevVq3n33XX755Rdmz55NWloa/fv39zo0KYPpeibO35+E1nGQnYU77f9wF7+ELSz0OjSRo9qxYwcTJkzgyy+/5OuvvyYrK4uUlBSSk5MD9ha4+DebvB73odt8BV2DcJxbJ+P0+7MKugDnVy11AD179uTAgQMsWrSIffv2ERsby913310lfWrkxJlGkTgTpmAXzMK+uxT71kLs1o04YydgGpR8C13Ea6+99hpdu3Zl/PjxXHnllVx//fW0adOGr776imeffZZhw4Z5HaII8N/+cysTsYteAutCq/Y4N9yFaaTvyJrA74o6gIEDBzJw4ECvw5DjZIKCMVeMwW3bEfvSNNj4De6UO3Buug8T09zr8ESOsG3bNq699tqiVo7DLXPdu3fnz3/+M3PnzmXSpElehiiCzTmEnfM09os1AJhz/oi56voqeTBNqge/u/0qgcM58zycex6DJk0hNQX3H3dgv9/gdVgiR8jKyqJ+/fo4jkOtWrXI+s2YR23atGHbtm0eRicCdu8u3H9M8BV0tYJ8xdw1N6mgq2GOq6jbunVrRcchNZRp1sJX2LXt6Otn99QDuB+t9DoskWIaNWpEZmYmANHR0SQnJxet27FjB3XqaCR+8Y77zRe+/nM7t0N4Q5zbJ+P0GaT+czXQcd1+vfvuu2nXrh0XXHABZ599NkFBfnkXV6oJ0yAc57bJ2Nn/wq77EPvSNNy9uzHxIzCOGpPFex06dGDTpk2ceeaZ9OrViwULFpCRkUFQUBDvv/8+5557rtchSg1kXZfM/8zEfeXfvsFV23b0DRcV0djr0MQjx1WNJSQksGLFCqZNm8ZLL71Ev3796N+/P40b6xdJjo8JDoFrb4OoZtil/8G+vcg36vmIBIxTy+vwpIa7+OKL2bdvHwAXXXQRGRkZrFmzBmMMZ599NiNGjPA4Qqlp7KFs7Kyn2L/+UwDMeRdghl2HKWVcVqkZjquo6927N71792bz5s28/fbbvPnmmyxZsoTTTjuNP/3pT5x88skVHafUAMYYzJArcZtEYedMw65ZBbk5MGo8Rq3B4qHo6Giio32DZTuOw6hRoxg1apTHUUlNZVN+wX3mYUj5BYKCca4cizl3gNdhSTVwQve22rVrx4033sizzz7LZZddxtatW3nwwQe57bbbWLVqVYmTX4uUxTnnjzhj74BaQdjPP8J9dgo2X79L4p3p06ezd+/eEtelpqYyffr0Ko5Iair79Vrch2/3FXQNGxM19QWc8zQahPhUSIeloKAgateuXdS3Ljc3lxkzZnDzzTezadOmivgIqWHMaefgjLsHgkMg6XPcfz2IzTnkdVhSQ33wwQdFD0r83oEDB/jggw+qOCKpaazr4r4xF/eZh+BQNrTvTK17n6B2xz94HZpUIyd0T2v79u2sWLGCNWvWUFBQwFlnncXf/vY32rVrx/bt23n++ed54YUXePTRRysqXqlBzCmn49x8P+7Tk+GHJNynHsC5ZRKmtp40lOrj4MGDpc4vLVIRbHYW7otPwIZ1AL6pvi4bpf5zcoTjKuo++eQTVqxYwQ8//EBYWBiDBw9mwIABREREFG3TsmVLrrjiCh566KGKilVqINPhFJzb/g/3yfth8/e4zzyEc9PfNfaSVLrk5ORiQ5esXr2ar7/+utg2eXl5fP755zRvrkGzpXLYXTt8/ef27oLgEMzwBJyefb0OS6qp4yrqnnrqKVq1asUNN9xAr169Sh3SJDIyUo/6ywkzreNw/nY/7hP3wfcbcJ9/FGfsnXp4QirVd999x8KFC4tev/vuuyVu16RJE0aPHl1VYUkNYr/6BPfFpyD3EDSKxEm4G9OynddhSTV2XN+KkyZNomPHjmVu17RpUxISEo7nI0SKMW074oybiPuvB+HrtdjZT/meitU4dlJJhgwZwgUXXIC1luuuu46JEyfSunXrYtsEBwdr4GGpcNYtxL7+Kvat/15UdDhF82NLuRxXUVeegk6koplOXXGuvwv32Yexaz+AOqFw1Q0aNV0qRUhICCEhvtv806ZNo2HDhhU+0HpiYiKvvfYagwYNYuTIkYBvXtkFCxawevVqDh48SPv27Rk9ejSxsbEV+tlSPdmsA7gvPAbfrQfA9B+CuWQkppbG65SyqZlD/IrpegZm9K1gDPaDt7FvzPU6JKkBIiMjCQoKYufOnaxatYrFixeTkZEBQHp6+nEN37R582beeecdWrZsWWz5kiVLWLZsGaNGjWLKlClEREQwefJkDh3S09+Bzv6yzTfd13frISQEc+1tOENHq6CTclNRJ37HOeNczHDfbX27dB7uZ+97G5AEPNd1efbZZ7n11luZMWMG8+bNIz09HYDnn3+exMTEY3q/nJwcnn76acaOHUu9evWKlltrWb58OfHx8fTo0YMWLVowbtw4cnNzWbNmTYXmJNWLu+5D3CkTIDUFGkfh3PUoTo/eXoclfkZFnfgl57yBmD9dAoCd8y/s5uQy9hA5fosXL2bNmjWMGDGCf/7zn8XWdevW7YinYssyY8YMunXrRpcuXYot37t3LxkZGXTt2rVoWXBwMJ07d2bjxo2lvl9+fj7Z2dlFP79t1TPGlPlT3u388ae654br4i6chX3hMcjLxXQ+lVp/fwKnRZuAyC/Qj19V5VdeenxQ/Ja5aAQ2ZSes/wz3mYdx7nkMExntdVgSgN5//30uueQSBg8ejOu6xdZFRUWVOttEST7++GO2bdvGlClTjlh3+JZueHjxDvHh4eGkpaWV+p6JiYnFntRt3bo1U6dOJTIystxxHZ4GLRBV19wK92fw69R7yP3v+HMNLr2G8KsTjvl2a3XNr6Iov/JTUSd+yzgOzuhbcR+5G3ZswX36/3DuegRTt17ZO4scg/T0dOLi4kpcFxwcTE5OTrneJy0tjdmzZzNx4sSihzBK8vsrc2vtUd83Pj6ewYMHH7F/amoqBQUFR93XGEN0dDQpKSllfo6/qc652e2bKZw+BX7dC7Xr4Pz1Zg6d3otDx3CBUJ3zqwjK73+CgoLKdZGmok78mqldB+fGe3Efvg12/4z7/CM4f7sP46hjsVSc8PDwUlvjdu3aRaNGjcr1Plu3bmX//v3cddddRctc1+X777/n7bff5sknnwR8LXYNGzYs2iYzM/OI1rvfCg4OLnVWi/J+GVprA/KLE6pfbu6n72Fffgby8yAyGmfcRMxJLY87xuqWX0VTfuWnok78nmnYGOfGv+M+chd8tx67bAHmz8O8DksCSLdu3Vi8eDGnnnpq0cw5xhiys7N56623OO2008r1PqeccgqPPfZYsWXPPvsszZo1Y8iQITRt2pSIiAiSkpKKxsQrKCggOTmZq666qkJzkqpnCwqwC2dhV7/pW3DK6Tijb8XUq+9tYBIwVNRJQDAt22KuugE760nsm69h23XCdD7V67AkQAwdOpT169czfvx4Tj75ZABee+01fv75Z2rVqsWll15arvcJDQ2lRYsWxZbVrl2bBg0aFC0fNGgQiYmJxMTEEB0dTWJiIrVr16ZXr14Vm5RUKZuZgfvcVNj0HQBm8OWYP1+hAdSlQqmok4Dh9OyLu+lb7Mfv4M58HHPfUxAT43VYEgAiIiKYMmUK8+fPZ/369TiOw/bt2+nevTuXX3459etXXEvLkCFDyMvLY8aMGWRlZdGuXTsmTpxIaGhohX2GVC277UfcZ6fAvjSoE4ozajym21lehyUBSEWdBBRzxVjstk2wawfujMexU5/zOiQJEBEREYwZM6bC3/eBBx4o9toYw9ChQxk6dGiFf5ZUPXfNKuyr/4aCfIg+CSfhHkyMZgeRyqF2XwkopnZtnOvvhJDa2O+/JnP+LK9DEpEayBbk4776LHbO076CruuZOPf8UwWdVCq11EnAMTGxRf3rMuc+T61mLaH9yV6HJX7uhx9+YM2aNaSmph4xLZgxhvvuu8+jyKS6sRnpvv5zm78HYzB/uQIzaKj6z0ml02+YBCSnZ19Mz37guhTOegqbW75xxERK8t5773H//ffz6aefkpWVdcT6QB5uQY6N3fID7uRbfQVdaD2cG+/FGTxMBZ1UCbXUScByrhgDm76lMDUF+/ormMuv9Tok8VNvvPEGZ599NuPGjSt1PDgR98O3sXOfh8ICiIn1jT/XtJnXYUkNoksHCVgmtC4Nb5oIgF39Jnbz9x5HJP4qNTWVvn37qqCTEtn8fNyXpmFfnu4r6E7r6Zu2UAWdVDEVdRLQQk/v6bsNay3unH9h83K9Dkn80EknncT+/fu9DkOqIZuehvvo3diPVvr6z118Dc7YOzF1NASNVD0VdRLwnMuvhfBGkLIT++Z/vA5H/NAVV1zB66+/Tnp6utehSDViN32HO3k8bNsEdevj/O1+nD9dcsTcvSJVRX3qJOCZevVxht+A+8xD2BWJ2O49Ma3bex2WVHNTp04t9jo7O5ubb76ZVq1aHTHYsDGGCRMmVGV44iFrLfa9Zdj5M6GwEJq38o0/FxntdWhSw6mokxrBnNoDc+Z52HUf4r76rK+/i55Gk6PYsWNHsdeO4xAWFkZ6evoRLXZqmak5bF4u9pXp2E/fA8CceR7m6hsxtet4HJmIijqpQczl12K/+QK2b8Z++h7mnH5ehyTV2DPPPFP07+TkZFq3bl3iVF05OTls3bq1KkMTj9hf9+JOnwI7toBxMJeOxPQfoqJeqg01VUiNYcIiMBdeDoBNfAmbk+1xROIvJk2axM6dO0tct2vXLiZNmlTFEUlVsz8k+caf27EF6ofhjJ+EM+AiFXRSraiokxrF9BsMUTGwfx/2rUVehyMBoKCgAEe38gOWtRZ35eu4T9wHBzOhRVucex/HdOrqdWgiR/Cb26979+5l0aJFfPvtt2RkZNCoUSPOPfdcLr74YoKC/CYN8ZgJCsa57K+4zzyMXfk6tld/dW6WEmVnZ5Od/b/W3IyMDNLS0optk5eXxwcffEBEREQVRydVwebmYl96GrvuQwDM2edjhidgQmp7HJlIyfymGtq1axfWWsaMGUN0dDQ///wzzz33HDk5OVx99dVehyf+pGsP6NQVvt+AXTQHc/2dXkck1dCyZctYuHBh0etHH3201G3j4+OrIiSpQjY1xdd/7pdtUKsW5rLRmL4X6narVGt+U9SdeuqpnHrqqUWvmzZtyq5du1i5cqWKOjkmxhicoaNwHxyP/fJj7KZvMXF/8DosqWa6du1KnTp1sNby6quvcsEFF9CkSZNi2wQHB9OiRQs6d+7sUZRSGex363FfeAyyDkCDcJzr79Q5QvyC3xR1JcnOzj5ivKjfy8/PJz8/v+i1MaboCbayrrgOrw/UK7OanJ+JbYM9bwD2g7dxF79M0N2PVHV4J6QmH7uqEhcXR1xcHAC5ubn069ePRo0aeRaPVD5rLfbtRdjEV8C60DoO5/q7MI2alL2zSDXgt0VdSkoKb731VpmtdImJicVuobRu3ZqpU6cSGRlZ7s+Kjg7sPlc1Nb/CsbeRERRE+PCxBEXFVHFUFaOmHruqdtlll3kdglQym3MId/ZT8OUnAJhe/TFXjsUEh3gcmUj5eV7UzZ8/v1jRVZIpU6bQtm3botfp6ek8/PDDnH322fTrd/SxxuLj4xk8eHDR68NX/qmpqRQUFBx1X2MM0dHRpKSkYK0tKxW/o/yAK8aSWgjs3l2lsZ0oHbv/CQoKOqaLNJHfs3t34T7zMOzaAbWCMFeMwZw3MGBbwiVweV7UXXDBBZxzzjlH3ea3J+z09HQmTZpEXFwcY8aMKfP9g4ODCQ4OLnFdeb8MrbUB+cV5mPLzX4GcGwR+fuI9m/Q57ozH4VAWhDfCueEuTNuOXoclclw8L+rCwsIICwsr17aHC7rWrVuTkJCgsaFEROS4WNfFLl+AfWMuWAttO/r6z0Wo36T4L8+LuvJKT0/ngQceoEmTJlx99dVkZmYWrdMYUSIiUl72UDbui0/A12sBMH3+hLn8WkxQyXd1RPyF3xR1SUlJpKSkkJKSwvXXX19s3fz58z2KSkRE/Ind/Qvu9Ich5RcICsJceT3OuQO8DkukQvhNUdenTx/69OnjdRgiIuKn7Nef4c58AnIOQURjnIS7Ma3jvA5LpML4TVEnIiJyPKzr4r4xF7t0nm9B+86+AYXDGnobmEgFU1EnIiIByz14AHfa/2GTvgDA9B2MuWwURnOGSwDSb7WIiAQku3M7e56bit31MwSHYIYn4PTs63VYIpVGRZ2IiAQc++XHuLOegtwcaBTp6z/Xsp3XYYlUKhV1IiISMKxbiH39FexbiwCo3eV0Cv56C9Qv33ioIv5MRZ2ISBVJTExk3bp17Ny5k5CQEOLi4hg+fDjNmjUr2sZay4IFC1i9ejUHDx6kffv2jB49mtjYWA8j9w826wDu849B8noAzICLiLzxLlL2pmpmEqkRNCWDiEgVSU5OZuDAgTz00EPce++9uK7L5MmTycnJKdpmyZIlLFu2jFGjRjFlyhQiIiKYPHkyhw4d8jDy6s/+vA138q2+gi4kBHPtbdQaOhpTS20XUnOoqBMRqSITJ06kT58+xMbG0qpVKxISEkhLS2Pr1q2Ar5Vu+fLlxMfH06NHD1q0aMG4cePIzc1lzZo1HkdffbnrPsT9xwRI2wNNmuLc9ShOj95ehyVS5XQJIyLikezsbADq168PwN69e8nIyKBr165F2wQHB9O5c2c2btxI//79S3yf/Px88vPzi14bYwgNDS3699EcXl/WdtWRLSzEXTQbu/J1AMzJ3XCuuwNTv4HvtR/nVh7Kz79VRn4q6kREPGCtZc6cOXTs2JEWLVoAkJGRAUB4eHixbcPDw0lLSyv1vRITE1m4cGHR69atWzN16lQiIyPLHU90dPQxRO+9wv0Z/Dr1bnI3fA5Ag8tGEj7iBkytWkds62+5HSvl598qMj8VdSIiHpg5cyY7duzgwQcfPGLd76/cy+rkHx8fz+DBg4/YPzU1lYKCgqPua4whOjqalJQUv3mYwG7fTOEzD0N6KtSug/PXmzl0ei8O7d1bbDt/zO1YKD//diz5BQUFlesiTUWdiEgVe/HFF/nyyy+ZNGkSjRs3LloeEREB+FrsGjb83xRWmZmZR7Te/VZwcDDBwcElrivvl6G11i++ON1P38O+/Azk50FUDE7CPZiTWh41dn/J7XgpP/9WkfnpQQkRkSpirWXmzJmsXbuW++67j6ioqGLro6KiiIiIICkpqWhZQUEBycnJdOjQoarDrVZsQQHuf17AvviEr6A75XScif/EnNTS69BEqg211ImIVJGZM2eyZs0aJkyYQGhoaFEfurp16xISEoIxhkGDBpGYmEhMTAzR0dEkJiZSu3ZtevXq5W3wHrKZ+3CfewQ2fQeAGXw55s9XYBy1S4j8loo6EZEqsnLlSgAeeOCBYssTEhLo06cPAEOGDCEvL48ZM2aQlZVFu3btmDhxYtHTrDWN3bYJd/oUyPgV6oTijBqP6XaW12GJVEsq6kREqsj8+fPL3MYYw9ChQxk6dGgVRFS9uR+txM79NxQUQPRJOAkTMTHNvQ5LpNpSUSciItWKLcjH/ucF7Adv+xac2sPXQhda19vARKo5FXUiIlJt2Ix03H//A7b8AMb4+s5dOFT950TKQUWdiIhUC3bz97j/ngr70yG0Hs61t2K6nOF1WCJ+Q0WdiIh4ylqL/eBt7H9egMICiInFGTcR07SZ16GJ+BUVdSIi4hmbn4ed+xx2zSrfgtN64oy8GVOnZj7tK3IiVNSJiIgnbHqar//ctk1gHEz8CMwFFwfsBO4ilU1FnYiIVDm76Vtf/7kD+6FufZwxd2BO7uZ1WCJ+TUWdiIhUGWst9t1l2AUzobAQmrfyzd8aGe11aCJ+T0WdiIhUCZuXi31lOvbT9wAwZ56HufpGTO06HkcmEhhU1ImISKWzv+71Tfe1Y4uv/9ylIzH9h6j/nEgFUlEnIiKVyn6/Aff5R+DgAagf5us/16mr12GJBBwVdSIiUimstdhVS7ALZ4N1oUVbnIS7MY2jvA5NJCCpqBMRkQpnc3Owc57Gfv4RAObs8zHDEzAhtT2OTCRwqagTEZEKZVNTcKc/DL/8BLVqYS4bjel7ofrPiVQyFXUiIlJh7HfrcZ9/FLIPQoNwnOvvxMT9weuwRGoEFXUiInLCrLXYtxdjE1/29Z9rHYdz/V2YRk28Dk2kxlBRJyIiJ8TmHMKd/RR8+QkApld/zJVjMcEhHkcmUrM4XgdwPPLz87njjjsYOnQoP/30k9fhiIjUWHbPLtwpd/gKulpBvochrr5RBZ2IB/yype6VV16hUaNGbN++3etQRERqLJv0Oe6Mx+FQFoQ3wrnhLkzbjl6HJVJj+V1L3fr160lKSmLEiBFehyIiUiNZ18VdOg932mRfQde2I869j6ugE/GYX7XUZWRk8Nxzz3HHHXcQElK+pv38/Hzy8/OLXhtjCA0NLfr30RxeH6iP4Ss//xXIuUHg5+fP7KFs3BefhK8/A8D0+RPm8msxQcGexiUiflTUWWuZPn06/fv3p23btuzdu7dc+yUmJrJw4cKi161bt2bq1KlERkaW+7Ojo6OPOV5/ovz8VyDnBoGfn7+xu3/xjT+X8gsEBWGuugGnV3+vwxKR//K8qJs/f36xoqskU6ZMYePGjRw6dIj4+Phjev/4+HgGDx5c9PrwlX9qaioFBQVH3dcYQ3R0NCkpKVhrj+lz/YHy81+BnBscW35BQUHHdJEmx8d+vRb3xSfgUDZENPZN99U6zuuwROQ3PC/qLrjgAs4555yjbhMZGcmiRYvYtGkTV155ZbF1d911F7169eLGG28scd/g4GCCg0u+LVDeL0NrbUB+cR6m/PxXIOcGgZ+fP7Cui33zNezSeb4FcSfjjJ2ACWvobWAicgTPi7qwsDDCwsLK3G7UqFEMGzas6PW+fft46KGHuOWWW2jfvn1lhigiUiPZ7IO+p1u/+QIA0+/PmEv/igny/KtDRErgN3+ZTZoUH5W8Tp06gK/PTePGjb0ISUQkYNmdO3CnPwR7d0NwCGbEOJyzz/c6LBE5Cr8p6kREpGrYLz/GnfUU5OZAo0ichHswLdt6HZaIlMFvi7qoqCjmz5/vdRgiIgHDuoXY11/BvrXIt6BjF5wxd2AahHsbmIiUi98WdSIigWzFihW88cYbZGRk0Lx5c0aOHEmnTp0q7fPswQO4zz8KyesBMAMuwlx8DaZWrUr7TBGpWH43o4SISKD75JNPmD17NhdffDFTp06lU6dOPPzww6SlpVXK5+Vt3UTh5PG+gi4kBHPd7TiXjVJBJ+JnVNSJiFQzS5cupW/fvvTr16+ola5JkyasXLmywj/LXfsBe2//K6TtgchonLsfxTnzvAr/HBGpfLr9KiJSjRQUFLB161YuuuiiYsu7dOnCxo0bS9zneKdDdFcsxl0wy7fdH7rjXHs7pn6DE8yg+gj06eaUn3+rjPxU1ImIVCOZmZm4rkt4ePGHE8LDw8nIyChxn+OdDjGvz0D2Lp1H/T9fTvjw6wP2dmugTzen/PxbReanok5EpBoq6eq9tCv6454OsXY9ak3+NxEdOwfklHOaTs+/Kb//Ke90iCrqRESqkbCwMBzHOaJVbv/+/Ue03h12ItMhmvCGRdsF4hcnBHZuoPz8XUXmpwclRESqkaCgINq0aUNSUlKx5UlJSXTo0MGjqETEH6ilTkSkmhk8eDBPP/00bdq0IS4ujnfeeYe0tDT69+/vdWgiUo2pqBMRqWZ69uzJgQMHWLRoEfv27SM2Npa77767XH1qRKTmUlEnIlINDRw4kIEDB3odhoj4EfWpExEREQkANbalLiio/Kkfy7b+SPn5r0DODcqXX6D/PzgROs/5BHJuoPz8XUWe54wN5OeERURERGoI3X49ikOHDnHnnXdy6NAhr0OpFMrPfwVybhD4+VUngfz/OpBzA+Xn7yojPxV1R2GtZdu2bQE76KHy81+BnBsEfn7VSSD/vw7k3ED5+bvKyE9FnYiIiEgAUFEnIiIiEgBU1B1FcHAwl156aalzKvo75ee/Ajk3CPz8qpNA/n8dyLmB8vN3lZGfnn4VERERCQBqqRMREREJACrqRERERAKAijoRERGRAKCiTkRERCQABPaEauWwYsUK3njjDTIyMmjevDkjR46kU6dOpW6fnJzMnDlz+OWXX2jYsCF/+ctfGDBgQBVGXD6JiYmsW7eOnTt3EhISQlxcHMOHD6dZs2al7vPdd98xadKkI5Y/8cQTnHTSSZUZ7jGbP38+CxcuLLYsPDycF154odR9/OXYjRs3jtTU1COWDxgwgGuvvfaI5dX9uCUnJ/PGG2+wbds29u3bx+23386ZZ55ZtN5ay4IFC1i9ejUHDx6kffv2jB49mtjY2KO+72effca8efPYs2cPTZs25Yorrij2vlK2Yz3/VVeV9TtWHZTnXO7P+a1cuZKVK1cWnfOaN2/OpZdeSrdu3QD/zq0kiYmJvPbaawwaNIiRI0cCFZyjrcE+/vhjO2zYMPvOO+/Yn3/+2c6aNcsOHz7cpqamlrj9nj177PDhw+2sWbPszz//bN955x07bNgw++mnn1Zx5GWbPHmyfe+99+yOHTvstm3b7JQpU+wNN9xgDx06VOo+3377rb3sssvszp077b59+4p+CgsLqzDy8pk3b5699dZbi8W5f//+Urf3p2O3f//+Ynlt2LDBXnbZZfbbb78tcfvqfty++uor+9prr9nPPvvMXnbZZXbt2rXF1icmJtqrr77afvbZZ3b79u32iSeesGPGjLHZ2dmlvufGjRvt5ZdfbhcvXmx/+eUXu3jxYjts2DC7adOmyk4nYBzr+a86q4zfseqiPOdyf87v888/t19++aXduXOn3blzp507d64dNmyY3bFjh7XWv3P7vR9//NEmJCTY22+/3c6aNatoeUXmWKNvvy5dupS+ffvSr1+/oqvUJk2asHLlyhK3X7lyJU2aNGHkyJE0b96cfv36cf755/Pmm29WceRlmzhxIn369CE2NpZWrVqRkJBAWloaW7duLXPf8PBwIiIiin4cp3r+mjiOUyzOsLCwUrf1p2MXFhZWLK+vvvqKpk2b0rlz56PuV12PW7du3Rg2bBg9evQ4Yp21luXLlxMfH0+PHj1o0aIF48aNIzc3lzVr1pT6nsuWLaNLly7Ex8dz0kknER8fzx/+8AeWLVtWmakElGM9/1VnlfE7Vl2UdS739/xOP/10unfvTrNmzWjWrBlXXHEFderU4ccff/T73H4rJyeHp59+mrFjx1KvXr2i5RWdY/U463ugoKCArVu30rVr12LLu3TpwsaNG0vc58cff6RLly7Flp166qls3bqVgoKCSou1ImRnZwNQv379MredMGECY8aM4cEHH+Tbb7+t7NCOW0pKCmPHjmXcuHE8+eST7Nmzp9Rt/fXYFRQU8NFHH3H++edjjDnqtv5y3H5r7969ZGRkFPs7DA4OpnPnzqX+HQJs2rTpiOPZtWtXNm3aVGmxBpLjOf/5q+P9Hauufn8uD6T8XNfl448/Jjc3l7i4uIDKbcaMGXTr1u2I81ZF51hj+9RlZmbiui7h4eHFloeHh5ORkVHiPhkZGSVuX1hYyIEDB2jYsGFlhXtCrLXMmTOHjh070qJFi1K3a9iwIWPGjKFNmzYUFBTw4Ycf8n//93/cf//9ZbYSVbX27dszbtw4mjVrRkZGBosXL+bee+/l8ccfp0GDBkds76/Hbt26dWRlZdGnT59St/Gn4/Z7h//WSjo2aWlpR90vIiKi2LKIiIhS/3aluOM5//mr4/0dq45KOpcHQn47duxg4sSJ5OfnU6dOHW6//XaaN29eVNT4c24AH3/8Mdu2bWPKlClHrKvo41dji7rDSmr9OFqLyO/X2f9OyFFWK4qXZs6cyY4dO3jwwQePut3h5u/D4uLiSEtL480336x2xcHhTrQALVq0IC4ujptuuokPPviAwYMHl7iPPx679957j1NPPZVGjRqVuo0/HbfSlHZsjoW1tlofy+roWM9//qwifse8drRzuT/n16xZMx599FGysrJYu3YtzzzzTLGHv/w5t7S0NGbPns3EiRMJCQkpdbuKyrHG3n4NCwvDcZwjrkr3799/RMV8WEktAZmZmdSqVatctzW98OKLL/Lll19y//3307hx42PePy4ujpSUlEqIrGLVqVOHFi1asHv37hLX++OxS01NJSkpiX79+h3zvv5y3A63tpV0bEr7Ozy837H87Upxx3P+81fH+ztW3ZR2Lg+E/IKCgoiOjqZt27ZceeWVtGrViuXLlwdEblu3bmX//v3cddddDBs2jGHDhpGcnMxbb73FsGHDivKoqBxrbFEXFBREmzZtSEpKKrY8KSmJDh06lLhP+/btj9h+w4YNtGnThqCg6tXoaa1l5syZrF27lvvuu4+oqKjjep9t27YdcZurOsrPz2fnzp2l3kb1p2N32HvvvUd4eDjdu3c/5n395bhFRUURERFR7NgUFBSQnJxc6t8h+IrWb775ptiypKQk4uLiKi3WQHI85z9/dby/Y9VFWedyf8+vJNZa8vPzAyK3U045hccee4xHHnmk6Kdt27b06tWLRx55hKZNm1ZojtXz26yKDB48mKeffpo2bdoQFxfHO++8Q1paGv379wdg7ty5pKenc+ONNwK+ccJWrFjBnDlz6NevH5s2beLdd9/l5ptv9jKNEs2cOZM1a9YwYcIEQkNDi64C6tatW9QE/Pv8li1bRmRkJLGxsUUd9NeuXcttt93mVRqleumllzj99NNp0qQJ+/fvZ9GiRRw6dIjevXsD/n3swNdh+P3336d3797UqlWr2Dp/O245OTnFWg337t3LTz/9RP369WnSpAmDBg0iMTGRmJgYoqOjSUxMpHbt2vTq1aton2nTptGoUSOuvPJKAAYNGsT999/P66+/zhlnnMHnn3/ON998U2YXA/mfss5//qQifseqq7LO5cYYv85v7ty5dOvWjcaNG5OTk8PHH3/Md999x8SJE/0+N4DQ0NAj+rLXrl2bBg0aFC2vyBxrdFHXs2dPDhw4wKJFi9i3bx+xsbHcfffdREZGArBv375iHRWjoqK4++67mTNnDitWrKBhw4b89a9/5ayzzvIqhVIdHpbggQceKLY8ISGhqNP97/MrKCjg5ZdfJj09nZCQEGJjY7nrrruOq6WosqWnp/PUU0+RmZlJWFgY7du356GHHgqIYwfwzTffkJaWxvnnn3/EOn87blu2bCnWP+all14CoHfv3owbN44hQ4aQl5fHjBkzyMrKol27dkycOJHQ0NCifdLS0or1OenQoQO33HIL//nPf5g3bx7R0dHccssttG/fvuoS83Nlnf/8SUX8jlVX5TmX+3N++/fvZ9q0aezbt4+6devSsmVLJk6cWPSUqD/nVl4VmaOx/tTjUERERERKVGP71ImIiIgEEhV1IiIiIgFARZ2IiIhIAFBRJyIiIhIAVNSJiIiIBAAVdSIiIiIBQEWdiIiISABQUSciIiISAFTUiYiIiAQAFXUiIiIiAUBFnYiIiEgAUFEnASMvL48JEyZw0003kZ2dXbQ8IyOD6667jgceeADXdT2MUEREpPKoqJOAERISwvjx48nMzGT69OkAuK7Lv/71LwBuvvlmHEe/8iIiEpj0DScBJSYmhrFjx7Ju3TqWL1/OwoUL+e6777jpppto2LCh1+GJiIhUmiCvAxCpaD179iQ5OZmXX34Z13WJj4+nS5cuXoclIiJSqdRSJwHp/PPPp7CwkFq1ajFo0CCvwxEREal0Kuok4OTk5DBt2jRiYmIICQnh3//+t9chiYiIVDoVdRJwXnjhBdLS0rj99tu5/vrr+eKLL1i6dKnXYYmIiFQqFXUSUFavXs1HH33E6NGjiY2N5ayzzuKCCy7g1VdfZfPmzV6HJyIiUmlU1EnA2LFjB7NmzaJ379706dOnaPmIESNo2bIlTzzxBFlZWd4FKCIiUomMtdZ6HYSIiIiInBi11ImIiIgEABV1IiIiIgFARZ2IiIhIAFBRJyIiIhIAVNSJiIiIBAAVdSIiIiIBQEWdiIiISABQUSciIiISAFTUiYiIiAQAFXUiIiIiAUBFnYiIiEgA+H/F/jboIDGuSgAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" @@ -498,11 +503,10 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2024-10-22T09:43:55.586267Z", - "start_time": "2024-10-22T09:43:55.558478Z" + "start_time": "2024-10-23T07:18:06.387396Z" } }, "outputs": [], diff --git a/notebooks/2.0-MPC-base.ipynb b/notebooks/2.0-MPC-base.ipynb index 5d13437..7ed4b76 100644 --- a/notebooks/2.0-MPC-base.ipynb +++ b/notebooks/2.0-MPC-base.ipynb @@ -6,18 +6,22 @@ "source": [ "# 2 MPC\n", "This notebook contains the CVXPY implementation of a MPC\n", - "This is the simplest one" + "本篇笔记包含了一个基于CVXPY的MPC实现\n", + "This is the simplest one\n", + "这是最简单的一个" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### MPC Problem formulation\n", + "### MPC Problem formulation MPC问题的表述\n", "\n", - "**Model Predictive Control** refers to the control approach of **numerically** solving a optimization problem at each time step. \n", + "**Model Predictive Control** refers to the control approach of **numerically** solving a optimization problem at each time step.\n", + "**模型预测控制**是指在每个时间步上**数值**地解决一个优化问题的控制方法。 \n", "\n", - "The controller generates a control signal over a fixed lenght T (Horizon) at each time step." + "The controller generates a control signal over a fixed lenght T (Horizon) at each time step.\n", + "控制器在每个时间步上生成一个固定长度T(视野)的控制信号。" ] }, { @@ -33,17 +37,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Linear MPC Formulation\n", + "#### Linear MPC Formulation 线性MPC表述\n", "\n", "Linear MPC makes use of the **LTI** (Linear time invariant) discrete state space model, wich represents a motion model used for Prediction.\n", + "线性MPC使用**LTI**(线性时不变)离散状态空间模型,该模型表示用于预测的运动模型。\n", "\n", "$x_{t+1} = Ax_t + Bu_t$\n", "\n", "The LTI formulation means that **future states** are linearly related to the current state and actuator signal. Hence, the MPC seeks to find a **control policy** U over a finite lenght horizon.\n", + "LTI表述意味着**未来状态**与当前状态和执行器信号之间是线性相关的。因此,MPC试图找到一个有限长度视野上的**控制策略**U。\n", "\n", "$U={u_{t|t}, u_{t+1|t}, ...,u_{t+T|t}}$\n", "\n", "The objective function used minimize (drive the state to 0) is:\n", + "用于最小化(将状态驱动至0)的目标函数为:\n", "\n", "$\n", "\\begin{equation}\n", @@ -56,12 +63,14 @@ "$\n", "\n", "Other linear constrains may be applied,for instance on the control variable:\n", + "其他线性约束也可以应用,比如对控制变量的约束\n", "\n", "$ U_{MIN} < u_{j|t} < U_{MAX} \\quad \\textrm{for} \\quad t<j<t+T-1 $\n", "\n", "The objective fuction accounts for quadratic error on deviation from 0 of the state and the control inputs sequences. Q and R are the **weight matrices** and are used to tune the response.\n", - "\n", + "目标函数考虑了状态偏离0的二次误差以及控制输入序列的二次误差。矩阵Q和R是权重矩阵,用于调整系统响应\n", "Because the goal is tracking a **reference signal** such as a trajectory, the objective function is rewritten as:\n", + "由于目标是跟踪参考信号(例如轨迹),目标函数被重写为:\n", "\n", "$\n", "\\begin{equation}\n", @@ -72,6 +81,7 @@ "$\n", "\n", "where the error w.r.t desired state is accounted for:\n", + "其中考虑了相对于期望状态的误差:\n", "\n", "$ \\delta x = x_{j,t,ref} - x_{j,t} $" ] @@ -80,9 +90,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Problem Formulation: Study case\n", + "# Problem Formulation: Study case 研究案例问题表述\n", "\n", "In this case, the objective function to minimize is given by:\n", + "在这种情况下,要最小化的目标函数为:\n", "\n", "https://borrelli.me.berkeley.edu/pdfpub/IV_KinematicMPC_jason.pdf\n", "\n", @@ -99,24 +110,30 @@ "$\n", "\n", "\n", - "Where R,P,Q are the cost matrices used to tune the response.\n" + "Where R,P,Q are the cost matrices used to tune the response.\n", + "R,P,Q是用于调整响应的成本矩阵。\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## PRELIMINARIES\n", + "## PRELIMINARIES 准备工作\n", "\n", - "* linearized system dynamics\n", - "* function to represent the track\n", - "* function to represent the **reference trajectory** to track" + "* linearized system dynamics 线性化系统动力学\n", + "* function to represent the track 轨迹函数\n", + "* function to represent the **reference trajectory** to track 跟踪的**参考轨迹**函数" ] }, { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T06:09:14.320605Z", + "start_time": "2024-10-23T06:09:13.499103Z" + } + }, "outputs": [], "source": [ "import numpy as np\n", @@ -134,22 +151,29 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T06:09:15.094392Z", + "start_time": "2024-10-23T06:09:15.092291Z" + } + }, "outputs": [], "source": [ "\"\"\"\n", "Control problem statement.\n", + "控制问题陈述。\n", "\"\"\"\n", "\n", - "N = 4 # number of state variables\n", - "M = 2 # number of control variables\n", - "T = 20 # Prediction Horizon\n", - "DT = 0.2 # discretization step\n", + "N = 4 # number of state variables (x, y, v, theta)\n", + "M = 2 # number of control variables (a, delta)\n", + "T = 20 # Prediction Horizon (time steps)\n", + "DT = 0.2 # discretization step [s]\n", "\n", "\n", "def get_linear_model(x_bar, u_bar):\n", " \"\"\"\n", " Computes the LTI approximated state space model x' = Ax + Bu + C\n", + " 计算LTI近似状态空间模型x' = Ax + Bu + C\n", " \"\"\"\n", "\n", " L = 0.3 # vehicle wheelbase\n", @@ -188,12 +212,14 @@ "\"\"\"\n", "the ODE is used to update the simulation given the mpc results\n", "I use this insted of using the LTI twice\n", + "ODE用于根据mpc结果更新仿真,而不是两次使用LTI\n", "\"\"\"\n", "\n", "\n", "def kinematics_model(x, t, u):\n", " \"\"\"\n", " Returns the set of ODE of the vehicle model.\n", + " 返回车辆模型的ODE模型\n", " \"\"\"\n", "\n", " L = 0.3 # vehicle wheelbase\n", @@ -208,7 +234,9 @@ "\n", "\n", "def predict(x0, u):\n", - " \"\"\" \"\"\"\n", + " \"\"\"\n", + " 预测车辆的真实轨迹,使用ODE求解 \n", + " \"\"\"\n", "\n", " x_ = np.zeros((N, T + 1))\n", "\n", @@ -229,6 +257,7 @@ "def compute_path_from_wp(start_xp, start_yp, step=0.1):\n", " \"\"\"\n", " Computes a reference path given a set of waypoints\n", + " 给定一组路径点,计算参考路径\n", " \"\"\"\n", "\n", " final_xp = []\n", @@ -261,6 +290,7 @@ "def get_nn_idx(state, path):\n", " \"\"\"\n", " Computes the index of the waypoint closest to vehicle\n", + " 计算最接近车辆的路径点的索引\n", " \"\"\"\n", "\n", " dx = state[0] - path[0, :]\n", @@ -291,6 +321,8 @@ "def get_ref_trajectory(state, path, target_v):\n", " \"\"\"\n", " Adapted from pythonrobotics\n", + " 获取参考轨迹\n", + " 从当前位置开始,截取路径上的一段作为参考轨迹,其中v=固定的,参考的方向转角为0\n", " \"\"\"\n", " xref = np.zeros((N, T + 1))\n", " dref = np.zeros((1, T + 1))\n", @@ -336,145 +368,181 @@ "source": [ "## MPC \n", "\n", - "test single iteration" + "test single iteration\n", + "测试单次迭代" ] }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "execution_count": 40, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T08:23:39.847687Z", + "start_time": "2024-10-23T08:23:39.780867Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "-----------------------------------------------------------------\n", - " OSQP v0.6.0 - Operator Splitting QP Solver\n", - " (c) Bartolomeo Stellato, Goran Banjac\n", - " University of Oxford - Stanford University 2019\n", - "-----------------------------------------------------------------\n", - "problem: variables n = 326, constraints m = 408\n", - " nnz(P) + nnz(A) = 1063\n", - "settings: linear system solver = qdldl,\n", - " eps_abs = 1.0e-05, eps_rel = 1.0e-05,\n", - " eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04,\n", - " rho = 1.00e-01 (adaptive),\n", - " sigma = 1.00e-06, alpha = 1.60, max_iter = 10000\n", - " check_termination: on (interval 25),\n", - " scaling: on, scaled_termination: off\n", - " warm start: on, polish: on, time_limit: off\n", - "\n", - "iter objective pri res dua res rho time\n", - " 1 0.0000e+00 4.27e+00 4.67e+02 1.00e-01 4.07e-04s\n", - " 175 1.6965e+02 2.63e-05 3.49e-05 7.14e+00 1.86e-03s\n", - "\n", - "status: solved\n", - "solution polish: unsuccessful\n", - "number of iterations: 175\n", - "optimal objective: 169.6454\n", - "run time: 2.50e-03s\n", - "optimal rho estimate: 6.34e+00\n", - "\n", - "CPU times: user 122 ms, sys: 75 µs, total: 122 ms\n", - "Wall time: 119 ms\n" + "===============================================================================\n", + " CVXPY \n", + " v1.5.3 \n", + "===============================================================================\n", + "(CVXPY) Oct 23 04:23:39 PM: Your problem has 124 variables, 166 constraints, and 0 parameters.\n", + "(CVXPY) Oct 23 04:23:39 PM: It is compliant with the following grammars: DCP, DQCP\n", + "(CVXPY) Oct 23 04:23:39 PM: (If you need to solve this problem multiple times, but with different data, consider using parameters.)\n", + "(CVXPY) Oct 23 04:23:39 PM: CVXPY will first compile your problem; then, it will invoke a numerical solver to obtain a solution.\n", + "(CVXPY) Oct 23 04:23:39 PM: Your problem is compiled with the CPP canonicalization backend.\n", + "-------------------------------------------------------------------------------\n", + " Compilation \n", + "-------------------------------------------------------------------------------\n", + "(CVXPY) Oct 23 04:23:39 PM: Compiling problem (target solver=OSQP).\n", + "(CVXPY) Oct 23 04:23:39 PM: Reduction chain: CvxAttr2Constr -> Qp2SymbolicQp -> QpMatrixStuffing -> OSQP\n", + "(CVXPY) Oct 23 04:23:39 PM: Applying reduction CvxAttr2Constr\n", + "(CVXPY) Oct 23 04:23:39 PM: Applying reduction Qp2SymbolicQp\n", + "(CVXPY) Oct 23 04:23:39 PM: Applying reduction QpMatrixStuffing\n", + "(CVXPY) Oct 23 04:23:39 PM: Applying reduction OSQP\n", + "(CVXPY) Oct 23 04:23:39 PM: Finished problem compilation (took 2.905e-02 seconds).\n", + "-------------------------------------------------------------------------------\n", + " Numerical solver \n", + "-------------------------------------------------------------------------------\n", + "(CVXPY) Oct 23 04:23:39 PM: Invoking solver OSQP to obtain a solution.\n", + "-------------------------------------------------------------------------------\n", + " Summary \n", + "-------------------------------------------------------------------------------\n", + "(CVXPY) Oct 23 04:23:39 PM: Problem status: optimal\n", + "(CVXPY) Oct 23 04:23:39 PM: Optimal value: 5.630e+02\n", + "(CVXPY) Oct 23 04:23:39 PM: Compilation took 2.905e-02 seconds\n", + "(CVXPY) Oct 23 04:23:39 PM: Solver (including time spent in interface) took 3.982e-03 seconds\n", + "CPU times: user 60.9 ms, sys: 5.23 ms, total: 66.1 ms\n", + "Wall time: 62.7 ms\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:27: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[0, 2] = np.cos(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:28: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[0, 3] = -v * np.sin(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:29: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[1, 2] = np.sin(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:30: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[1, 3] = v * np.cos(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:31: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[3, 2] = v * np.tan(delta) / L\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:36: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " B[3, 1] = v / (L * np.cos(delta) ** 2)\n" ] } ], "source": [ "%%time\n", "\n", + "# 限制条件\n", "MAX_SPEED = 1.5 # m/s\n", "MAX_STEER = np.radians(30) # rad\n", "MAX_ACC = 1.0\n", - "REF_VEL = 1.0\n", + "REF_VEL = 1.0 # 目标路径参考速度\n", "\n", + "#获取参考轨迹,线性插值,三个点[0,0],[3,0],[6,0]\n", "track = compute_path_from_wp([0, 3, 6], [0, 0, 0], 0.05)\n", "\n", - "# Starting Condition\n", + "# Starting Condition 初始条件\n", "x0 = np.zeros(N)\n", "x0[0] = 0 # x\n", - "x0[1] = -0.25 # y\n", + "x0[1] = -0.5 # y\n", "x0[2] = 0.0 # v\n", - "x0[3] = np.radians(-0) # yaw\n", + "x0[3] = np.radians(-80) # yaw\n", "\n", - "# starting guess\n", + "# starting guess 开始猜测\n", "u_bar = np.zeros((M, T))\n", "u_bar[0, :] = MAX_ACC / 2 # a\n", "u_bar[1, :] = 0.1 # delta\n", "\n", - "# dynamics starting state w.r.t world frame\n", - "x_bar = np.zeros((N, T + 1))\n", + "# dynamics starting state w.r.t world frame 与世界坐标系相关的动力学起始状态\n", + "x_bar = np.zeros((N, T + 1)) # 4x21\n", "x_bar[:, 0] = x0\n", "\n", - "# prediction for linearization of costrains\n", + "# prediction for linearization of costrains 用于约束线性化的预测\n", + "# 这部分应用线性模型,得到预测的轨迹\n", "for t in range(1, T + 1):\n", " xt = x_bar[:, t - 1].reshape(N, 1)\n", " ut = u_bar[:, t - 1].reshape(M, 1)\n", - " A, B, C = get_linear_model(xt, ut)\n", + " A, B, C = get_linear_model(xt, ut) # 获取在t - 1时刻的线性近似模型\n", " xt_plus_one = np.squeeze(np.dot(A, xt) + np.dot(B, ut) + C)\n", - " x_bar[:, t] = xt_plus_one\n", + " x_bar[:, t] = xt_plus_one # 获取t时刻的状态\n", "\n", - "# CVXPY Linear MPC problem statement\n", - "x = cp.Variable((N, T + 1))\n", - "u = cp.Variable((M, T))\n", + "# x_bar是根据猜测的u_bar获取的预测状态估计\n", + "\n", + "# CVXPY Linear MPC problem statement CVXPY线性MPC问题陈述\n", + "x = cp.Variable((N, T + 1)) # 4x21维,状态向量\n", + "u = cp.Variable((M, T)) # 2x20维,控制向量\n", "cost = 0\n", "constr = []\n", "\n", "# Cost Matrices\n", - "Q = np.diag([10, 10, 10, 10]) # state error cost\n", - "Qf = np.diag([10, 10, 10, 10]) # state final error cost\n", - "R = np.diag([10, 10]) # input cost\n", - "R_ = np.diag([10, 10]) # input rate of change cost\n", + "Q = np.diag([10, 10, 10, 10]) # state error cost 状态误差成本\n", + "Qf = np.diag([10, 10, 10, 10]) # state final error cost 最终状态误差成本\n", + "R = np.diag([10, 10]) # input cost 输入成本\n", + "R_ = np.diag([10, 10]) # input rate of change cost 输入变化率成本\n", "\n", - "# Get Reference_traj\n", + "# Get Reference_traj 获取参考轨迹,根据当前位置截取的路径上的一系列点,并赋值目标速度和转角\n", + "# x_ref 表示参考状态,d_ref表示参考转角\n", "x_ref, d_ref = get_ref_trajectory(x_bar[:, 0], track, REF_VEL)\n", "\n", - "# Prediction Horizon\n", + "# Prediction Horizon 预测视野\n", "for t in range(T):\n", "\n", - " # Tracking Error\n", + " # Tracking Error 跟踪误差\n", " cost += cp.quad_form(x[:, t] - x_ref[:, t], Q)\n", "\n", - " # Actuation effort\n", + " # Actuation effort 执行努力\n", " cost += cp.quad_form(u[:, t], R)\n", "\n", - " # Actuation rate of change\n", + " # Actuation rate of change 变化率\n", " if t < (T - 1):\n", " cost += cp.quad_form(u[:, t + 1] - u[:, t], R_)\n", "\n", - " # Kinrmatics Constrains (Linearized model)\n", + " # Kinrmatics Constrains (Linearized model) 运动学约束(线性化模型)\n", " A, B, C = get_linear_model(x_bar[:, t], u_bar[:, t])\n", " constr += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C.flatten()]\n", "\n", - "# Final Point tracking\n", + "# Final Point tracking 最终点跟踪\n", "cost += cp.quad_form(x[:, T] - x_ref[:, T], Qf)\n", "\n", - "# sums problem objectives and concatenates constraints.\n", - "constr += [x[:, 0] == x_bar[:, 0]] # starting condition\n", - "constr += [x[2, :] <= MAX_SPEED] # max speed\n", - "constr += [x[2, :] >= 0.0] # min_speed (not really needed)\n", - "constr += [cp.abs(u[0, :]) <= MAX_ACC] # max acc\n", - "constr += [cp.abs(u[1, :]) <= MAX_STEER] # max steer\n", + "# sums problem objectives and concatenates constraints. 求和问题目标并连接约束。\n", + "constr += [x[:, 0] == x_bar[:, 0]] # starting condition 初始条件\n", + "constr += [x[2, :] <= MAX_SPEED] # max speed 最大速度\n", + "constr += [x[2, :] >= 0.0] # min_speed (not really needed) 最小速度(实际上不需要)\n", + "constr += [cp.abs(u[0, :]) <= MAX_ACC] # max acc 最大加速度\n", + "constr += [cp.abs(u[1, :]) <= MAX_STEER] # max steer 最大转向\n", "# for t in range(T):\n", "# if t < (T - 1):\n", "# constr += [cp.abs(u[0,t] - u[0,t-1])/DT <= MAX_ACC] #max acc\n", "# constr += [cp.abs(u[1,t] - u[1,t-1])/DT <= MAX_STEER] #max steer\n", "\n", - "prob = cp.Problem(cp.Minimize(cost), constr)\n", - "solution = prob.solve(solver=cp.OSQP, verbose=True)" + "prob = cp.Problem(cp.Minimize(cost), constr) # 构建问题\n", + "solution = prob.solve(solver=cp.OSQP, verbose=True) # 求解" ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, + "execution_count": 41, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T08:23:43.320874Z", + "start_time": "2024-10-23T08:23:43.203207Z" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAEYCAYAAADrpHnMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABO9klEQVR4nO3deVxU9f7H8dd3WEREtgH3faEkKxdIc0NFydLMysqWn9es6y0q22/ZbTfNTK9eK9s0Wu6tbHFpVVNLTSoXUFMrodTcFVlUFgXO9/fHCIGyDDAzZ2b4PB8PHwwzc855Mzjz4XzPd1Faa40QQgjhQSxmBxBCCCFqSoqXEEIIjyPFSwghhMeR4iWEEMLjSPESQgjhcaR4CSGE8Di+ZgdwpgMHDpTejoiIICMjw8Q0dSP5zVNR9hYtWpiUxv2UfZ+VcKfft2Rx3xxQdZaq3mdy5iWEEMLjSPESQgjhcby62VAIIYRj6MJC+P0XyD2Bzj0JeWf+5ebavjZrieWqm12WR4qXEEKIaukl/0MvW1j+Th8fCAyy3d74PXrwlajGwS7JI8VLCCFElXRhIXrdCujaE8u1Y20FKzAIGgSglEKn/4LxwiOQtg169HFJJrnmJYQQoko69Qc4eRzL0JGoVu1R4ZGogIYopWxPaNcJ/P3RO7e7LJMULyGEEFXSa5ZBRFM4/+IKH1e+ftCxC/q3n12WSYqXEEKISulD++G3n1H9E1CWykuGiuoK+/egc0+4JJcULyGEEJXSa5eDjw+q75Aqn6eiuoLWkOaapkMpXkIIISqkCwvRySvh4l6okLCqn9w+Cvz80b9J8RJCCGGi0o4acZdV+1zl5wcdzkPvdM11LyleQgghKlRdR42zqaiusHcXOu+kk5NJ8RJCCFEBeztqlKXOK7nu9YuT00nxEkIIUQG9dpldHTXKaR8Fvr4uaTqU4iWEEKKcGnXUKEP5N7Bd9/ptmxPT2UjxEkIIUY5OSYaTJ+zqqHE2FdUV/vwDnZ/nhGR/keIlhBCiHL12eY06apRlG+9lQLpzr3t5RPGaO3cut99+Ow8++KDZUYQQwqvVpqNGOR3OBx9fp08V5RHFa+DAgTz22GNmxxBCCK9Xq44aZagGDaB9Z/RO51738ojiFR0dTVBQkNkxhBDCq9W2o8bZVFRX2JOOLsh3YLryvGo9rxUrVrBixQoApk2bRkREROljvr6+5b73NJLfPJ6cXYia0Jt/qnVHjbJUVFf0Vx/brnt17eGgdOV5VfEaMmQIQ4b8daqbkZFRejsiIqLc955G8punouwtWrQwKY0QTpT6AzQOqVVHjXI6ng8WC3rnNpSTipdHNBsKIYRwLl1UiN6WgrootnYdNcpQAQ2hnXOve0nxEkIIAWk7ID8X1e0Sh+xORXWF3enoUwUO2d/ZPKJ4zZ49m8cff5wDBw5wxx13sGrVKrMjCSGEV9Fb1oOvH3Tp5pD9qaiuUFwEv//qkP2dzSOued13331mRxBCCK+ltbYVry4XoxoEOGannbr8dd0ruptj9lmGRxQvIYR9Nm/eTFJSEoZhEB8fz6hRo8o9vn//fubOncuuXbsYM2YMI0eOtHtb4cUO7IWMw6hh1zpsl6phILTp6LTrXh7RbCiEqJ5hGMyfP5/HHnuMWbNmsW7dOvbt21fuOUFBQdx6661ceeWVNd5WeC+9dT0A6qJYh+5XRXWFXTvRp085dL8gxUsIr5Genk6zZs1o2rQpvr6+9OnThw0bNpR7TkhICJ06dcLHx6fG2wrvpbeshzYdUWFWh+5XRXWFoiL44zeH7hek2VAIr5GZmYnV+teHj9VqJS0tzeHbVjUZQAl3GtgtWarOYWRncvSP32h0w3iCHJzN6N2Po3MtNNz3B0H9BlebpSakeAnhBo4fP86aNWtISUlhz5495OXlERgYSNu2benWrRsDBw4kODi4yn1orc+5Tyll1/Frsm1VkwGUcKdB6ZKl6hzGupWgNfmdulLgjGyt2pObup6CIaOqzXK2qiYDkOIlhMnef/991q5dS/fu3Rk8eDAtW7akYcOG5Ofns3//fnbs2MEjjzxCv379uPnmmyvdj9Vq5dixY6XfHzt2jLAw++anq8u2wrPpresh1AptOjhl/6pdZ3TKOofvV4qXECYLCwtjzpw5+Pn5nfNY+/bt6devH6dPn652fGPHjh05ePAgR44cITw8nOTkZCZOnGhXhrpsKzyXLjwN21NRvQfafZZeY9ZIOHkCfeqUbcZ5B5HiJYTJLr/88tLb2dnZhIaGnvOcvLw8hg0bVuV+fHx8GD9+PFOmTMEwDAYNGkTr1q1Zvnw5AAkJCWRnZ/Poo4+Sn5+PUoqvvvqKf//73wQGBla4rfByv/0MpwpQFztmVo0KhUfavmYdhWatHLZbKV5CuJF7772Xd95555z777//fpKSkqrdvkePHvToUX4i1ISEhNLboaGhvPbaa3ZvK7yb3rIB/BvA+Rc57RgqPBINkOnY4iVd5YVwIxV1nMjLy8NSx4lShTib1tp2vSu6O8rP33kHCrf1JNTHjjp0t3LmJYQbuPPOOwE4ffp06e0SJ0+epG/fvmbEEt5s7y7IzEBdeaNzjxNqBaUg07E9GaV4CeEG7rnnHrTWPP/889xzzz3lHgsNDZX1w4TD6a3rQSnURTFOPY7y9YWQcFuzoQNJ8RLCDURHRwMwf/58GjiwR5YQldGb10P7KFSwC4ZEWCPRDi5e0pAuhMm++uorCgsLASotXIWFhXz11VeujCW8WHHmUdiT7vC5DCujwiPlzEsIb5Odnc3EiRPp3r070dHRtGjRgoCAAAoKCjhw4AA7duwgNTWVuLg4s6MKL3FqYzKAc7vIlxUeAak/orV22Hgyjznz2rx5M/feey/33HMPixcvdth+Z26a6fL7zDimPTnc5Wesb2666SZeeOEFmjVrxqpVq5g6dSoPPvggzz//PN9++y0tWrRg+vTpjBkzxuyowkuc2rgOrE2gZVvXHDA8EooK4USOw3bpEcXLmcs1/Dvl3y6/z4xj2pPDXX7G+ig4OJiRI0fy5JNPMm/ePD744APefPNNnnjiCUaMGEHjxo3Njii8hD51itNb1qMuvsR5s2qcRZUMVHZg06FHNBuWXa4BKF2uoVUr+wa8PflkMGlpvhQWVjDd/2UwerTVtffVYjs/vzP5nZnDifv28/OFwXbuy8307OnDpElmpxDCQX7ZDKdPoy52zfUuoHSsF5lHoV1nh+zSI4qXvcs1VLZUQ8OGPiilSueO293+Gf5s/2zpdj9cdu6y186+z4xj2pPDzJ+xza4nabfrqXMeN5vFoly2jEVeXh4ff/wxO3bs4MSJE+UGLb/66qsuySC8m96UjApqDFEXuu6gZ868dOZRHHWu5xHFy97lGipbqmHSpLOn3f/HmX/Q8s2W7P/7/nL7cfZ9tdmuJL8zczhz3xERETR4voEd+zqEu6loyQZnjbuaN28emZmZjB49mpdeeol77rmHzz77jF69ejnleKJ+0YWF6C0/EXDpIAp9Xfjx36ixbRqqY44bqOwR17xkuQZRX2zdupUHH3yQ2NhYLBYLsbGx3H///axdu9bsaMIb7EiF/DwC+sa79LBKKQh37FgvjyheZZdrKCoqIjk5mZgYx4wKf6DHAy6/z4xj2pPDXX7G+kxrTWBgIAABAQHk5uYSGhrKoUPud0YqPI/e+D0EBuHv5Fk1KuTgsV5KV9QmV0PvvPMOcXFxtGvXzgGRKpaSksI777xTulzDNddcU+02Bw4cKL1dtulHGwYYBhQXQ3Gh7WthIRSdtn0tPG3r1llYeObraXRhIRQX2bYzis9sbwAaLD7g4wM+vqVflX8DCGwEgUF/ffX3r3XvHndZgbW2PDm/K5sNn332Wa6++mouvPBCZs+ejcViISAggD/++INp06Y55Zh1VfZ9VsKdft+SxUYXnsZ4cCyqRx+aPPSsy3MY776M3rIen5nvlrvf1JWUi4uLmTJlCsHBwfTv35/+/fuX62DhCHVZrsH4aD6HV34OGtCGQ3NVpsK/CHx9oXEohFkhzIoKi7R9DY+AiKbQtCWqYaBL8gn39I9//KP0Gu/48eN5//33yc3N5e677zY5mfB4221NhirGpEmewyPgeDa6sBBVwcKrNeWQ4jV+/HjGjRtHamoqa9euZeHChXTu3JkBAwbQq1cvAgLO7WHmSqrLxQSGhJKXn2+b3VhZwGKxFZOSsyU/f/D1s72oZ25TctvPz/a9j++Zs6wz2ysfUNjOxIqKbWdmxcW2f6cLID8XnZsL+SchNxfyTtp+eVkZsP9P9LYUOFVQvtCFhEHTFqimLW1fW7SBFm3RDv5jQLin48eP07mzrStxcHAwd9xxB2AbLiJEXehN62wtQOdfbE6A0kUpM6BJ8zrvzmHdTSwWCz179qRnz57s3buXOXPmMHfuXObNm0ffvn25/vrrCQ8Pd9ThakRdGEPQoGEUmHC6XlUjodYa8nNtSwUcPYQ+tB8O70cfPoDe/BOcyCktbEcbBqJbtLEVs5ZtUS3b2r42DnHFjyFc5LnnnqtwMcopU6bYtRilEBXRhafRW9ajevSxzfJuAhUW8deilO5UvPLy8vjxxx9Zu3Yte/bsoVevXtx2221ERETwxRdfMHXqVGbMmOGow3kFpdSZa2JB0KrdOYVO556Eg3+i9/9JQOYR8tN/Raf8AGuX/3W2Fhx6ppi1g5ZtUM1aQbOWqKBgl/4som4Mw9acrbUu/Vfi8OHD+Pj4mBVNeIPSJsN+5mWwOnasl0OK18yZM9myZQtdunRh6NChxMbGlg4IBhg7dizjxo1zxKHqFdUoCDpFozpFExwRwemMDNuHWk4WHNiD3v8n7N+N3rcHveZrOH36r6IWFAzNWqGatbRdT7NGosKb2P4DhVpRTvgw1EYxnDxhm7/seDb6RA6cyEENGObwY3mbG2/8a0HAs+cwtFgsXH311a6OJLyI3rTONtbq/IvMCxFWZpYNB3BI8ercuTO33XYboaGhFT5usVh48803HXGoek8pBaHhEBqOiu5eer82iuHYUTi0H31oHxzahz60D71lfelkmKWFTVlsZ2xBjaFREAQ2thXKwEZnru2d6T1Z0ouypDdm4am/emMW5KPzTkLuSdu1vNyTkJdbYYcY1b03NK97M4E3e/nll9Fa8/TTT/PMM8+Uzr6tlCI4OBh/fycu0y68mi48jd78Eyqmn2lNhgDKz9/2ueOgFZUd8pOMHDmy2ufIAnvOpSw+ENkMIpuhLuxZ7jF96hRkHYXMo+hjtq9kZ6JzT9iKztGD6N1nilBJp5OKlHRe8fOHBgG2v+QaBaGaNLc1fTYKsv3nbByKCg6BxiG23pWNgpz+83u6yEhbk8rcuXMBWzNiTk6ODMYXdbc9FQryUT1N6mVYVnik7TPIATxieihRN6pBA2jWytaMaMfztda2M6hiw1bMfHzB19dlM1DXZ7m5ucybN48ff/wRX19f3nvvPTZu3Eh6erosiSJqRW/83vwmwxLhkXDgT4fsyiNm2BCupZRCWXxQfn6ogIa2r1K4XOLNN98kMDCQuXPn4numiScqKork5GSTkwlPVNrLsHtvU5sMS5SsqOyAuTGkeAnhTn7++WduvfXWcs2FwcHB5OQ4bhE/UY9sT7E1GZrZy7AsawScPgW5J+q8K/NLsRCiVGBgICdOnChXvDIyMuy+9rV582aSkpIwDIP4+HhGjRpV7nGtNUlJSaSmptKgQQMSExPp0KEDAHfddRcBAQFYLBZ8fHzcdjoqYT+98Uwvw/NcuPxJFVRY5JmxXhm2HtF1IMVLCDcSHx/PzJkzGTNmDFprdu7cyQcffMDQoUOr3bZkxfHHH38cq9XKpEmTiImJKbdoa2pqKocOHWLOnDmkpaUxb948pk6dWvr4U089RXCwjBH0BqVNhrH93aLJEPhrlo3Mo9CmQ5125SY/kRAC4KqrrsLPz4/58+dTXFzMq6++ypAhQ7jiiiuq3daeFcc3btzIgAEDUEoRFRVFbm4uWVlZ0quxDH1oH3rx/9DHs1Dto6BdFKp9Z7A28axrvyVNhu7Qy7CE1TbWyxEDlaV4CeFGlFIMHz6c4cOH13hbe1Ycz8zMLLcqtNVqJTMzs7R4TZkyBYChQ4eWW9i1rMpWLC/L19fXZatPV8feLMbxHE5+NJ/8pYtQ/g3wa92ewm+/gsLFaMASEoZP52j8OkcT0H8ovs1bVbvP2mZxhJyfN3KqcQgRfQedc+Zl1u9Hh4dzxM+fhvm5ND5z/NpmkeIlhJs5cOAAu3fvpqCgoNz9gwcPrnI7e1Ycr+o5kydPJjw8nJycHJ577jlatGhBdHT0Oc+vbMXysjxpGRJdWIj+9kv0lwsgPx8VdxnqyhsxgkOxFBXC/j3oP3aid+3k9O40Tm9cR+7i97EkTkLVsPu5q14XXXgaY/1aVGx/jmVnm5ajQmFW8vf/yakzxzd1SRRn+uGHH/j444/Zv38/U6dOpWPHjmZHEsJpFi5cyKeffkrbtm3PGdhfXfGyZ8Vxq9Va7oOi7HNKJs4OCQkhNjaW9PT0CouXt9BaQ+oPGJ+8DUcPQdeeWEbfimrZpvQ5ytcP2nZCte0Eg2xNtzrjMMacZzFmP4269V4sveJM+gkqpzcln+ll6EZNhiUctKKy2xev1q1b89BDD/HGG2+YHUUIp/vqq6+YOnUqbdu2rfG2ZVccDw8PJzk5mYkTJ5Z7TkxMDEuXLqVv376kpaURGBhIWFgYBQUFaK1p2LAhBQUFbN26ldGjRzvqx3I72ihGvznTNoC3RRss9z6N6mrfeoEqoimWR17AmDsVPW8mRmYGatg1bnM9TBsG+utPoEUb85Y/qYIKj0Tv2Fzn/bh98Sp7sVkIb+fv70/Lli1rta2Pjw/jx49nypQppSuOt27dmuXLlwOQkJBA9+7dSUlJYeLEifj7+5OYmAhATk5O6aoPxcXF9OvXj27dujnkZ3I3Wmv0h2+iN36PGnULati1NZ6oWjUKwnLfM+ik2eiF70DmEbhxgm2aNrNt/gkO/Im6/UGUxQ2H8oZHQk4muqioTr0g3b54CeHtSpZDAbjhhht46623uO666wgJKb9Wm8WOD6KKVhxPSEgova2U4vbbbz9nu6ZNm/Liiy/WNLpH0ssXob/9CpVwNZbh19d6P8rPD25/0NYMtmwhOusYlr8/bJuOzSRaa4yvPoYmzd1nYPLZwiNAa8g+ZlvxopbconhNnjyZ7AouKo4ZM4bY2Fi791NVLyh36v1UG5LfPM7OXnY5lBIrV648574FCxY4LUN9Yaxfg/7kbdvYp2v/Vuf9KYsFNXochjUS/cEbGDP/heWeJ8xbJHZ7CuxJR4292ynLHjmCCi8zUNnTi9cTTzzhkP1U1QvKnXo/1YbkN09F2avqBVVTL7/8MmD7q/nHH3/k0ksvLfe41pqffvrJYcerr/Rv29BJsyHqAtSt9zq0Sc0yaDg61Irx5gyM2U9hefh5VEBDh+3fHlprjC8/gvAI1KWDXHrsGgl3zKKUbtggKkT9EhkZSWRkJE2aNOHTTz8t/b7s/QsXLjQ7pkfT+//EmDsFIptjSfyXbW0pB1Pde2O54xHYuxtj3kzbGnuutHM7pP+CuuwaWy9JdxXumEUp3eLMqyrr16/nrbfe4vjx40ybNo127drxr3/9y+xYQjjUtm3bAFtniZLbJQ4fPkzDhq79K96bFGcexZjzNPj5Y7n3KdvCq06iLopF3XA7+sM3bM2T19/mtGOdzfhyAQSHovpVP5WYmVSDANtCuN5evC655BIuueQSs2MI4VSvvvoqAIWFhaW3wdbBIjQ0lPHjx5sVzaPp/Dyy//0E5OZi+edUlLWJ049piR+BcXg/+pslGE1aYBl4udOPqf/4DX7Zghp9K8rfAxb+DY9E13FFZbcvXkLUB6+88gpgu/519913m5zGO2jDwJg3E2PvH1jueRLVxnUTHKgbbkdnHEZ/8Do6shnqgu5OPZ7x1cfQqDEqbphTj+Mw4ZG2geF1INe8hHAjUrgcRy9bCFs30Hj8vU4vHmdTPj5YJjwEzVtjvP4Cev8epx1L790FW9ajhlzp8k4itVWyKGVdSPESQngd/dvP6EX/RcX2p+Hl15qSQQUEYrnnSfBvgPHSZPTxLKccR3/1MTQMRA0e4ZT9O0V4BOTnofNya70LKV5CCK+ic7Iw3ngRmjZHjb3L1GmblDUSy92Pw4lsjJenoE+dcuj+9cF96E3rUAOvQAU6ryOKw5Vd16uWpHgJIbyGLi7GeHMGFORhueNRVECg2ZFQ7Tpjue1B2J1G9rRH0KcKqt/ITvrrj8HPDzX0Koft0xVUSfHKqn2nDSleQgivoZf8D377GXVzIqplzSc3dhbV41LU3+7h9NaNGLOeROeerPM+ddoO9E+rUQOGmTejR22VDFQ+JmdeQoh6Tm/dgP76E1T/BCx9ql4+xgyWvkMIeeg52JOO8eIkdHZmrfelt27AmP0kRDZHXe6Bs/+HhIKPjzQbCiHqN51xGGP+LGjdHnXjBLPjVCrg0oG2ThwZhzGmP4quRXdx48dvMV6ZAs1aY/nn86jgUMcHdTJl8YFQqxQvIUT9pQsLMV6fDtqwXedywtRPjqSiu2F5YDLknsR44dEadaM3VnyGnj8LOl+A5aEpHlm4SlnrtiilFC8hhMfSWqP/Oxd2p2EZdy+qSXOzI9lFdTgPyz+fB8CYPsk2Q0YVtNYYi/+LXjAPuve2TXPV0PzOKHVhG+slHTaEEPWM1hr9SRI6eSXqyjGoHpdWv5EbUS3bYnlkGjQKwvj3Exj/nYvx7VfondvLdejQRjH6v6+iv/wI1W8oln884vZnl3YJi4CsDHRx7SYwlumhhBAeSX/9CXr5YtSg4agrz10TzROoyGZY/jkN452X0OvXQv5S21pXYLsm1LINFBXZelBefi3q6rGmjltzqPBIMAyMrGPU5jxKipcQwuMY332NXvQeqlccaszfPfoDXYWG43PvU2itbeOe9v+J3r/7r69ZGajrxmNJGGVyUsdSVtuilMUZhyGi5s29UryEEB7FWL8G/f5rcFEsapxjF5U0k1LKdjYSHom6sKfZcZzvzFgvo5bFyzt+60KIekFv24R+axZ0jsbyj3+ifOXvb491pngVHz1cq83d/jf/3nvvsWnTJnx9fWnatCmJiYk0atTI7FhCCBfT6TswXn0eWrbDctfjnrFulaiUahgIDRvZmg1rwe3PvC666CJmzpzJjBkzaN68OYsWLTI7khDCxXT6Dow5kyEs0tZNPFD+gPUK4REYtVzXy+2L18UXX4yPjw8AUVFRZGbWfkoVIYRn0fl5GO+/hjF9EjQKwnL/s549MFeUFx5Z6zMvt282LGvVqlX06dPH7BhCCBfQm3/C+N9rkJOJGjwCNepmt5glXjiO5YbbCY2MpDYrnblF8Zo8eTLZ2dnn3D9mzBhiY2MBWLhwIT4+PvTv37/S/axYsYIVK1YAMG3aNCIiIkof8/X1Lfe9p5H85vHk7J5IZ2difPAGpCRDy7ZY7nwU1eE8s2MJJ1BNW+ATEQEZNZ9pwy2K1xNPPFHl49999x2bNm3iySefrHI8x5AhQxgyZEjp9xllXpCIiIhy33sayW+eirK3aNHCpDRV27x5M0lJSRiGQXx8PKNGjSr3uNaapKQkUlNTadCgAYmJiXTo0MGubZ1NFxWik1eiP3kHCk+jRt2Cuuwa6VEoKuT2/ys2b97MkiVLeOaZZ2jQQHoXCVEZwzCYP38+jz/+OFarlUmTJhETE0OrVq1Kn5OamsqhQ4eYM2cOaWlpzJs3j6lTp9q1rSNpw4DDB9C7dsLuNPTuNNj7h202ifMuxHJLIqpZS6ccW3gHty9e8+fPp6ioiMmTJwPQuXNnJkxw3yUPhDBLeno6zZo1o2nTpgD06dOHDRs2lCtAGzduZMCAASiliIqKIjc3l6ysLI4ePVrttvbSf/5O1usvUHz6dMVPKMi3Far8PNv3DQKgbSfU4CtRURfYBh978IwZwjXcvni99NJLZkcQwiNkZmZitVpLv7daraSlpZ3znLLX76xWK5mZmXZtW6Kqa8sApzMOcjLrGL5aV7Q5ys8P37jL8OvUBb/O0fi0bIs606PYGdzpmqW7ZHGXHFD7LG5fvIQQ9tEVFIuzz2Aqe44925ao6toyABHNiZjxVqXXODVw+sw/ALJq09fMfu50vdVdsrhLDqg6S1XXlqV4CeElrFYrx44dK/3+2LFjhIWFnfOcsh8UJc8pKiqqdlsh3InbD1IWQtinY8eOHDx4kCNHjlBUVERycjIxMTHlnhMTE8OaNWvQWrNz504CAwMJCwuza1sh3ImceQnhJXx8fBg/fjxTpkzBMAwGDRpE69atWb58OQAJCQl0796dlJQUJk6ciL+/P4mJiVVuK4S7Urqixm4hhBDCjdWbZsNHH33U7Ah1IvnN48nZzeJOr5lkOZe75IDaZ6k3xUsIIYT3kOIlhBDC49Sb4lV2XIonkvzm8eTsZnGn10yynMtdckDts0iHDSGEEB6n3px5CSGE8B71YpyX2Us91FZGRgavvPIK2dnZKKUYMmQIV1xxhdmxaswwDB599FHCw8PdqpeTPXJzc3nttdfYu3cvSinuvPNOoqKizI7l1tzp/XbXXXcREBCAxWLBx8eHadOmuezYc+fOJSUlhZCQEGbOnAnAyZMnmTVrFkePHiUyMpL777+foKAgl+f46KOPWLlyJcHBwQDceOON9OjRw6k5Kvs8q/Vror1ccXGxvvvuu/WhQ4d0YWGhfuihh/TevXvNjmWXzMxM/fvvv2uttc7Ly9MTJ070mOxlff7553r27Nn6+eefNztKjb300kt6xYoVWmutCwsL9cmTJ01O5N7c7f2WmJioc3JyTDn29u3b9e+//64feOCB0vvee+89vWjRIq211osWLdLvvfeeKTkWLFiglyxZ4vRjl1XZ51ltXxOvbzYsu0yEr69v6VIPniAsLKx0ocCGDRvSsmVLMjMzTU5VM8eOHSMlJYX4+Hizo9RYXl4ev/zyC4MHDwZss183atTI5FTuzZPfb44WHR19zhnEhg0biIuLAyAuLs4lr01FOcxQ2edZbV8Tr282rMlSD+7syJEj7Nq1i06dOpkdpUbefvttbrnlFvLz882OUmNHjhwhODiYuXPnsmfPHjp06MC4ceMICAgwO5rbcsf325QpUwAYOnSo6b3scnJySic8DgsL4/jx46ZlWbZsGWvWrKFDhw6MHTvWpQWu7OdZbV8Trz/z0jVY6sFdFRQUMHPmTMaNG0dgYKDZcey2adMmQkJCSv/a8jTFxcXs2rWLhIQEpk+fToMGDVi8eLHZsdyau73fJk+ezAsvvMBjjz3GsmXL2LFjh2lZ3ElCQgIvvfQS06dPJywsjHfffddlx3bU55nXFy97lolwZ0VFRcycOZP+/fvTq1cvs+PUyG+//cbGjRu56667mD17Ntu2bWPOnDlmx7Kb1WrFarXSuXNnAHr37s2uXbtMTuXe3O39Fh4eDkBISAixsbGkp6eblqUkR9aZ9cuysrJKO0y4WmhoKBaLBYvFQnx8PL///rtLjlvR51ltXxOvL16evNSD1prXXnuNli1bMmLECLPj1NhNN93Ea6+9xiuvvMJ9991H165dmThxotmx7BYaGorVauXAgQMA/Pzzz7Rq1crkVO7Nnd5vBQUFpc3VBQUFbN26lTZt2piSpURMTAyrV68GYPXq1cTGxpqSI6vMAqDr1693yQoClX2e1fY1qReDlFNSUnjnnXdKl3q45pprzI5kl19//ZUnn3ySNm3alDa9uKJLqzNs376dzz//3OO6yu/evZvXXnuNoqIimjRpQmJioltc/HZn7vJ+O3z4MDNmzABsTcD9+vVzaZbZs2ezY8cOTpw4QUhICNdffz2xsbHMmjWLjIwMIiIieOCBB5z+/6miHNu3b2f37t0opYiMjGTChAlOP0Ou7POsc+fOtXpN6kXxEkII4V28vtlQCCGE95HiJYQQwuNI8RJCCOFxpHgJIYTwOFK8hBBCeBwpXkIIITyOFC8hhBAeR4qXEEIIjyPFqx47dOgQt956K3/88QdgmxH8tttuY/v27SYnE0KIqknxqseaNWvGzTffzEsvvcSpU6d49dVXiYuL44ILLjA7mhBCVEmmhxK88MILHDlyBKUUzz//PH5+fmZHEkKIKsmZlyA+Pp69e/cybNgwKVxCCI8gxaueKygo4J133mHw4MF8/PHHnDx50uxIQghRLSle9VxSUhLt27fnjjvuoEePHrzxxhtmRxJCiGpJ8arHNmzYwObNm5kwYQIAf/vb39i1axdr1641OZkQQlRNOmwIIYTwOHLmJYQQwuNI8RJCCOFxpHgJIYTwOFK8hBBCeBwpXkIIITyOFC8hhBAeR4qXEEIIjyPFSwghhMeR4iWEEMLjSPESQgjhcaR4CSGE8DhSvIQQQngcKV5CCCE8jhQvIYQQHsfXFQeZO3cuKSkphISEMHPmzHMe11qTlJREamoqDRo0IDExkQ4dOgCwefNmkpKSMAyD+Ph4Ro0aZfdxDxw4UOH9ERERZGRk1OpncQbJUz13y9SiRQuzI7iNit5n7vb7AvfL5G55wP0yVfU+c8mZ18CBA3nssccqfTw1NZVDhw4xZ84cJkyYwLx58wAwDIP58+fz2GOPMWvWLNatW8e+fftcEVkIIYQbc8mZV3R0NEeOHKn08Y0bNzJgwACUUkRFRZGbm0tWVhZHjx6lWbNmNG3aFIA+ffqwYcMGWrVqVasc+tB+9DeLOR4QgFFQUIsdVLFuZ3gEati1KF+/WmUTQgh3o/PzYHca+o/foHEIqn8CSimzYwEuKl7VyczMJCIiovR7q9VKZmYmmZmZWK3WcvenpaVVup8VK1awYsUKAKZNm1ZunwCnMw6S8/NGTgG1f/kr2lJjZB0jKLIpgcOvq/EefX19z8lqJnfLA+6ZSQhvoouLKdyVhpH6E/yx01awDu0r/0d77gnU5aPNC1mGWxQvXcEZjVKq0vsrM2TIEIYMGVL6/TlttxHNUdOTHN6uq7WGWU9y4sN55F54CSqwUY22d7d2ZnfLA+6XSa55CW+i8/MwXniEzP17bHcENYb256Fi+6PaR0H7zuj330AvfBcjPBJLrzhzA+MmxctqtZb7YDp27BhhYWEUFRVx7Nixc+53N0opLNeOw3jufvTST1HXjDU7khBC2EVrjfHOHDi4l8Z3/JPc1h0hstm5JwrjJqJzMtFJ/0GHhKHOv8icwGe4RVf5mJgY1qxZg9aanTt3EhgYSFhYGB07duTgwYMcOXKEoqIikpOTiYmJMTtuhVTbjqhecegVn6Ez3ecMQQghqqJXfQGbklFX/x+Bl41CNWleYQuX8vPDcuckaNIcY+7z6P1/mpD2Ly4585o9ezY7duzgxIkT3HHHHVx//fUUFRUBkJCQQPfu3UlJSWHixIn4+/uTmJgIgI+PD+PHj2fKlCkYhsGgQYNo3bq1KyLXihp1C3rTOvRn/0ONu9fsOEIIUSX9x2/oj5Pg4ktQCVdX+3zVKAjLvU9hPP8wxpynsUx6ERVqrXY7Z3BJ8brvvvuqfFwpxe23317hYz169KBHjx5OSOV4KqIpavCV6G8Wo4eMRLVqb3YkIYSokD55HOP1FyA0HMut96Es9jXEKWsTLBOfxJj+GMacZ7H883lUQKCT057LLZoNvYm64jpo2Ajj03fMjiKEEBXShoExfxYcz8ZyxyOoRkE12l616Yjljn/C/j0Yr72APtOS5kpSvBxMNQpCDb8OtqWgd2w2O44QQpxDf/0JbNuEuv52VLvOtdqH6toTdUsibE9F/3duhb3DnUmKlxOoQcPB2gTj07fRhmF2HCGEKKV/3Ype8r6tG/zAy+u0L0v/BNTw69HrVsC2TY4JaO+xXXq0ekL5+aOu/j/48w/0+tVmxxFCCAB0dibGmzOgaXPU2LscMluGGjEGQsMxVn7ugIT2k+LlJCq2P7TpiF70X3ThabPjCCHqOW0U2wpXQR6WOx51WCcL5euLirvc1nx40HVzz0rxchJlsWAZPQ4yj6JXfWl2HCFEPafXr4Gd21A3/gPVsq1D960GXAa+vuhvv3DofqsixcuJVJeLoWtP9FcfoXNPmB1HCFFPaaMY/eXH0LItqk+8w/evgkNRsQPQyavQebkO339F3GJ6KG9mufZvGM/ei175OWrkTWbHEV6uuvXvqlo776677iIgIACLxYKPjw/Tpk0z4ScQTpHyAxzah5rwsN3juWpKxY9A/7AKnbwCNeQqpxyjLCleTqZatYMLuqPXLkcPvwHl42N2JOGlSta/e/zxx7FarUyaNImYmJhySwiVXTsvLS2NefPmMXXq1NLHn3rqKYKDg82IL5xEGwbGlx9Bs5aonn2cdhzVthN06oJe9SV68AiUxbmfddJs6AKWuGGQnQlb1psdRXix9PT00vXvfH19S9e/K6uytfOEF9u6HvbtRl1xvdMLihp8JRw9BD+nOPU4IGdernFhLIRFYKxeik+PS81OI7yUPevfVbZ2XslqDVOmTAFg6NCh5ZYXKqu6dfPAPddfc7dMrsijtSZz6UJUs5ZYr7ga5VP1R35dM+mhI8j4NAnf75cRFl+3MWTVkeLlAsrHB9U/Af3Z++gjB1FNmpsdSXghe9a/q+o5kydPJjw8nJycHJ577jlatGhBdHT0Oc+vdt083G/9NXC/TK7Io3/ehPH7r6ixd3MsK9slmXT/yzi9+L8c/TkV1bxuE6lXtW6ey4pXdReSP/vsM9auXQvY2u737dvH/PnzCQoK8ooLyarfUPQXH6LXLEONHmd2HOGFrFZrtevfVbZ2HkB4eDgAISEhxMbGkp6eXmHxEp5Ba43x5QIIj0RdOshlx1UDLkN/sQC96kvUzXc47TguKV72XEgeOXIkI0eOBGzt8l9++SVBQX9NFunpF5JVmBW69UKvW4G+6maUn5/ZkYSXKbv+XXh4OMnJyUycOLHcc2JiYli6dCl9+/YlLS2tdO28goICtNY0bNiQgoICtm7dyujR7rHcu6ilX7fC77+ibroD5eu6zxvVOATVa4Ct5+HVt6ACazbpr71cUrzKXkgGSi8kly1eZa1bt46+ffu6IppLWeKGYaT8gE5JRrnBMtrCu1S2/t3y5cuBqtfOy8nJYcaMGQAUFxfTr18/unXrZtaPIhzA+PIjCAlH9av42qUzqcEj0OtWotetRA11Trd5lxQvey4klzh16hSbN2/mtttuK3e/oy4kg3kXbnW/eI598AaW5BWED7/W9DyVcbc84J6Z3FFF698lJCSU3q5s7bymTZvy4osvOj2fcA2dtgN++xl1w20oP3+XH1+16Qido9HffomOd063eZcUL3suJJfYtGkT5513XrkmQ0deSAZzL9wa/RIo/iSJo1s2lU7RUh8vJNeUu2Wq6kKyEGYzvlgAjUNQ/YeZlsESfyXGay/Az5vg4kscv3+H77EC9lxILrFu3Tr69etX7r6KLiR7KtUn3jYH2OqlZkcRQnghvWsn7EhFJYxCNWhgXpBuvW1DhJw027xLilfZC8lFRUUkJycTExNzzvPy8vLYsWNHuccKCgrIz88vvb1161batGnjithOoRoHo3r2Rf/4LfpUgdlxhBBexvjyI2jUmLqu1VVXyscHNegK+GUL+sCfDt+/S5oN7bmQDLB+/XouvvhiAgICSrf1xgvJKu5y9E+r0evXoPonVL+BEELYQf/5B2xZj7rqZocteVIXql8C+vMP0Su/QP1fokP37bJxXtVdSAYYOHAgAwcOLHefV15I7tQFWra1NR1K8RJCOIhesQQCGqIGDzc7CnCmpalXnK2l6ZqxqEaO6zYvcxuaQCmFihsGe9LRuyvudSmEEDWhTx5Hb/ge1XuQ08ZW1YYaPAJOn0Kv+8ah+5XiZRLVayD4N5COG0IIh9DJK6GoELOvdZ1NtW4PUV1ts80bxQ7brxQvk6jARrbT6fVrMGShSiEA2/IduvC02TE8jjYM2x/CnaIdvkqyI1jiR8CxI7B1Q/VPtnefDtuTqDEVNwxOn6LgOzn7EkL//ivGE3di3HsTxhsvon/eiC523F/qXu3XLXDkIO521lXq4l4QHomxwnHd5u3usFFUVERaWhp79uwhNzeXRo0a0bZtWzp37oyvr0xOXxuqbSdoH0Xe1wvRsXFOW+FUuIfs7Gy2bt3K7t27ycvLIzAwkHbt2nHRRRcRGhpqdjzT6KIi26TVX30C4RGoSwehNyWjN6y1DbS9ZIBtYtk2HSud3KC+M7772vZa9XDeYpN1UdJtXn/6DnrfbtsivXVUbdU5fvw4ixcvZvXq1QQFBdGyZUsCAgIoKCjg66+/5uTJk8TFxTFq1CiPnjjXLGrwcIrnz8KyYzN07VHt84Xn2bdvHwsWLGD79u106NCBli1bEhoaSn5+PmvWrOHtt9/mggsu4IYbbqh0vk9vpQ/uw5j/b9iTjuoTjxrzd1TDQPSNE2DbJowfvkOv/hq98nNo3ho1IAE1+Er5Q68MnXXM1j0+4Wq3nvBb9U9Af/4BetUXqLF313l/1Ravp556ikGDBvHiiy+WznRRVmZmJt9//z1PPfUUs2bNqnOg+kbF9EMtfBdj1Rf4SPHySnPnzmXkyJFMnDgRvwo+XIqKitiwYQOvvvpq6Rye3k5rbZv37pO3oUEDLHc+Wu6sQfn6Qbfe+HTrjc49id74vW2W8gXzwccXNcg9uoK7A712GWiNGnCZ2VGqpBo1RvUaiP7pO1u3+aC6newoXdHEg2UUFRXZ1Sxo7/Nc6cCBAxXe727z5AWsXELuh/OxTH4V1ayl2XHc7vUB98skcxv+paL3WVW/L519DCNpDuxIhQtjsPztHlRIxdPFldtOa4w5z8DObVie+E+N3yvu9n/IIQs/FhVhTLodWrXH596n3CJTVfS+3RjPTERd+zcsw66t9vlVvc+qPfcuW5DeeuutCp/z9ttvu13h8iQNL7vaNt/hqi/MjiKcbPr06RXeXzKLjLfTh/ZhPHsfpO9A3ZKI5Z4n7CpcYBsfaRl7D/j6YyTNls4cAFvXQ3YmFnftqHEW1aodnHch+tuv6vz7q1HD8erVqyu8f82aNXUKUd/5hIajYvujk1eh83LNjiOcaPv27TW635vorGMYs2xnB5bH/40lbliNO2CoMKttdd4/fkMv/dQZMT2K8d3XEB4JF/Y0O4rdLPFXQuZR2PJTnfZj1+nSqlWrANvcgiW3Sxw5coTGjRvXKYQAFX8l+odv0ckrUEOcs3ibMM+CBQsAW/N6ye0Shw8fJjIy0oxYLqNzT2L852nIPYnl4Smo5q1rvS/LJQMwUn+0zZl3YQyqTQfHBfUg+vAB+GULatQtTlkvy2kujgVrE4yVn+NTh96RdhWvtWvXArY3XsntEiEhIdx1113V7mPz5s0kJSVhGAbx8fGMGjWq3OPbt29n+vTpNGnSBIBevXqVLkNe3bbeQLXtBJ262EahD3bO4m3CPCVLAhmGUW55ILBdZ7j++uvNiOUS+vQpjJefg8P7sUx8yvZ/vY7UzXeg07ZjvDULy7/+7da97JxFr/4afHxQ/YaaHaVGlMUHNXg4+uMk9J9/1PqPD7uK11NP2U71P/zwQ8aMGVPjgxiGwfz583n88cexWq1MmjSJmJiYc7oFd+nShUcffbRW23oDS/yVGK9Ph60boVsvs+MIB0pMtM2oHRUVVelK4N5IFxdjvPEi/P4L6u8Po7pc7JD9qqBgLH+7B2POs+gl/0ONHueQ/XoKffoUet1KVPdL7b5m6E5U36HoJe/bus2Pm1irfVR7zauoqKj0dlWFq7CwsNLH0tPTadasGU2bNsXX15c+ffqwYYN904TUZVuPU7J4m3Tc8Co5OTmlt6sqXNnZ2S5I4zpaa/R7r9jGIN04AUtsv+o3qgF1YYxt7NDyRbZl7+sRvfF7yDuJ286oUQ3VKMg2GP2n1egTx2u1j2rPvB566CEGDRpE//79KxznlZWVxZo1a/juu+8qHeeVmZmJ1Wot/d5qtZKWdu5s6jt37uThhx8mLCyM//u//6N169Z2bwuwYsUKVqxYAcC0adOIiIio8Hm+vr6VPmaGsnlyh4/m5H9fIzQ3B9+2HU3P4y7cMZO9nnnmGaKjoxkwYACdOnXCUmaArWEYpKens2bNGn755RdmzpxpYlLH0oveQ69bgRpxAxYnjctS149H/7IFI2k2lif/gwpo6JTjuBv93dfQvDVEdTU7Sq2pwSPQq5ei1y5DXXFdjbevtng9++yzLF68mIcffpigoCCaN29Ow4YNyc/P5+DBg+Tl5REXF8czzzxT6T4qGkp2di+j9u3bM3fuXAICAkhJSeHFF19kzpw5dm1bYsiQIeX+sq1svII7j/fQPfvBgrfI/PQ9LA4YhV7XPO7C3TLVZJzX9OnTWbFiBa+//jpHjhyhSZMmpe+hI0eO0KxZM4YOHcq4ceOcF9jF8j5fgP76E9SAy1Ajb3LacVRAIJZb78OY8Rj64ySHL3jojvSe32HXTttsJB48XZZq0Qa6XGwbfH756Br/LNUWr+DgYMaOHctNN91EWloaf/75J7m5uQQFBdGmTRs6depU7Rgvq9Va7iL1sWPHCAsr304bGPjXqp89evRg/vz5HD9+3K5tvYkKCkb1Hoj+0TGj0IX5fH19GTZsGMOGDSMjI4M///yTvLy80vlBK2rR8GR66wZOvPUf6N4bdfMdTv+AVVEXoIaOsjUfxvR12HU1d6VXfw3+DWzzPXo4yy13QqPgWv0fsXtksa+vL126dKFLly41PkjHjh05ePAgR44cITw8nOTkZCZOLH+RLjs7m5CQEJRSpKenYxgGjRs3plGjRtVu623U4BHotcvRa79BXV79KHThOSIiIjy2+dNuURcQePUtFAwd5bJes2rUzegNazG++BAfLy5euiAPvX4NKra/Wy04WVuqSe1nqqnxtBhbtmxh9+7dFBQUlLv/hhtuqHQbHx8fxo8fz5QpUzAMg0GDBtG6dWuWL18OQEJCAj/++CPLly/Hx8cHf39/7rvvPpRSlW7rzVSrdnD+RejvvkQnjEL5SLd5b1FUVMR3331X4Xvo7rvNaSZ2NBUQSOOxiZxyYTOv8vNHDb0K/dF89O+/ojqe77Jju5Le8D2cKkD1TzA7iulqVLzmz5/PDz/8wAUXXECDBg1qdKAePXrQo0f5iWcTEv76BZQ0q9i7rbezxI/AeGUqpP4AMY7tpSXM8/LLL7Nnzx569uxJSEiI2XG8iuqfgP5iAcbShfjc9ZjZcZxCr10OLdpAh/PMjmK6GhWvdevWMX36dO9v9nAHF8VCRFPbKHQpXl5jy5YtvPzyyzRq1MjsKF5HBTS0rRn11cfog/tQzb1rLKjet9vWUeOG2zy6o4aj1Ghuw5JrUML5lMUHFX8lpP+C/m2b2XGEg0RERFQ5JlLUjRo8Anz90MsWmh3F4fT334CvL6qX53fUcIQanXmNGDGCOXPmcPXVV5/T5NG0aVOHBhOgBlyGXrYQY/F/sfzzeflrywsMGDCAF198kcsvv/yc1ZO7dq37mJ3qplLTWpOUlERqaioNGjQgMTGRDh062LWtJ1DBoai+Q2wdnq66GRVmrX4jD6ALT6N//M42o0Zj6YEMNSxe8+bNAyAlJeWcx86ebFTUnfJvgBp+Pfp/r8H2FOjqOTNHi4otXboUgA8++KDc/UopXn755Trt256p1FJTUzl06BBz5swhLS2NefPmMXXqVK+ahk0ljLINfl35GWr0rWbHcQid8gPknvC4eQydqUbFSwqU66l+Q9FLF2Is/h+WC3rI2ZeHe+WVV5y277JTqQGlU6mVLUAbN25kwIABKKWIiooiNzeXrKwsjh49Wu22nkJFNkPF9LUVsCuu84ou5fr7byCiKZx/kdlR3IasIOnmlK8f6sob0W//B1J/hB6Xmh1JuCl7plLLzMws1+HKarWSmZnp8GnYzJ7Oq3DMeDI3rCVwwxoaXTvWLTKdzd48RQf3cezXrTS6aQJBZ1bdMDuTO6i2eE2ZMoV//etfADz55JOV/uVf1fRQom5U74HopZ9gLPkflm6XyHIpHub+++8vnffzzjvvrPR5r776ap2OY89UapU9x9HTsJk+nVewFaK7c/KzD8nrMwTl529+prPYm8f44mNQFvK7XUqBk/O722tU1TRs1RavuLi40tuDBw92TCJRI8rHBzXyJvQbL6I3fI/qFVf9RsJt/OMf/yi9fc899zjtOPZMpWa1Wst9OJU8p6ioyOumYbMMuwbj30+gf1iFGlDxGFJ3p4uL0etWwoU9vabziaNUW7z69ftrjNHAgQOr3eG8efO4/fbb6xRKnEv17Itu9TH6s/fRMf1k1g0Pcv75f832EB0dXe3zn3/+eSZNmlTj49gzDVtMTAxLly6lb9++pKWlERgYSFhYGMHBwd43Ddv5F0HbTuhli9Ce2tHh542Qk4ml/x1mJ3E7NRrnZY+zV1oWjqEsFixX3QxHDqKTV5odRzjRr7/+Wqvtyk6ldv/993PppZeWTsNWMhVb9+7dadKkCRMnTuT1118v/UOzsm09mVIKy+XXwpGDtuvFHsj4/hsICYOuMWZHcTsO77BRUdu5cJCLL4H2UegvFqB7D6qXS5+LqlU3DZtSqtKWEa+chq17b2jSAuPrT9EJI81OUyM66xhs3Ygadg2qmpU76iOHn3lJV27nUUphGXUzZB5Fr11mdhwh3J6y+KAuGwV70in8eZPZcWpEJ68EbaD6Vb76dn3msnJe3ej9tWvXsmTJEgACAgK4/fbbadeuHQB33XUXAQEBWCwWfHx8mDZtmqtiu58u3SDqAtv8bX2Homo4QbIQ9Y26dDB6yfvkLv4fJP7L7Dh20YaBXrcCzruwTsuGeDOXNBvaM3q/SZMmPP300wQFBZGamsobb7zB1KlTSx9/6qmnCA6WaVGUUliuugXjxUno775EXXaN2ZGEg0nTu2MpP3/U4BGcXvxfLPv3oFq2NTtS9X77GY4eQl11s9lJ3FaNi1d2djbp6emcOHGi3JuspBt9//79z9nGnpH/55331xT/nTt3LtdtV5Snoi6AC7qjv/4UPWAYqmFg9RsJ09g7M03JmnhXX321M+PUSypumK214pvFqHH3mh2nWnrtcggMQsmkBJWqUfFav349L730Es2bN2fv3r20bt2avXv3cv7555cWr7///e/nbFeT0fsAq1atonv37uXumzJlCgBDhw4tN0CyLHtG/oP7jSKvTZ7CW+8h8+HbaLDsE4Jvf8D0PM7mjpnsVfYPsdOnT/PTTz/RqVOn0gGh6enp9OrVq/Q5UrwcTwUF03DwcPJXfIa+eiwqxH3HsOnj2ejUH1ADhqH8/M2O47ZqPLdhYmIil156KbfeeivTp0/n22+/Ze/evVVuV5PR+9u2bePbb7/l2WefLb1v8uTJhIeHk5OTw3PPPUeLFi0qHC9jz8h/cL9R5LXKExKBGjSc/C8/4VR0D1RU3Wckr1MeJ3O3TFWN/D9bYmJi6e3Zs2dz77330rt379L7fvrpJ3744QeH5hPnChw5hvxli9CrvkRdfYvZcSqlv/saiopQA68wO4pbq1Fvw4yMDC69tPxpbFxcHGvWrKlyO3tG/gPs2bOH119/nYcffpjGjRuX3h8eHg5ASEgIsbGxpKen1yS211LXjLUtWPn2HPSpU2bHEXZITU3lkksuKXdfbGwsqampJiWqP3ybt4JuvdDffYU+VWB2nArp06fQ330FF8V63WKajlaj4hUcHEx2djYAkZGR7Ny5k8OHD2MYRpXblR35X1RURHJyMjEx5QfdZWRkMGPGDO6+++5yf9UWFBSQn59fenvr1q20adOmJrG9lmoQgOVv98DRQ+jF/zU7jrBDs2bNSpdFKbFs2TKaNWtmUqL6xZIwCvJOuu1Af/3TajiRg2XoVWZHcXs1ajaMj4/n119/pXfv3gwfPpxnnnkGpRQjRoyocruyo/cNw2DQoEGlI//BNojyk08+4eTJk6VrhpV0ic/JyWHGjBkAFBcX069fP7p161aLH9U7qfMvQg28HL3yM3TPPqhOXcyOJKpwxx13MGPGDD777DPCw8PJzMzEx8eHBx980Oxo9UPHLraB/t8sQccNc6tJrrVhoL9ZAm06wHkXmh3H7Sldh365GRkZFBQUuO2aPwcOHKjwfne7flLXPLogD+PpieDrh+XJ2Sj/uo39crfXB9wvU02ueZ2tqKiItLQ0srKyCA0NJSoqCl8PnkGhoveZu/2+4K9MeuP3GK9Px3LnJFN78539GumfN2LMeRZ12/1Yeg9yi0xmq+p9VqcZNiIiIty2cNUnKiAQy9i74fB+9Gfvmx1HVMPX15cuXbrQp08foqOjPbpweaTul4K1CcY3i81OUo7xzRIItaJi+lX/ZOH46aGEOVR0N1T/BPTyJeg/fjM7jhBuS/n4oIaMhPRf3Oa9ov/8A37Zgho8AuUrc5baQ4qXF1Gjb4XQcFvvw8LTZscRwm2pfkOgYSP08sVmRwFAr1gCDQJQAy4zO4rHkOLlRVRgIyxj74KDe9Gff2h2HCHclgoIRA24DJ3yA/roIVOz6Oxj6PVrUX2HoBoFmZrFk0jx8jKqa09U33j0soXo3ZXPYiJEfacGjwCLQq/83NQcetWXYBTbmjKF3aR4eSF1/W0QHIbx6vO2NYGEEOdQ4RGo2P7o71eg806akkGfKkCvXgrde6MiZaxfTUjx8kIqMAjLPY9DXi7Gf55G5+WaHUkIt6SGjoJT+eg15qyPp5NXQt5JLENHmXJ8TybFy0upNh2x3DkJDu3DmDsVXVhodiQh3I5q0wHOvwi98nOXT7Gmi4ttg5LbR0HH8116bG8gxcuLqehuqHET4bef0Umz0dVM4yVEfWS58kbIzkQv/cSlxz218Xs4eghLwihZgb4WpHh5OUvvQahr/4besBb9SZLZcYRwOyrqAlSvOPTShegjB1123LwlH4K1iW3QtKgxKV71gLrsGtTgEehvlmC4ybgWIdyJGj0OfHwxFsxzyfF0+i8U/rIFNeRKlI/7zK/oSVw2L83mzZtJSkrCMAzi4+MZNWpUuce11iQlJZGamkqDBg1ITEykQ4cOdm0rqqaUghtuQ2dnoj9+CyM0HMslA8yOJYTbUKFW1Mgx6I+T0Fs2oC6OddqxdGEhxnuvYLFGQr+hTjuOt3PJmZdhGMyfP5/HHnuMWbNmsW7dOvbt21fuOampqRw6dIg5c+YwYcKE0tnl7dlWVE9ZfLDc/gB0jrZd//p1q9mRhHAravCV0Lw1xoI3nTpDjf78AzjwJ8F3PooKCHTacbydS4pXeno6zZo1o2nTpvj6+tKnTx82bNhQ7jkbN25kwIABKKWIiooiNzeXrKwsu7YV9lF+/ljuehwim2O89CzGj9+aHUkIt6F8fbHcOMG2Pt6yhU45ht6Vhl66ENU3ngY95VpXXbik2TAzMxOr1Vr6vdVqJS0t7ZznRERElHtOZmamXduWWLFiBStWrABg2rRp5fZXlq+vb6WPmcGleSIiKJ76KjkvPk7h/Fn4H9xL43H3oPz+mgzU3V4fcM9MwvuoLhejevZFf/UJuvcgVERTh+1bF57GSJoNIWG2iQREnbikeFW0ZNjZXUMre44925YYMmQIQ4YMKf2+snVp3G3NGjPy6HueRC16l/yvPiH/t21Y/vEIKsxqWp7qmPIaFRWhKlmupC7reQn3pq4fb1tb66P5+CQ+5rD96s8/gIN7sdz7FCpQ5jCsK5cUL6vVyrFjf01TdOzYMcLCws55TtkPp5LnFBUVVbutqDnl64u6bjy6fRTG23MwJt+H5R//RNXDFVz1yeNwYC/60F7b14P74NBeCAnH57EZZsezy8mTJ5k1axZHjx4lMjKS+++/n6Cgcz8gK+v89NFHH7Fy5UqCg4MBuPHGG+nRo4crfwS3ocIjUcOvRy96D70tBdW17q+D3rUTvXQRqt9QVNeeDkgpXFK8OnbsyMGDBzly5Ajh4eEkJyczceLEcs+JiYlh6dKl9O3bl7S0NAIDAwkLCyM4OLjabUXtqZh+WFq0wXj1eYx/P2EbE3bj7WbHchpdkA9//IpO+wX9+y+wbzecyPnrCf4NoFkrVOcLoF0n03LW1OLFi7nwwgsZNWoUixcvZvHixdxyyy3lnlPS+enxxx/HarUyadIkYmJiSheUHT58OCNHyuSwYJs2Sq9bifHhm1iemlOuWb2mbM2F/4HQcNR14x2Ysn5zSfHy8fFh/PjxTJkyBcMwGDRoEK1bt2b58uUAJCQk0L17d1JSUpg4cSL+/v4kJiZWua1wHNWiDZbHZtrWAfs4iZx9u9CjxqLCPf8akz6eDek70Gm2f+z9AwwDlAVat0d162UrVs1bQ4vWEBaBsnje8McNGzbw9NNPAxAXF8fTTz99TvEq2/kJKO38JKuhn0v5+WG58e8Y/3kGveIz1OXX1npf+rOS5sKnUYGNHJiyfnPZOK8ePXqc0wyRkJBQelspxe23V/wXf0XbCsdSDQOx3PEIevkiTi16DzZ8b2viGDYaZY00O57ddO4J+G0b+tet6N9+hgN/2h7w84cO56GuuA7VKRo6nudV3ZRzcnJKm9PDwsI4fvz4Oc+prvPTsmXLWLNmDR06dGDs2LEVNjuCfR2j3LGDTY0zDbyM7B+/5fRXHxHSZyB+Hc+r8TELd24nc/kiGg65kuCBCeUe84rXyEQuK17C/SmlUJddQ9jQKzn2vzfRa79Br/0G1Wcw6vLRbrlkg87Psy3n/utW29i1vX+A1rbmv6gLUJcOsjUBtu3o8curT548mezs7HPuHzNmjF3bV9X5KSEhgdGjRwOwYMEC3n333dLWj7PZ0zHKWzr96KvHon/bTuYjf0eNvBE17BqUxb4ZMXThaYxZz0BoOKdG3nzOsb3lNXKmqjpGSfES5/Bp0hzL/yWih1+H/vpT9PfL0ckrUb0H2c5cmjQ3LZvOyTqrGXAXaAN8faHD+agrb0R1uQjadfb4YnW2J554otLHQkJCyMrKIiwsjKysrNKOF2VV1XEqNDS09P74+HheeOEFxwX3YMraBMvTc9D/fdXWgePnjVjG31/tH3L6918xPv8ADu3Dct8zqIbec5bvLqR4iUqp8EjUzXegr7jOtjLzmmXoH1ZBpy6o8y5CnX8htD+vThezq6IL8mD/n+j9u8nZv5vibalQMnGqv7/t2MOvR3WOho5dUA0aOCWHJ4iJiWH16tWMGjWK1atXExt77vRGVXWcKil8AOvXr5frymWoRo1hwsNw8SXo91/HeOZe1JjbUX2HlBu2o41iSP3RNn/oH79BYBDq+ttQF3Q3L7wXU7qitgQvceDAgQrvd7dTY0/Jo7Mz0d9+id6eCn/+fqZ5zt9WOM67EHX+RdCqPfj7273Egy4uhtwTcDwbfXAv7NuD3r8b9u+BjMOlz1ONQ9Adz0d1jrZds2rTsdIxWK7gbuO8Tpw4waxZs8jIyCAiIoIHHniAoKAgMjMzef3115k0aRIAKSkpvPPOO6Wdn6655hoAXnrpJXbv3o1SisjISCZMmGD3kJSK3mfu9n8aHJNJHztqG2j828/QrTeWsXeBnz963Qr0is9s/2cjm6GGjLQVtwYBTs3jaO6Wqar3mRQvN+CJeXTuSUjbhv71Z1vHiH27/3rQ1xcaNoLAIAhsBIGNbIMyff1sy62fPA4njtu+nr38usUCTVuiWraFVu1sX1u2JeL8C8o1eZnN3YqXmepT8QLQhoFe8Rl60bu2/+fFRZCXCx3Px5IwCrr1suu6mDe/Ro4i17yEw6lGQdCtN6pbbwD0iRzYuQ195JCtIOXlQn6urcjl5aIzjkDhKWjUGIKCUW07QlAwBDU+8zUY1awVNG+F8vM/93iyWJ9wE8piQSWMQkd3w/hoPiowCDX0KpSshuxSUryEQ6jGIdCzL1JiRH2hWrXD54HJZseotzxvNKYQQoh6T4qXEEIIjyPFSwghhMfx6t6GQgghvFO9PPN69NFHzY5QjuSpnjtmEpVzx9+Xu2VytzzgnpkqUy+LlxBCCM8mxUsIIYTHqZfFq+yM2O5A8lTPHTOJyrnj78vdMrlbHnDPTJWRDhtCCCE8Tr088xJCCOHZpHgJIYTwOPVqbsPNmzeTlJSEYRjEx8czatQosyNx1113ERAQgMViwcfHh2nTprn0+HPnziUlJYWQkBBmzpwJwMmTJ5k1axZHjx4lMjKS+++/v9Il4V2V6aOPPmLlypWliyzeeOON9OjRw2WZhP3kfXYueZ85ga4niouL9d13360PHTqkCwsL9UMPPaT37t1rdiydmJioc3JyTDv+9u3b9e+//64feOCB0vvee+89vWjRIq211osWLdLvvfee6ZkWLFiglyxZ4tIcoubkfVYxeZ85Xr1pNkxPT6dZs2Y0bdoUX19f+vTpw4YNG8yOZbro6Ohz/trbsGEDcXFxAMTFxbn8daook/AM8j6rmLzPHK/eNBtmZmZitVpLv7daraSlpZmY6C9TpkwBYOjQoW7RVTUnJ6d0Fd2wsDCOHz9uciKbZcuWsWbNGjp06MDYsWM9+o3nreR9Zj95n9VNvSleuoIRAe6wwOHkyZMJDw8nJyeH5557jhYtWhAdHW12LLeTkJDA6NGjAViwYAHvvvsuiYmJJqcSZ5P3mWfzpPdZvWk2tFqt5ZaRP3bsWOlfPWYKDw8HICQkhNjYWNLT001OZMuSlZUFQFZWVunFWzOFhoZisViwWCzEx8fz+++/mx1JVEDeZ/aT91nd1Jvi1bFjRw4ePMiRI0coKioiOTmZmJgYUzMVFBSQn59fenvr1q20adPG1EwAMTExrF69GoDVq1cTGxtrciJK3+QA69evp3Xr1iamEZWR95n95H1WN/Vqho2UlBTeeecdDMNg0KBBXHPNNabmOXz4MDNmzACguLiYfv36uTzT7Nmz2bFjBydOnCAkJITrr7+e2NhYZs2aRUZGBhERETzwwAMubfeuKNP27dvZvXs3SikiIyOZMGGCW/xFL84l77NzyfvM8epV8RJCCOEd6k2zoRBCCO8hxUsIIYTHkeIlhBDC40jxEkII4XGkeAkhhPA4UryEEEJ4HCleQgghPM7/A6tH4A4UownkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<Figure size 432x288 with 4 Axes>" - ] + "text/plain": "<Figure size 640x480 with 4 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB10lEQVR4nO3deVxU9f7H8df3sCioLAoIiguomJp7mZqlaS4VLbao2a2sbJNsub+ybNVuWdwWu6XtpXXvtdzLrNRcy7xlZWmJuaRoKggIiMjO+f7+GJkiFgec4czyeT4ePmLOMvP+ztDhM+d8v9+jtNYaIYQQQgjh0QyrAwghhBBCiNMnRZ0QQgghhBeQok4IIYQQwgtIUSeEEEII4QWkqBNCCCGE8AJS1AkhhBBCeAEp6oQQQgghvIAUdUIIIYQQXkCKOiGEEEIILyBFnRBCCCGEF/C3OoA7yMnJoaysrMryyMhIMjMzLUjkeeS9coy8T46r6b3y9/cnPDzcgkTeo6Zj3l956++rt7YLvLdtvt4uR497UtQBZWVllJaWVlqmlLKvk9vj1k7eK8fI++Q4ea9cq7pj3l9562fgre0C722btMtxcvlVCCGEEMILSFEnhBBCCOEFpKgTQgghhPACUtQJIYQQQngBGSghhBBCiNOis7PQX6+GgnzUBRejolpZHcknSVEnhBBCiDrTpgkpP2JuWAFbvwNt2pav/wx14eWoS65BNQ62OKVvkaJOCCGEEA7TeTnor9egN6yAoxl/rEg4E/z9IeUn9IrF6P+tQ115A6r/EJQhvb0aghR1QgghhKiV1hp2/YLesAK95X9QfnLy6uAmqAFDUYNHoWLa2Lbb9h3m/LchMx095yX0hs8xxt2GiutkbSN8gBR1QgghhKiWLi5Gf7XCdlYu/dAfK+ISUIMvQp01CNWokX2xUgp69sPo2hu9ehn60/mwdyfmjP9DDRxmO3MXKneEcRUp6oQQQghRhdYa841k+Pl724JGQaj+g1Hnj0K1ja91XxUQgLroKvSAIejF76O/WYfetAa9ZRMqcRxqWCLKP6ABWuFbpKgTQgghRFU/fWsr6Pz9UWNvtRV0dRz4oMJaoG65Dz3kIswP34LU3ehFc9BfrcK49jZUt94uCu+bpOeiEEIIISrRxcW2fnGAGjEaY8hFpzWSVXU4A2Pqc6gJd0NIGBw5hPmvaZjfbXRSYgFS1AkhhBDiL/SKRbaRrc0jUBdf45TnVIaBce6FGE+9jhpwAWiNfudFdMqPTnl+IUWdEEIIIf5EZ6ShVywBwBgzEdWosVOfXwUFoybcjTprEJSXYb76DHrfbqe+hq+Sok4IIYQQdub8t6GsFLr0hD4DXPIayvBD3Xyf7TWKizBfnoZOO+iS1/IlUtQJIYQQAgC99TvY9h34+WNce7ttihIXUQEBGJOmQvtOkH8c86XH0dmZLns9XyBFnRBCCCHQpSWY898CQF14GSom1uWvqRoHY9z9BES3huwszJemofPzXP663kqKOiGEEELY+tFlpkNYC1Ti2AZ7XdUsBOPeJyE8AtJ+x3z5SXRRYYO9vjeRok4IIYTwcTozHf35IgDUmJtRjYMa9PVVi0iM+6ZDk2awbxfma8+iy0obNIM3kKJOCCGE8HHmgnegtAQ6d7eNSrWAimmDcffj0KgxpPyIfvcltFluSRZPJUWdEEII4cP0zz/Y7h7h5+fywRGnouI7Y9w5Ffz80d99hf7gLbTWluXxNHKbMCGEsMjKlStZtmwZubm5xMbGMmHCBLp06VLtttu3b2f69OlVls+cOZPWrVu7OqrwUrq0FPPDNwFQQxNRrdtanAhUt962W4u99Tx6/WeYzULhjv+zOpZHkKJOCCEssGnTJubOncvEiRPp3Lkzq1evZsaMGcycOZOIiIga93vppZcIDv7jdk0hISENEVd4Kb1qKWSkQWg46tJrrY5jZ5x9Hmb+cfS819GffMDx2DbQ9zyrY7k9ufwqhBAWWL58OUOHDmXYsGH2s3QRERGsWrWq1v1CQ0MJCwuz/zMMOYyL+tFHM9GfLQBAXX0TKqj+93Z1BeOCi+2FZu7rz2Fu+87iRO5PjgZCCNHAysrK2Lt3Lz179qy0vEePHuzcubPWfadMmcJtt93Gk08+yS+//OLKmMLLmQvegZISSOiGOmew1XGqpS4dhzp/JGiN+cZz6IOpVkdya3L5VQghGlheXh6maRIaGlppeWhoKLm5udXuEx4ezm233UZ8fDxlZWV8+eWX/OMf/+CJJ56ga9eu1e5TWlpKaekf00IopQgKCrL/XJuK9VZ2mncFb20X1K1t5vYfYcsmMAz8rr0d5aZnfJVScN2d+OUepXjb95iv/AO/R15AhYZbHe20ueJ3UYo6IYSwSHUH85oO8K1ataJVq1b2xwkJCWRlZfHJJ5/UWNQtXbqURYsW2R/HxcWRnJxMZGSkwxmjo6Md3taTeGu74NRt06WlpC98BxNomjiG8H4DGybYaSh/OJmMv99E2eED+L31HFHPvI4KbGR1LKdw5u+iFHVCCNHAQkJCMAyjylm5Y8eOVTl7V5uEhAS++uqrGtePHj2axMRE++OKgjEzM5OysrJan1spRXR0NOnp6V41pYS3tgscb5u5ehnmwf3QLIzCCy+nKC2tAVPWXUW7SHoEnv4/Sn79mUPPTMW49X6PPuNal99Ff39/h76MSVEnhBANzN/fn/j4eLZt20a/fv3sy7dt28bZZ5/t8PPs27ePsLCwGtcHBAQQEBBQ7TpHCxqttdcVP+C97YLa26bNcsw1nwCgLrsWgpp4zvvQshXGHQ9i/msaevOXmDGxGInjrE512pz5u+ieF9GFEMLLJSYmsmbNGtauXcvBgweZO3cuWVlZDB8+HIB58+Yxa9Ys+/affvopmzdvJi0tjd9//5158+bx7bffMmrUKKuaIDzRL1ts93cNboIaMNTqNHWmuvREjb8DAP3xPMzvNlqcyL149Jm6lJQUli1bxr59+8jJyeH++++v9K1XCCHc1cCBAzl+/DiLFy8mJyeHNm3aMHXqVPsllpycHLKysuzbl5WV8e9//5vs7GwCAwNp06YNDz30EH369LGqCcIDmes+BUCdeyGqkWf2STPOH4mZdhC9+mP0nJfQEVGouASrY7kFjy7qiouLad++PRdccAEvvPCC1XGEEKJORo4cyciRI6tdl5SUVOnx5ZdfzuWXX94QsYSX0hmHbWfqlEINucjqOKdFXTMBfeQQ/Pw95uynMR5+HtXc8QFA3sqjL7/27t2bcePGcc4551gdRQghhHBret3nth+69UFFtap9YzenDD+M2+6H1u3gWA7mK0+hiwqtjmU5jz5TV1d1mbPJm+cycjZ5rxwj75Pj5L0Swrl0cRF602oAjKGXWJzGOVTjYIzJj2E+/X9wcB/m2y9gTJqKMvysjmYZnyrq6jNnkzfPZeRs8l45Rt4nx8l7JYRz6G83QMEJiIyGbt7TD1O1iMJIegTz+Udg62b0kvdRV99kdSzL+FRRV5c5m7x5LiNnk/fKMfI+Oa6298rR+ZqEEDZaa3TFAIkhF7nt3SPqS3U4AzXhbvTbL6BXLsVs2RrjvBFWx7KETxV19ZmzyZvnMnI2ea8cI++T4+S9EsIJ9uyAg6kQGIg690Kr07iEcc5gzPRD6OUfov/9KmbjIIyzz7M6VoPzrnJdCCGEEJXYz9L1G4xq0sziNK6jLh2HOm8EaBP9zovon76xOlKD8+iirqioiNTUVFJTUwHIyMggNTW10txOQgghhK/SudnoLZsAUBdcbHEa11KGgfrbnahzBkN5OeYb/0T/ssXqWA3Koy+//vbbb0yfPt3++P333wdg8ODBVeZ4EkIIIXyN/nIllJdDxy6oth2sjuNyyvCDm+5Fl5XCD5swX52BcffjqDN6WB2tQXh0UdetWzcWLFhgdQwhhBDC7eiyMltRB6gh3n2W7s+Unx/GxP/DLCuDrZsxZz2Fce80VMeuVkdzOY++/CqEEEKI6ukfv4Fj2RAShuo70Oo4DUr5B2DcPgW69oLiIsyXn0Sn7rY6lstJUSeEEEJ4Ib1uOQDq/JEo/+pnfvBmKiAQY9IjkNANCgswZz6B/n2f1bFcSoo6IYQQwsvog/tgdwoYBur8UVbHsYxq1Ahj8mMQ3xkK8jFnPo4+fMDqWC4jRZ0QQgjhZfS6zwBQvQegwltYnMZaqnEwxj1PQNsOcPwY5ouPozMOWx3LJaSoE0IIIbyILshHf7MeAHWBd9zn9XSp4KYY902H1u3gWDbmC4+is45YHcvppKgTQgghvIj+eg2UFNsKmIRuVsdxG6ppCMbfn4To1pCdhfniY+hs75rXVoo6IYQQwkto08S03+f1Yvs9zoWNCgnH+PtTEBkNmemYM/4PvTvF6lhOI0WdEEII4SWKfvwWMtIgKBjVf4jVcdySCm+B8X9PnbwUm4P5wiOYa5Z7xX2mpagTQgghvET+ctuE/GrgMFTjIIvTuC/VIgpj6nOos8+D8nL0h2/a7hdbXGx1tNMiRZ0QQgjhBXRmOkXfbQR86w4S9aUaNUbdej9q7C1gGOhvN2A+OwWdmW51tHqTok4IIYTwAub6z0FrVLfeqOjWVsfxCEopjAsvt/WzaxYKB/dhPnUf+ucfrI5WL1LUCSGEEB5OlxSjN34ByDQm9aE6n4nx6MyTkxSfwHzlScxPPkSbptXR6kSKOiGEEMLD6W83wInj+EXFoHqcZXUcj6SaR2DcPwM15CLQGr1sHubsp9EF+VZHc5gUdUIIIYQH06aJXrkUgKaXjkUZfhYn8lwqIADjujtRE+4B/wDY9h3m0/+HPphqdTSHSFEnhBBCeLKfvoUjhyC4CU1HjbY6jVcwzh2G8VAytIiCjDTMZx7AXPURuqzU6mi1kqJOCCGE8FBaa8wViwHbiFcjuIm1gbyIatcR49EXoWsvKClGL3wX84nJ6K2b3XZOOynqhBBCCE+1ezvs2wX+ARjDLrU6jddRTUMw7nkCdeNkCAmDjMOYs57CnPk4+uA+q+NVIUWdEEII4aHMFUuAk5MNh4ZbnMY7KcMPY9BwjKdfR110ta2v3Y6tmE/eh/nvV9F5uVZHtJOiTgghhPBA+mAq/Pw9KAM18gqr43g91TgY48obMP7xKuqsQaBN9JcrMB+9A3PlUnSp9f3t/K0OIIQQVjt8+DDZ2dmUlJQQEhJCq1atCA4Odvnrrly5kmXLlpGbm0tsbCwTJkygS5cuNW6fkpLCe++9x8GDBwkPD+eyyy5jxIgRLs8p3JNeefIsXZ8BqKhWFqfxHSqiJer2KegLLsFc8A7s34NeNAe94XOMa26GXueglLIkmxR1QgiftGvXLr744gt++ukn8vLyKq0zDIP27dtz3nnnMWTIEJcUeJs2bWLu3LlMnDiRzp07s3r1ambMmMHMmTOJiIiosn1GRgbPPPMMw4YNY/LkyezcuZO3336bkJAQ+vfv7/R8wr3poxnozV8CoEZdaXEa36QSumE8/Dz6m3XoJf+GzHTMV2dA5+4Yo69HdTijwTNJUSeE8CmpqanMnTuXHTt20Lp1a8455xzi4+MJCQkhMDCQ/Px8jhw5wu7du/nggw+YP38+o0ePJjExEX9/5x0yly9fztChQxk2bBgAEyZMYOvWraxatYrx48dX2X7VqlVEREQwYcIEAGJjY/ntt9/45JNPpKjzQfqLj8E04YweqPadrI7js5RhoAYOQ/cZiF6xGL3qI9j5M+azU+DMPhiXjUfFJTRYHinqhBA+5eGHH2bQoEHccMMNxMfH17ptUVERmzZt4uOPP6a8vJyrrrrKKRnKysrYu3cvV1xxRaXlPXr0YOfOndXus3v3bnr06FFpWa9evVi3bh1lZWVOLTiFe9P5eeivVgFgjHLO76Q4PapxEOqKv6HPG4n+dD7669XwyxbMX7ZAj7NtxV27Di7PIUcBIYRPeeGFF4iJiXFo28aNGzN06FCGDBlCVlaW0zLk5eVhmiahoaGVloeGhpKbm1vtPrm5udVuX15ezvHjxwkPrzrysbS0lNI/dd5WShEUFGT/uTYV663qG+Qq3tAuvf4zKCmGNvGobr2rtMmT21YdT2qXioiCGyejL7oac/l89P/W2e5Kse07VK9zbMVdW9uXSVe0S4o6IYRPcbSg+zPDMIiKinJ6luoO5rUd4P+6rmIC1Jr2Wbp0KYsWLbI/jouLIzk5mcjISIczRkdHO7ytJ/HUdplFRaSt+wyA5uNupkmrqgMkPLVtp+JR7YqJgZ59KD10gLwP36Zg/Qr0T99S/tO3BJ07lJDxtxHYviPg3HZJUSeE8Fl33XUX999/P+3bt6+y7sCBA/zzn/9k1qxZTn/dkJAQDMOoclbu2LFjVc7GVQgLC6uyfV5eHn5+fjRt2rTafSr6AlaoKP4yMzMpKyurNaNSiujoaNLT09129vz68PR2mWs/xczLhYiWHOt4JnlpafZ1nt62mnh0u4wAGH8nfhckYn7yIfq7ryj8ei2Fm9ahzhpEy5vv5mhg0Cnb5e/v79CXMY+fp27lypUkJSVx3XXX8eCDD7Jjx44Ge+0jBUd44YcXOFJwxOnrrdrX23K5Wx5n7Cucp7biprS0lMzMTJe8rr+/P/Hx8Wzbtq3S8m3bttG5c+dq9+nUqVOV7bdu3Up8fHyN/ekCAgIIDg62/6u49Aq2s3yn+ufodp72z1PbZZaVYVZMYzLiCjAMr2mbt35m9vzRsRi33o/xxCsn57jT6O++In3SGMq//9qh9jvCo4u6iikBrrzySpKTk+nSpQszZsxwat+X2mQUZPDilhfJKMhw+nqr9vW2XO6Wxxn7ioZx5MiRSkWQsyUmJrJmzRrWrl3LwYMHmTt3LllZWQwfPhyAefPmVTpLOGLECLKysuzz1K1du5a1a9dy6aVyayhfoX/4Go5mQNMQ1MALrY4j6kG1botx+xSMJ/6F6jMAo1kIqmsvpz2/R19+reuUAI7SGgoLFSdOQEGBoqYiuajoj/8WFFTt03I6663atz7PrdQf75U75arvPq7K46z3yRdUvFd1+ILqsPXr17Nhwwb747fffrtK8VZSUsL+/fvp2rWr8wOcNHDgQI4fP87ixYvJycmhTZs2TJ061X6JJScnp9IX1KioKKZOncp7773HypUrCQ8P56abbpLpTHyE1hq9YjEAamgiqlEjixOJ06Fi4zAmPUxU02Ay8gvqdDauNh5b1NVnSgBHR4IVFio6dqzouPiXDoxN06DZyT4MMb/DZXDFnb9D2slr3aYBhlm/9cGZoIHCyIbd1ynPfdh9ch0DgrPgRASEuUEeZ7xPx2Mgv+4d/D3db78ZBAWZTn3OkpKSSpMNnzhxotJxAWyXLQcOHMiYMWOc+tp/NXLkSEaOHFntuqSkpCrLunbtSnJyskszCTeV8hP8vg8CG6EuuNjqNMJJ/JqFQn6B055PaWeVhw0sOzubO+64g3/84x+V+qAsWbKEDRs28K9//avKPgsWLKh2JNhfnTgBNfQ7hiHTYMj0moOlDob2G+q/vjau3Ncbc7lbntPZd/0TsH5a/fb1YPn50KSJ654/KSmJBx54oNqBEt4sMzOzSiH7V0opYmJiSEtLc9pZBHfgqe0qf+FR+HUbatilGONurXYbT23bqUi7bF80HRko4bFn6irUZUoAR0eCaW07Q9CyZUuOHDlS6c3OKBhNRuFAALZn/8wj397P0+c8T7fm3QEwMDB5uF7rs4uOolCEN27eoPue7nP7KT/CW7zI0aNH+eXoNstzxQS3Iqc4m+aNWnC44JDleZzxPkVd2ZKo4PRqf6+9kVKKli1bkpeXTl5e5YOdo6PAHDF79mynPI8QrqRTd8Ov28AwUMOvsDqOcGMeW9TVZ0qAgIAAAgICql331yo5KMikSRPbf/+8rl1QJO2w/UFp3Ni2vG+rM+kecWaV5zyd9VbtW5/ntn/bCEqjUSPTDXJ1ty//OetnN8jjrPfJuZch3ZlSiiZNIC+vbiO/HJGVlVXtvVVPJTs7m+bNmzs1ixCO0CtOjnjtdz6qhXO+0Ajv5LGjX+szJYAQQtxzzz3MmTOH9PRTn/ksKyvjf//7Hw888ABr165tgHRCVKYzDqO3/A8ANfJKi9MId+exZ+rANiXAK6+8Qnx8PAkJCaxevbrSlACuFhUcxd/7/J2o4Opnmj+d9Vbt62253C2PM/YVp+fRRx/lvffeY8WKFXTs2JFu3boRFxdHaGgoAQEB5Ofnc+TIEXbt2sXWrVspKiri4osvrtR1Q4iGold+BNqE7mehYttbHUe4OY8dKFFh5cqVLFu2zD4lwI033ljnaQiq6zTsrR0zXUHeK8fI++S42t4rRzsMn8qPP/7IF198wc8//0xJSUmV9VFRUZx33nkMHz682vuqejIZKOEZ7dLHcjAfmghlpRgPzEAlVO0G8mee1La6kHb50ECJ2qYEEEKImvTu3ZvevXtTVlZGamoqOTk5lJSU0KxZM2JjY6X/nLCc/nwRlJVCfGfo1M3qOMIDeHxRJ9yXNsthxzb0kUMYQ+XSlXBP/v7+dOzY0eoYQlSij2aiN3wOgHH5dTXO6iDEn0lRJ5xOHzqA/t9a9LfrITcb/APQ/Yeggmua/E8IIcSf6U/nQ1kZdO4OXXpaHUd4CCnqhFOUH8vBXL0M83/rYP+eP1YEN0X1Ox9O0X9HCKukpaXxxRdfcOjQoSp965RSPP744xYlE75KZxxGf70aAOMKOUsnHCdFnag3XVyE3roZNn/J4V9+gPJy2wo/P+h+FsaAC6D72aga5gYUwmoHDhzgkUceoXnz5qSnp9OuXTuOHz9OdnY2LVq0oGXLllZHFD5IL/sATBPO7Ivq6Lr7DwvvI0WdqBNdVgYpP6K//RK99VsoLvpjZbuOqAFDUf3OQzWrfgJoIdzJBx98QM+ePbnvvvsYP348d9xxB/Hx8WzZsoXXXnuNcePGWR1R+Bh9aD9685cAGFf8zeI0wtNIUSdOSZsm7NmB3rwB/cPXkH/8j5URLVHnDKblJVeRFRjsVcPNhffbt28fEydOtF/eqvj97dOnD5deeinz5s1j+vRa7vUshJOZy+bZ7lXZZyCqXQer4wgPI0WdqJE+uA/9zQb0d19CdtYfK0LCUGefZ+srF5eAYRgExMRAWpp1YYWohxMnTtC0aVMMw8DPz48TJ07Y18XHx7No0SIL0wlfo/fvgS3/A6UwLh9vdRzhgU6rqNu7dy/x8fHOyiLcgM46gt78pe30/6H9f6wICkb1HoA6ZzB07o7y87MupBBO0rx5c/Ly8gCIjo4mJSWFHj16ALb+do0bN7YynvAx5kf/AUCdMxjVqq3FaYQnOq2iburUqXTs2JFRo0YxYMAA/P3lxJ8n0sXF6C2b0BtXwa7tf6zw97cNeDhnCPQ4CxUQaFlGIVyhc+fO7Nq1i379+jFo0CAWLlxIbm4u/v7+rF+/nvPOO8/qiMJH6N0p8MsW8PNDXXqt1XGEhzqtKmzSpEmsXLmSWbNm8f777zNs2DCGDx9OixYtnJVPuJDe/xt64yr0txugsMC2UCnbmbh+56P6DpS55YRXu/LKK8nJyQHgiiuuIDc3l40bN6KUYsCAAVx//fUWJxS+QGuN+dG/AVDnXoiKirE4kfBUp1XUDR48mMGDB7Nnzx5WrFjBJ598wscff0zfvn256KKL6NbNc29rok2TsqwMq2M4nS4sQH+zDv3VKvh93x8rIlraDiYDh6GaR1gXUIgGFB0dTXR0NACGYXDzzTdz8803W5xK+JwdP9mukvgHoC4Za3Ua4cGccr20Y8eO3HXXXdxwww2sXr2a1atX8+STTxIbG8uoUaMYPHgwgYGec+lO5xzFfGwS6drEeGU+GIbVkU6bzjmKXrMM/eXKP87K+fuj+gxEDRpuOzvnBe0Uoi5effVVrr76aqKioqqsy8zMZOHChUyaNMmCZMJXaK0xl57sSzd4lHypFqfFqX/F/f39adSokb1vXXFxMW+//Tb33HMPu3btcuZLuVZoOAC6pBjSfrc4zOnRh/ZjvvsS5tRb0SuX2gq6mDaocbdhPP8exq33o7r0lIJO+KQNGzbYB0r81fHjx9mwYUMDJxI+Z+u3kLobAhuhLr7a6jTCwznlTN3+/ftZuXIlGzdupKysjP79+3P33XfTsWNH9u/fz5tvvslbb73Fc88954yXczllGKi4Tuhft6F3b0e1bmd1pDrTu37B/Hwx/PLDHwsTumGMuBK695UiTohTyM/PJ0DuhiJcSJsm5kf/BUANuxQVEm5xIuHpTquo27RpEytXruTXX38lJCSExMRERowYQVhYmH2bdu3ace211/L000+fbtYGpbr2shV1P32LGnKx1XEcpg+mYi55H37+3rZAKeg9AGPkaFR8Z2vDCeEGUlJSSElJsT9es2YNP/30U6VtSkpK+O6774iNjW3gdMKX6O832qaOCmqCGnml1XGEFzitou5f//oX7du3584772TQoEE1TmkSGRnpcVMDqL7nwpL30Tu2onOPosLce0Svzs5CL/svetNa22zkfn62gQ8jR6OiWlkdTwi3sX379kqTCq9du7ba7SIiIrjlllsaKpbwMbq83HaPV0CNuALVRGYaEKfvtIq66dOnc8YZZ5xyu5YtW3pcZ2PVshWB3XpRsv0n9OplqKtvsjpStXTBCfSKxejVy6C0xLawz0CM0dejoltbG04IN3T55ZczatQotNbceuutPPLII8TFxVXaJiAgQCYeFi6l/7cWjhyCpiGoCy+1Oo7wEqdV1DlS0HmykKtuIGv7T+gNK9AjRqNCwqyOZKe1Rm9ai140B/JPdvTu2BXj6gmoDt79uQhxOgIDA+2j8WfNmkV4eLhMnC4alC4tRX/yIQDqoqtQjYMtTiS8hRzJatH47EHQJh5+34v+8C3UbQ9YHQkAfegA5n9fhd0n+wVFt8a46kboeY79xuRCiFOLjIwE4NChQ6SkpHD8+HGGDh1KWFgY2dnZNG3a1KOmYxKeQW9cBdmZENYcT+qzLdyfFHW1UIaB3413Uf70/ejvvkKfMxjVs59leXRxEXr5fPQXH0F5uW0I/KXjUBdejpIzDULUmWmavPHGG6xfv96+rFevXoSFhfHmm28SFxfH2LEyGaxwHl1UiP50AQDqkjGowEYWJxLeROa1OAXVvhNqxOUAmO/MRP/5LgwNRGuN/ulbzCfuQq9YbCvoevbDeHI2xqirpKATop6WLFnCxo0buf7663nhhRcqrevdu3eVUbFCnC792QI4lgOR0baJ34VwIqkGHKAuG4/+7VfYswPzpScwHny2wUaU6iOHMT9864/55ppHYlx7G6rXOQ3y+kJ4s/Xr13PVVVeRmJiIaZqV1kVFRZGR4ZpbBebn5zNnzhy+/9429dBZZ53FzTffTJMmTWrcZ/bs2VUmQ+7UqZPHTRfly/SRw+hVHwNgjLkF5S/zIArnkqLOASqwEcbkxzCfewQO7sN88XGMux5FxbZ32Wvq4iL0pwtsl1rLysDPHzX8clTiWFQjGZUnhDNkZ2eTkJBQ7bqAgACKiopc8rovv/wyR48e5ZFHHgHgjTfe4JVXXuGhhx6qdb9evXpVmklABnh4FnP+21BeBt16g4VdeYT3ksuvDlLBTTHumwZRMXA0A/Pp/8NcvQyttVNfR2uN+d1GzMcmoT9fZCvouvXGmPYKxlU3SkEnhBOFhobWeDbu8OHDNG/e3OmvefDgQX766SfuuOMOEhISSEhI4Pbbb2fLli0cPny41n39/f0JCwuz/2vaVOY28xR623e2SeH9/DHG3SqD2oRLyNe8OlAh4RgPJmPOfRl+/h49/2309i0Yf5uEalH1huB1oYsK0d+sQ6/99I/7zbaIwhg3UUa1CuEivXv3ZsmSJfbBEQBKKQoKCvj888/p27ev019z165dBAcH06lTJ/uyhIQEgoOD2blzJ61a1dy1IyUlhYkTJ9KkSRO6dOnCtddeS2hoaI3bl5aWUlpaan+slCIoKMj+c20q1nvbsceKdunSUttZOkBdeBlGTBuXvI58Zp7FFe2Soq6OVEgYxuTH0Os/Qy+cA79swZx6G3TvizF4FJzZB2X4Ofx8OiMNve4z9NerofCEbWGjINSIy1GjrpKRUUK40JgxY/jxxx+577776NatGwAffPABv//+O35+flx9tfNvsJ6bm1ttIRYaGkpubm6N+/Xu3ZsBAwYQERFBRkYG8+fP58knn+TZZ5+t8R61S5curXT3jLi4OJKTk+1TuTgiOjra4W09SUO2K2/BHI5lpGE0jyBm4j0YwTX3nXQG+cw8izPb5bFF3ZIlS9iyZQupqan4+/szd+7cBnttpRTqgkvQCd0x578FO7bCtu8wt30HzSNRZw+CqFaoiJYQEQXhkeDvD8eyIe0gOu13238P77fNNVdxCTeqFWpoImrgUFSQTEYphKuFhYXxzDPPsGDBAn788UcMw2D//v306dOHsWPH1uny5oIFCyoVUNV55plnalynta71G/vAgQPtP7dt25YOHTowadIktmzZwjnnVD9wavTo0SQmJtofVzx/ZmYmZWVltWZVShEdHU16errTu5lYqaHbpbOzKP/AdpaO0Tdw5FgeHMtzyWvJZ+ZZ6tIuf39/h76MeWxRV1ZWRv/+/UlISKjx3o2uplq3xe/v/0CnH0R/udJ239XsTPTKpQDYPyKlILARFNfQ6frMPhhDL4VuvVGGdHMUoiGFhYVx2223nfbzjBo1inPPPbfWbSIjI9m/fz/Hjh2rsi4vL6/WS6l/FR4eTmRkJGlpaTVuExAQUONZPEf/OGqtveoPaYWGape58F0oKYaOXeCcwQ1TSMpn5lGc2S6PLerGjBkDUGnSUKuo6FjUmFvQo69H//A1/LYTfTQDso7A0SNQUmIr6JQBkdEQE4uKaQPRsahOXRpsehQhhOuEhIQQEhJyyu0SEhIoKChgz549dOzYEYDdu3dTUFBA586dHX6948ePc/ToUcLDw+udWbiW3vkL+ruvQCnbVFRe1idMuB+PLerckQoIRPW/APpfYF+mtYbjx6AgH1q0RNXwrVkIYY1ff/2VjRs3kpmZSUlJSaV1Sikef/xxp75ebGwsvXr14o033uDWW28F4M0336RPnz6VBknce++9jB8/nn79+lFUVMSCBQvo378/YWFhZGZm8sEHH9CsWTP69ZOpMdyRLi/H/OANANT5I1FtO1icSPgCnyrq6jISzFmjUpRSEBpu++elvHVkkrPJ++S4hnqv1q1bx+uvv07Tpk2JiYmpcqnSVZd67r77bt599137xMF9+/bllltuqbTN4cOHKSgoAMAwDH7//Xe+/PJLTpw4QXh4ON26dePee++1H8OEe9EbPodD+6FJM9QVf7M6jvARblXUOdrRuEOH+n3jqc9IMG8dbeMK8l45Rt4nx7n6vVq2bBkDBgwgKSmpxr5nrtC0aVPuvvvuWrdZsGCB/efAwED7RMXC/enjx9Af/xcAdcV1qKanviwvhDO4VVHnaEfj+qrLSDBvHW3jCvJeOUbeJ8fV9l45OgrMEZmZmdx0000NWtAJ76eX/hsKTkCbONT5I62OI3yIWxV1jnY0rq/6jATz1tE2riDvlWPkfXKcq9+r1q1bVzsSVYj60qm70Ru/AMC49vY6zVsqxOny2PkzsrKySE1NJSsrC9M0SU1NJTU11WX3ahRCeJ9rr72Wjz76iOzsbKujCC+gTRPzgzdBa9Q5g1GdulodSfgYtzpTVxfz589nw4YN9sdTpkwB4IknnrDPDC+EEH+VnJxc6XFBQQH33HMP7du3rzLZsFLKfmwR4lT0N+tg707bXYGunmB1HOGDPLaoS0pKIikpyeoYQggPc+DAgUqPDcMgJCSE7OzsKmfsZKSycJQuOIFe/B4AKnEMKqyFxYmEL/LYok4IIepj9uzZ9p9TUlKIi4urdlqQoqIi9u7d25DRhAfTyz+EvFxo2Rp14WVWxxE+ymP71AkhxOmaPn06hw4dqnbd4cOHmT59egMnEp5I792JXv0JAMa4iSh/GU0trCFFnRBCVKOsrAxD7sUsTkEXF2O++xJo0zY44sy+VkcSPkwuvwohfEpBQYH9Tg0Aubm5ZGVlVdqmpKSEDRs2EBYW1sDphKfRS96DI4cgrAXq2tutjiN8nBR1Qgif8umnn1a6s8xzzz1X47ajR49uiEjCQ+kdW9FrlwNg3DgZ1aTpKfYQwrWkqBNC+JSePXvSuHFjtNb897//ZdSoUURERFTaJiAggLZt29K1q8wzJqqnC05gzv0XAGrIRagz+1gbSAikqBNC+JiEhAQSEhIAKC4uZtiwYTRv3tziVMLT6A/fguwsiIxGXX2T1XGEAKSoE0L4sGuuucbqCMID6R+/Qf9vLSgD4+Z7UY0aWx1JCEBGvwohhBAO03m5mP+2zXWoRo5GdZRL9MJ9SFEnhBBCOEBrjfmfV+H4MWjdDnXZeKsjCVGJFHVCCCGEA/T/1sGP34CfP8Ytf0cFyCTDwr1IUSeEEEKcgs7ORH/4JgDq0nGoNnEWJxKiKinqhBBCiFpo08Sc+zIUFkB8Z9Soq6yOJES1pKgTQgghaqHXfwY7tkJgIMbN96H8/KyOJES1pKgTQgghaqDTD6EXzwVAXX0TqmUrawMJUQsp6oQQQohq6PJyzHdnQkkJdOmJGnyR1ZGEqJUUdUIIIUQ19OeLYN8uCGqCMeFulCF/MoV7k99QIYQQ4i/0z9+jl80DQF17G6p5pMWJhDg1KeqEEEKIP9Fpv2O+9TxojTp/JKr/EKsjCeEQKeqEEEKIk/SJfMxZT9mmL+nU1XaWTimrYwnhECnqhBBCCE4OjHjzn5CRBi2iMO6civKXu0YIzyFFnRBCCAHoRXMh5ScIbISR9AiqWajVkYSoE3+rAwghhK9ZsmQJW7ZsITU1FX9/f+bOnXvKfbTWLFy4kDVr1pCfn0+nTp245ZZbaNOmjesD+wDz69Xo1R8D2CYYltuACQ8kZ+qEEKKBlZWV0b9/f0aMGOHwPh9//DGffvopN998M8888wxhYWE89dRTFBYWujCpb9B7dqD/8ypw8r6ufQdanEiI+pGiTgghGtiYMWNITEykbdu2Dm2vteazzz5j9OjRnHPOObRt25akpCSKi4vZuHGji9N6N52difnaM1BWBn0GoBLHWR1JiHqTok4IIdxcRkYGubm59OzZ074sICCArl27snPnTguTeTZdXIz56jOQlwux7TFuulcmGBYezSP71GVkZLB48WJ++eUXcnNzad68Oeeddx5XXnkl/v4e2SQhhKhRbm4uAKGhlTvuh4aGkpWVVeN+paWllJaW2h8rpQgKCrL/XJuK9d42ncef26PffwX274GmIfjd9SgqKNjCZKfP2z8zadepeWQFdPjwYbTW3HbbbURHR/P777/zxhtvUFRUxA033GB1PCGED1qwYAGLFi2qdZtnnnmGDh061Ps1/nrw11rXuv3SpUsrZYqLiyM5OZnISMfvjhAdHV23kB6iyVcrOLb5S/DzI/LR52jcvZfVkZzGWz8zadepeWRR16tXL3r16mV/3LJlSw4fPsyqVaukqBNCWGLUqFGce+65tW5Tl2Lqz8LCwgDbGbvw8HD78ry8vCpn7/5s9OjRJCYm2h9XFIWZmZmUlZXV+ppKKaKjo0lPTz9l8ehJlFKEpu7k2Pu2gRHG+NvJiWgFaWkWJzt93vyZ+Xq7/P39HTp+eGRRV52CggKaNm1qdQwhhI8KCQkhJCTEJc8dFRVFWFgY27ZtIy7ONtVGWVkZKSkpXHfddTXuFxAQQEBA9ZPnOvrHUWvtVX9I9aH9HH3+MdstwIZcjDp/lFe1D7zvM6sg7To1ryjq0tPT+fzzz095lq4u/Uu89Rq+K8h75Rh5nxzn7e9VVlYW+fn5ZGVlYZomqampgO0yTOPGjQG49957GT9+PP369UMpxcUXX8zSpUuJiYkhOjqapUuX0qhRIwYNGmRhSzyLPnQA84VHobAA1bk7auxEqyMJ4VRuVdTVp09KdnY2M2bMYMCAAQwbNqzWfevTv8Rbr+G7grxXjpH3yXHe+l7Nnz+fDRs22B9PmTIFgCeeeIJu3boBtr7DBQUF9m0uv/xySkpKePvttzlx4gQdO3bkkUcesX8xFbXTv+/DfPExyM8jID4B886HQAbWCS+jtBudy8zLy+P48eO1bhMZGUlgYCBgK+imT59Op06dmDRpEsYphqLXdKauuv4l3noN3xXkvXKMvE+Oq+29crRviahZZmZmpWNhdZRSxMTEkJaW5vG/r3r/b5gzH4cTx6FdR1olv0FGfoHHt+uvvOkz+zNpl60rhcf1qatLn5SKgi4uLs6hgg7q17/EW6/hu4K8V46R98lx8l6J06X37cZ86XEoOAFxCfjdNx2/ZqGQX3DqnYXwMG5V1DkqOzubadOmERERwQ033EBeXp59XcUoMSGEEL5N//Yr5r+mQWEBdOyCcfcTqOAmVscSwmU8sqjbtm0b6enppKenc8cdd1Rat2DBAotSCSGEcBd6dwrmv6ZDcSEkdMOY/DiqsfQ/FN7NI4u6IUOGMGTIEKtjCCGEcEN658+YLz8JJcVwRg+Mux5FNWpsdSwhXM4jizohhBCiOjrlJ8zZT0FJCXTtjZH0MCqwkdWxhGgQUtQJIYTwCvqXHzBnz4CyUuh+FsadD6ECAq2OJUSDkaJOCCGEx9Nbv8N8/RkoK4Ne52DcNgVVw2wHQngrKeqEEEJ4LK01euMX6P++DuVl0Gcgxq3/h/KXgk74HinqhBBCeCRdWID+92z0d18BoM4+D3XzfSi5U4TwUfKbL4QQwuPo1N2Ybz4HmelgGKgrrkeNHI1yYCJ6IbyVFHVCCCE8htYavXoZevF7tsutLaIwbr0f1eEMq6MJYTkp6oQQQngEfTwPc85L8PP3tgV9BmLceBcquKmluYRwF1LUCSGEcHt65y+Ybz8PudngH4Aaewtq8EUopayOJoTbkKJOCCGE29JmOXr5AvTy+aBNiI7FuP0BVGyc1dGEcDtS1AkhhHBLOuco5tsvwK5fAFDnDkNde7vc8kuIGkhRJ4QQwq3o4iL0hs/Rny+C/OPQKAj1tzsx+g+xOpoQbk2KOiGEEG5BFxWi132GXrUU8vNsC9vG2+4O0bKVteGE8ABS1AkhhLCULixAr12OXv2x7cwcQGQ06uJrUP0vkMmEhXCQ/J8ihBDCErog31bMfbEMCvJtC6NaoS4ZgzpnMMrPz9qAQngYKeqEEEI0KH3iOHr1J+g1n0DhCdvC6FhbMXf2eVLMCVFPUtQJIYRwOV1cBL/tQG//Ef3lSigqtK1o1RaVOBbVdyDKkGJOiNMhRZ0QQgin00WFsGcHetfP6F3bIXU3lJf/sUFse4zEcdC7v9yvVQgnkaJOCCHEadOFBbYibufP6F2/wP49YJqVN2oeiep8JqrPAOjRT4o5IZxMijohhBBVlD3zAIfzcij/89m1mmhst+/SfyniWkShOneHhDNtxVxES5dkFULYSFEnhBCiqtxsyo9m1G2fyGhUQjdI6G4r4lpEuSabEKJaUtQJIYSowm/yY0SEhZGVlYVGn3qHZmGo5hGuDyaEqJEUdUIIIapQse0JjIlBNU0D7UBRJ4SwnPRSFUIIIYTwAnKmTgghGtiSJUvYsmULqamp+Pv7M3fu3FPuM3v2bDZs2FBpWadOnXj66addlFII4WmkqBNCiAZWVlZG//79SUhIYO3atQ7v16tXLyZNmmR/7C/3RBVC/IkcEYQQooGNGTMGgPXr19dpP39/f8LCwpwfSAjhFaSoE0IID5GSksLEiRNp0qQJXbp04dprryU0NLTG7UtLSyktLbU/VkoRFBRk/7k2FetPtZ2n8dZ2gfe2TdrlOCnqqP0ShlzecJy8V46R98lx1b1Xvvr+9e7dmwEDBhAREUFGRgbz58/nySef5NlnnyUgIKDafZYuXcqiRYvsjxMSEnjqqaeIjIx0+HWjo6NPO7s78tZ2gfe2Tdp1akprGasuhBCna8GCBZUKqOo888wzdOjQwf54/fr1zJ0716GBEn+Vk5PDpEmTuPfeeznnnHOq3eavZ+oMw6Bx48Z1fi0hhGeQKU1qUFhYyIMPPkhhYaHVUdyevFeOkffJcZ74Xo0aNYqZM2fW+q9NmzZOe73w8HAiIyNJS0urcZuAgACCg4Pt/+pS0HniZ+AIb20XeG/bpF2O883rGA7QWrNv3z7kROapyXvlGHmfHOeJ71VISAghISEN9nrHjx/n6NGjhIeHu+T5PfEzcIS3tgu8t23SLsfJmTohhGhgWVlZpKamkpWVhWmapKamkpqaSlFRkX2be++9l82bNwNQVFTE+++/z65du8jIyGD79u0kJyfTrFkz+vXrZ1UzhBBuRs7UCSFEA5s/f36liYSnTJkCwBNPPEG3bt0AOHz4MAUFBYCtL9zvv//Ol19+yYkTJwgPD6dbt27ce++99tGsQgghRV0NAgICuPrqq2scVSb+IO+VY+R9cpy3v1dJSUkkJSXVus2CBQvsPwcGBvLII4+4OlYl3voZeGu7wHvbJu1ynIx+FUIIIYTwAtKnTgghhBDCC0hRJ4QQQgjhBaSoE0IIIYTwAjJQohorV65k2bJl5ObmEhsby4QJE+jSpYvVsdzK0qVL2bx5M4cOHSIwMJCEhAT+9re/0apVK6ujub2lS5fywQcfcPHFFzNhwgSr47iV7Oxs/vOf//DTTz9RUlJCTEwMd955J/Hx8VZH8znedhys7o4foaGhvPXWWxYlqp+UlBSWLVvGvn37yMnJ4f777680rY3WmoULF7JmzRry8/Pp1KkTt9xyi1MnvnaVU7Vt9uzZlUaNA3Tq1Imnn366oaM6zJG/lc78zKSo+4tNmzYxd+5cJk6cSOfOnVm9ejUzZsxg5syZREREWB3PbaSkpDBy5Eg6dOhAeXk5H374IU899RQvvvii3IaoFnv27GH16tW0a9fO6ihuJz8/n8cee4xu3brx8MMPExISwpEjRwgODrY6ms/x1uNgmzZteOyxx+yPDcPzLlYVFxfTvn17LrjgAl544YUq6z/++GM+/fRTJk2aRExMDEuWLOGpp57ipZdecvvpb07VNoBevXoxadIk+2N3vxe0I38rnfmZed5vtIstX76coUOHMmzYMPu304iICFatWmV1NLfyyCOPMGTIENq0aUP79u2ZNGkSWVlZ7N271+pobquoqIhXXnmF22+/nSZNmlgdx+18/PHHtGjRgkmTJtGxY0eioqLo3r27197E251563HQMAzCwsLs/xryDiDO0rt3b8aNG1ft/X611nz22WeMHj2ac845h7Zt25KUlERxcTEbN260IG3d1Na2Cv7+/pU+w6ZNmzZgwro71d9KZ39mUtT9SVlZGXv37qVnz56Vlvfo0YOdO3dalMozVEyS6u7/g1np7bffpnfv3vTo0cPqKG7p+++/Jz4+nhdffJGJEycyZcoUVq9ebXUsn+PNx8H09HRuv/12kpKSeOmllzhy5IjVkZwqIyOD3NzcSp9dQEAAXbt29fjPrkJKSgoTJ07knnvu4fXXX+fYsWNWR6qTv/6tdPZn5t7nLRtYXl4epmkSGhpaaXloaCi5ubnWhPIAWmvee+89zjjjDNq2bWt1HLf09ddfs2/fPp555hmro7itjIwMvvjiCy655BJGjx7Nnj17mDNnDgEBAQwePNjqeD7DW4+DnTp1IikpiVatWpGbm8uSJUt49NFHefHFF2nWrJnV8Zyi4vOp7rPLysqyIJFz9e7dmwEDBhAREUFGRgbz58/nySef5Nlnn/WIiYmr+1vp7M9MirpqKKUcWiZs3nnnHQ4cOMCTTz5pdRS3lJWVxdy5c3nkkUcIDAy0Oo7bMk2TDh06MH78eADi4uL4/fffWbVqlRR1FvC242Dv3r3tP7dt25aEhAQmT57Mhg0bSExMtDCZ8/31c/KWewwMHDjQ/nPbtm3p0KEDkyZNYsuWLbVesnUXtf2tdNZnJkXdn4SEhGAYRpVvo8eOHatSRQubd999lx9++IHp06fTokULq+O4pb1793Ls2DEeeugh+zLTNNmxYwcrVqxg3rx5Htlh29nCw8OJjY2ttCw2NpZvv/3WokS+yVeOg40bN6Zt27akpaVZHcVpwsLCANvZn/DwcPvyvLw8r/rsKoSHhxMZGekRn2FNfyud/ZlJUfcn/v7+xMfHs23btkrDqLdt28bZZ59tYTL3o7Xm3XffZfPmzUybNo2oqCirI7mt7t278/zzz1da9tprr9GqVSsuv/xyKehO6ty5M4cPH6607PDhw0RGRlqUyDf5ynGwtLSUQ4cOefQ0LX8VFRVFWFgY27ZtIy4uDrD1kUxJSeG6666zOJ3zHT9+nKNHj1YqhtzNqf5WOvszk6LuLxITE3nllVeIj48nISGB1atXk5WVxfDhw62O5lbeeecdNm7cyJQpUwgKCrJ/qw8ODpZLjH8RFBRUpa9ho0aNaNasmfRB/JNLLrmExx57jCVLljBw4ED27NnDmjVruO2226yO5nO88Tj4/vvvc9ZZZxEREcGxY8dYvHgxhYWFHndpv6ioiPT0dPvjjIwMUlNTadq0KREREVx88cUsXbqUmJgYoqOjWbp0KY0aNWLQoEEWpnZMbW1r2rQpCxYsoH///oSFhZGZmckHH3xAs2bNKn35cDen+luplHLqZ6a0t1xsd6KKSTdzcnJo06YNN954I127drU6llsZM2ZMtcsnTZrEkCFDGjaMB5o2bRrt27eXyYf/4ocffmDevHmkp6cTFRXFJZdcwoUXXmh1LJ/kbcfBl156iR07dpCXl0dISAidOnVi3LhxVS75u7vt27czffr0KssHDx5MUlKSfSLb1atXc+LECTp27Mgtt9ziEV8ga2vbrbfeynPPPce+ffs4ceIE4eHhdOvWjbFjx7r13ImO/K105mcmRZ0QQgghhBeQzjxCCCGEEF5AijohhBBCCC8gRZ0QQgghhBeQok4IIYQQwgtIUSeEEEII4QWkqBNCCCGE8AJS1AkhhBBCeAEp6oQQQgghvIAUdUIIIYQQXkCKOiGEEEIILyBFnRBCCCGEF5CiTniFkpISpkyZwuTJkykoKLAvz83N5dZbb2XatGmYpmlhQiGEEMK1pKgTXiEwMJD77ruPvLw8Xn31VQBM0+Tll18G4J577sEw5NddCCGE95K/csJrxMTEcPvtt7N582Y+++wzFi1axPbt25k8eTLh4eFWxxNCCCFcyt/qAEI408CBA0lJSeHf//43pmkyevRoevToYXUsIYQQwuXkTJ3wOhdccAHl5eX4+flx8cUXWx1HCCGEaBBS1AmvUlRUxKxZs4iJiSEwMJDXX3/d6khCCCFEg5CiTniVt956i6ysLO6//37uuOMOvv/+e5YvX251LCGEEMLlpKgTXmPNmjV89dVX3HLLLbRp04b+/fszatQo/vvf/7Jnzx6r4wkhhBAuJUWd8AoHDhxgzpw5DB48mCFDhtiXX3/99bRr146ZM2dy4sQJ6wIKIYQQLqa01trqEEIIIYQQ4vTImTohhBBCCC8gRZ0QQgghhBeQok4IIYQQwgtIUSeEEEII4QWkqBNCCCGE8AJS1AkhhBBCeAEp6oQQQgghvIAUdUIIIYQQXkCKOiGEEEIILyBFnRBCCCGEF5CiTgghhBDCC0hRJ4QQQgjhBaSoE0IIIYTwAlLUCSGEEEJ4ASnqhBBCCCG8gBR1QgghhBBeQIo6IYQQQggvIEWdEEIIIYQX8Lc6gDvIycmhrKys1m0iIyPJzMxsoETW8YV2Shs9m7+/P+Hh4VbH8GiOHPPAu3+PKkgbvYO3t9HR454UdUBZWRmlpaU1rldK2bfTWjdUrAbnC+2UNgpx6mMe+MbvkbTRO/hCGx0ll1+FEEIIIbyAFHVCCCGEEF5AijohhBBCCC8gRZ0QQgghhBeQgRJeSJeXw0/fYm74HDLSICoG1bIVRLWy/bdla2gRhfKXj18Icfr0gb2Yb/wTCk+46AXq0vm9bh3lDxkGpmnWLY+HSQsJQ9/xEMS0sTqKcDH5q+5FdF4u+qtV6A0rICfrjxVHM9A7ttq2qVjm5wctWkLLikKvFSqmDToyssFzCyE8m978JWQctjpGvXh3OWdTln8ctWktxlU3Wh1FuJgUdV5A79uFXvsp+vuvoGLuqWahqPNGorr2Qh89AkcOw5HD6COHbQffkmLbfzMOo38++TxA+vy3Mcfcgjqjh2XtEUJ4Fn34AAAqcRzqrHPrsKdyyaYOP6VSJ+c3y0LX8QyfpbQG5eAb8vMPmAvfRe/82bWZhFuQos5D6dJS9Pcb0es+hX27/lgRl4C64BLUWYNQAQEAKM6svK/WkJsNRw7Zizx95DDs2UHZ7/vghUdRfc9FjbkZ1VzO3AkhTiHtdwDUGT1QrdtZHMZxSikCYmJQAUF1vMTrQRo1hoXvwv496MICVFCw1YmEC0lR52F0diZ6wwr0V6vg+DHbQn9/1Nnn2Yq5uIRTPodSCsJbQHiLymfkCk4QtPoj8pcvRP/wNfrn71EXX4MaMdpeIAohxJ/p4iLIOmJ70KqttWFEFapFFH7RrSlPPwR7dkD3vlZHEi4kRZ0H0T9+g/nmP/+4xBoegRo8CnXeCFRI2Gk/v2rSlPA7HqCwz7mUz3sddqegP/oPetMajHG3orqfddqvIYTwMifP0tEsFNUsxNosolqNu/flRPoh9M6fUVLUeTW3KupWrlzJsmXLyM3NJTY2lgkTJtClS5dT7vfrr78ybdo02rRpw3PPPdcASRueTvnpj4KuYxeM4ZdDz3NQfn5Ofy3VJg7jgWfQm79EL5wDGWmYLz8JPfthjJ2Iiox2+msKITyTPnyyqJOzdG6rUY++nPhiGXrXL1ZHES7mNvPUbdq0iblz53LllVeSnJxMly5dmDFjBllZWbXuV1BQwOzZs+nevXsDJW14+rdfMV+dYSvo+gzEuH8Gqs9AlxR0FZRSGOcMxnjqVdSI0bbRsls3Yz6ehPnxPHRxscteWwjhQSoGSbSS6TLcVaMzT56dO9mvTngvtynqli9fztChQxk2bJj9LF1ERASrVq2qdb8333yTc889l06dOjVQ0oalD+7DfHk6FBdB194YE//PpcXcX6nGwRjX3ITxxMvQpSeUlaKXf4j5+CT01s0NlkMI4Z4qRr4SI2fq3JV/VDRERoNp2vrVCa/lFkVdWVkZe/fupWfPnpWW9+jRg507d9a437p16zhy5AjXXHONQ69TWlpKQUGB/V9hYaF9nVKq1n+ObOPsf2SkYc58AgpOQIcu+CU9jBEY6NrXrKGdRqu2+P39Hxh3PgTNIyA7E3PWU+gvPm7w98VVbfSmf97cRuFmKka+yuVXt6Y6265mydQm3s0t+tTl5eVhmiahoaGVloeGhpKbm1vtPmlpacybN4/p06fj5+CZq6VLl7Jo0SL747i4OJKTk4l0cMLd6OiG60tWlplOxktPQF4uAfEJRM14FaNpswZ57Vrb2epqzAsTOTbnX+QvX4i54B2alJUQetNklOEW3xEc0pCfpVV8oY3CWjLy1XOozmeiN34h/eq8nFsUdRWq+xZe3TLTNHn55Ze55ppraNWqlcPPP3r0aBITE6s8d2ZmJmUVI0pryBUdHU16erptjjcX08ePUZ78IGSmQ8vWmHc9xpHj+XA836WvW5d26suvx2jUBHPxXI4v+Tf5h3/HmHCP2996rKE/Syt4exv9/f0d/iImXExGvnqMijN1Ml+dd3OLv8AhISEYhlHlrNyxY8eqnL0DKCws5LfffmPfvn28++67gG1CXa0148aN49FHH+XMM8+ssl9AQAABNcy35sgfv4rXcCVdcAJz5uOQfgiaR2Dc9yQ0C23QP86OtlONuhIVEoZ+72X0N+spP34M446HUI2DGiDl6WmIz9JqvtBGYS0Z+eo5VPNIW7+6zHSZr86LuUVR5+/vT3x8PNu2baNfv3725du2bePss8+usn1QUBDPP/98pWWrVq3il19+4e9//ztRUVEuz+wKurgY85V/wIG90CwU475/oFq49xkJY+BQdLNQzNefhe0/Yr7wKMbdj6OaVS3GhRBeRka+ehTVuTs6M13mq/NibtMJKjExkTVr1rB27VoOHjzI3LlzycrKYvjw4QDMmzePWbNmAWAYBm3btq30LyQkhICAANq2bUvjxo2tbEq96LJSzNdmwJ4UCGqCce90VHRrq2M5RHXvi/F/T0HTZpC6G/PZB9GZ6VbHEkK4mIx89TCdbVewpF+d93KLM3UAAwcO5Pjx4yxevJicnBzatGnD1KlT7X1ncnJyTjlnnafSZjnm2y/A9h8hsBHG3Y+h2sZbHatOVHxnjAeTMV+aBhmHMZMfxLhnGqpNnNXRhBCuIiNfPYpKOBMN0q/Oi7lNUQcwcuRIRo4cWe26pKSkWvcdM2YMY8aMcUUsl9Jao9+fDT9sAj9/jEkPozp2tTpWvajoWIyHThZ2h/ZjPjcVI+mRPzroCiG8hox89TyV+9WlgNz60eu4zeVXX6WXzUN/vRqUgXHr/ahuva2OdFpUWAuMKc9AQjcoLMB86Qn0D19bHUsI4Wwy8tUjyXx13k2KOgvpg/vQny0EQN2QhOo70OJEzqGCm2LcOx36DICyMsw3/om57lOrYwkhnMjen07O0nmWin51O6VfnTeSos4i2jQx//Oa7bYtfQZiDBpudSSnUgGBGLdPQQ0eBVqj572BuWqp1bGEEM5yuKI/nYx89SQq4eR0X/t/k/vAeiEp6iyiN34Bv/0KjYIwxk60Oo5LKMMPdd2dqEvHAaAXzsHctMbiVEIIZ5AzdZ7J3q9Om7Z+dcKrSFFnAZ2Xi178HgDqivGo5hEWJ3IdpRTq0mtRI64AQL/3CnrrZmtDCSFOX8UcdTKdiceRfnXeS4o6C+hFc6AgH9rEoS5IPPUOHk4phbr6JtSAoWCamG/8U+ZJEsKD6eIiOJpheyBn6jyP9KvzWlLUNTD96zb0/9aBUhh/m4Ty87M6UoNQSqFunAw9+0FpCeasp9C/77M6lhCiPmTkq0eTfnXeS4q6BqRLSzH/+xoAavAoVHxnixM1LOXnh3HbA9Cp6x/TnWSkWR1LCFFH0p/Os0m/Ou8lRV0D0quWQvoh27fb0ddbHccSKrARxl2PQWwc5OViznwcnZttdSwhRF3IyFePJ/3qvJMUdQ1EZ6ShP10AgBo7ERXc1OJE1lHBTTDunWb7pph1BPNf09AF+VbHEkI4SM7UeQHpV+eVpKhrAFprzA/egNIS6NIT1e98qyNZToWGY9z3JISGw8FUzFeeQhcXWx1LCOEIGfnq8aRfnXeSoq4h/PA1/LIF/P0xxt+BUsrqRG5BRUbbztgFNYE9KZhv/hNdVmZ1LCFELWTkq3eQfnXeSYo6F9OFBZgfvg2AuuhqVHRrixO5FxUbh3HXoxAQCNu+s81jZ5pWxxKiQaxcuZKkpCSuu+46HnzwQXbs2OHQfr/++ivjxo3jgQcecHHCasjIV68h/eq8jxR1LqY//i8cy4aoGNRFV1sdxy2phG4Ytz8IhoH+Zh164Ry01lbHEsKlNm3axNy5c7nyyitJTk6mS5cuzJgxg6ysrFr3KygoYPbs2XTv3r2BklYm/em8iPSr8zpS1LmQ3v8beq3tRvbGdXegAgItTuS+VM+zURPuAUCv/hi9YrHFiYRwreXLlzN06FCGDRtGbGwsEyZMICIiglWrVtW635tvvsm5555Lp06dGijpX8jIV68h/eq8j7/VAbyVNssx//MqaBPV73xU195WR3J7xoALMPPz0AveQS95HzMiGuPsQVbHEsLpysrK2Lt3L1dccUWl5T169GDnzp017rdu3TqOHDnC5MmTWbz41F98SktLKS0ttT9WShEUFGT/uTYV66tsl3ZykESrdh7fP7jGNnqR2tqoWkRhRsZAZhrs2YHqcVZDx3MKX/gcHSVFnYvoDSshdTcENUGNucXqOB7DGH45ZnYmevUy9JyX0BFRqLgEq2MJ4VR5eXmYpkloaGil5aGhoeTm5la7T1paGvPmzWP69On4OXgnmqVLl7Jo0SL747i4OJKTk4mMjHQ4a3R0dKXHh48cphxo0aM3jWNiHH4ed/bXNnqjmtqY3bsfJ1Z9TJNDewkbeWkDp3IuX/gcT0WKOhfQx3LQS98HQI2+HhUabnEiz6KuuQl95DD8/D3mrKcwHn4B1cLxP0JCeIpqz55Us8w0TV5++WWuueYaWrVq5fDzjx49msTEP+4vXfHcmZmZlJ1ipLlSiujoaNLT0+19XHVxEeVHDgOQHRiMSvPsO8JU10Zvc6o2mm06AHD8h28ovGhMQ8dzCl/4HP39/R36MiZFnQvoBe9AYQG074QaPNLqOB5HGX4Yt92PmfzQyTnsnsR4KBnVONjqaEI4RUhICIZhVDkrd+zYsSpn7wAKCwv57bff2LdvH++++y5gm/9Sa824ceN49NFHOfPMM6vsFxAQQEBAQLUZHP3jV/E68KdBEs1CoWmI1/wB/XMbvVWNbUzoZvvv/t8wC06ggjz3OOsLn+OpSFHnZDrlJ/TmL0EZGH+bhDIcu0wiKlONgzHuegxzxv/Bof2Ybz6Pcdcj8n4Kr+Dv7098fDzbtm2jX79+9uXbtm3j7LPPrrJ9UFAQzz//fKVlq1at4pdffuHvf/87UVFRLs8MMvLVG9nnq8tMt81X190z+9UJGxn96kS6tBRz3hsAqAsuRrXrYHEiz6ZaRP4xh93P36MXzrE6khBOk5iYyJo1a1i7di0HDx5k7ty5ZGVlMXz4cADmzZvHrFmzADAMg7Zt21b6FxISQkBAAG3btqVx48YNE7riThIy8tWryHx13kPO1DmRXrUUjhyC0HDU5ddZHccrqLgEjJvvxXzjn+jVyzBbtsYYcpHVsYQ4bQMHDuT48eMsXryYnJwc2rRpw9SpU+39ZnJyck45Z11D0yenM5EzdV6m85mw8QuZr84LSFHnJDozHf3pAgDUNTejgptYnMh7qLMGoY4cRn/0H/QHb6CjomWKGOEVRo4cyciR1fe7TUpKqnXfMWPGMGZMA3dst5+pk6LOm6iEM9Fgn6/Ok/vV+Tq5/OoEWmvMD96E0hI4oweq3/lWR/I66uJrUP0vANPEfP2f6IpbFQkhGoQuKvzjnq8xUtR5E7kPrPeQos4Ztn4LP38Pfv4Y4++QCRBdQCmFuuEu6NgVCk9gvvIP9PE8q2MJ4TvSD9r+K/d89UrSr847SFF3mnRxEeYHbwGgRo5GxcRanMh7qYAAjEkP20dqma/OQP9ptnwhhOvIyFcvJ/eB9QpS1J0m/el8yM6EFlGoiz1z4kZPopqFYEx+DIKawJ4U9PuzfH5eIiEahIx89WpyH1jvIEXdadCHD6BXfQSAMe5WVKNG1gbyESqmDcYdU8Aw0N+sQ3+20OpIQng9Gfnq3aRfnXeQoq6etNa2OenKy6FnP1Svc6yO5FNU196oa28HsI2K/WGTxYmE8HIy8tXrSb86z+dWU5qsXLmSZcuWkZubS2xsLBMmTKBLly7Vbvvrr7/y3//+l0OHDlFcXExkZCQXXnhhpfscupLe/CXs/BkCAzHGTmyQ1xSVGUMuwkw/iF7zCea7MzFaxqBi46yOJYTXkZGvPqJivrpd261OIurJbYq6TZs2MXfuXCZOnEjnzp1ZvXo1M2bMYObMmURERFTZvlGjRowcOZJ27drRqFEjfv31V9566y0aN27MhRde6NKsuuCE7f6ugLp4DCoy2qWvJ2qmrrnZNr1Jyk+Ys57GeOQFVLOq984UQpwGGfnqE1R8Z9t8dQdT0eXlKD+5LaOncZvLr8uXL2fo0KEMGzbMfpYuIiKCVatWVbt9XFwcgwYNok2bNkRFRXH++efTs2dPduzY4fKs+uP/Ql4uRLdGjRjt8tcTNVN+fhi3PWDrC3I0A/P1ZHRZmdWxhPAqMvLVR0REQ2Aj25yrGWlWpxH14BZFXVlZGXv37qVnz56Vlvfo0YOdO3c69Bz79u1j586ddO3a1RUR7fT+39DrPgOwzUkXEODS1xOnppo0s90jtnEQ7PoFPf8tqyMJ4V2kP51PUIYBrdsBoA+mWhtG1ItbXH7Ny8vDNE1CQytfNgsNDSU3N7fWfe+44w7y8vIoLy/nmmuuYdiwYTVuW1paSumf5jVTShEUFGT/uSb2dVpj/vc10Caq3/kYXXvV3jAPU9FOT5w8WbVuBxPvx5z9FHr95+g2cRiDq94j1pPb6ChfaKNoWH+MfJXpTLydim2P3rcLDqbC2YOsjiPqyC2KugrV/RE61R+mJ598kqKiInbt2sW8efOIjo5m0KDqfxGXLl3KokWL7I/j4uJITk6230D7VJpt/YacfbtQQU2IuWsqfi0c28/TREd7aB/BmMvJO57NsfdmY857gxZn9qLxmX2q3dRj21gHvtBG0UDkTJ3viG0PgD6UamkMUT9uUdSFhIRgGEaVs3LHjh2rcvbur6KiogBo27Ytx44dY+HChTUWdaNHj640OraiYMzMzKSsln5YSikigxqR8+7LtseXjyejpAzSvKvPgVKK6Oho0tPTPXZCXz1oJGrHz+jNX5L5j/vxe/RFVERL+3pvaOOpeHsb/f39Hf4iJk5fpZGvUtR5PRXb3jZY4vd9VkcR9eAWRZ2/vz/x8fFs27aNfv362Zdv27aNs88+2+Hn0VrXWpwFBAQQUEMfuFP98Ts252UoyIfYOBhysVf+saygtfbo9qkbJqPTD8GB3yif9RTGQ/9ENWpcaRtPb6MjfKGNogGknbz02iwU1VRGvnq91u1t/83ORBfko4KbWhpH1I1bDJQASExMZM2aNaxdu5aDBw8yd+5csrKyGD58OADz5s1j1qxZ9u1XrFjB999/T1paGmlpaaxbt45PPvmE8847z+nZ9O4UTnzxCQDG3+6UYd5uTjVqhJH0MDQLhYOpmHNekuJGiHqSO0n4FtWkKTQ/OY3Ywf3WhhF15hZn6gAGDhzI8ePHWbx4MTk5ObRp04apU6faL7Pk5OSQlZVl315rzQcffEBGRgaGYRAdHc11113nkjnqype8D4A6bwSqwxlOf37hfKp5JMakqZjPPwo/bEJ/Oh+VOM7qWEJ4HC396XxPbBxkZ6EPpaISulmdRtSB2xR1ACNHjmTkyJHVrktKSqr0+KKLLuKii6qObnQFvzsepPHqjygacWWDvJ5wDtWxK+q6O9Dvz0J/PA/dqh2q70CrYwnhWexz1MnIV1+hYtujt31nGwErPIrbXH51Zyo0nOZ3PSx3KvBAxnkjUENtg2PMd2fK3EtC1JFOkzN1PqdiBKwcLz2OFHXC66lrboYzekBxEeWznqL8WK7VkYTwCGZhAWTJyFdfo04WdRzajzZNS7OIupGiTng95e+PcfsU263Eso5wNHkqurzc6lhCuL3SimktZOSrb4lqBf4BUFwEWUesTiPqQIo64RNU0xCMpEehUWOKt36HuXiu1ZGEhyopKSEjI4ODBw9y7Ngxq+O4VNmBk0WdnKXzKcrP74/P/KDMV+dJ6jVQYvv27WzZsoWdO3eSnZ1NSUkJzZo1IzY2ljPPPJMBAwYQEiLf6oR7Ua3bYtx8L+Zrz6JXfYTZtgPGOYOtjiU8QHZ2NqtXr+bHH38kNTUV80+XpJo1a0bXrl0577zz6Nu3L4bhPd+VSw/8Bkh/Ol+kYtujD/yGPpiK6iMDzDxFnYq69evX8/HHH3P48GEaN25Mu3btiI+PJzAwkPz8fA4cOMDmzZt5//33GTBgAGPHjpWZ34VbMfqeS5MxN3F8wRz0+6+gW7VFtYmzOpZwUzk5OXzwwQd89dVXNG7cmISEBC6//HJCQ0MJCAggPz+fjIwMdu/ezfPPP09ERATjx4/n3HPPtTq6U5Tu32v7QUa++p427QEZLOFpHC7qHnzwQTIyMjjvvPNISkoiPj6+2m+k+fn5bN68mQ0bNnDfffdx11130b9/f6eGFuJ0hP7tDvK3b0Vv34L56gyMR16Q/kKiWvfccw8dO3bk3nvvpW/fvvj713zIPHLkCOvWreOdd94hOzubSy+9tAGTukZFnzo5U+d7VOuTtwuTos6jOFzU9enTh0svvZTg4OBat2vatClDhw5l6NChpKSkkJ+ff9ohhXAm5eeHcev9lD/9d8hMx3zreYx7nkAZcqcQUdmUKVM488wzHdq2ZcuWjBs3jssuu4yMjAwXJ3M9XVRI+ZHDtgdS1PmeihGwmenookJU4yBL4wjHONz5Y+zYsacs6P6qa9eule7lKoS7UE2bYUyaCoGNIOUn9NL/WB1JuCFHC7o/Cw4Opn379s4P09Aq7vkaEiZnsn2QahYKoc1tDw7J7cI8Rb169C5atIjs7Oxq1+Xk5LBo0aLTCiVEQ1CxcagbJwOgVyzG/G6jxYmEO5s+fTqHDh2qdt3hw4eZPn16AydyrYp7vsqlVx8W2w4AfSjV2hzCYfUq6hYuXFhrUbdw4cLTCiVEQzH6nY8aMRoA/d7LaPlGKmqQkpJCYWFhteuKiopISUlp4ESupe23B5OizlfZJyH+PdXKGKIOnD72vqioqNbOxEK4G3XlDdClJxQXYc5+Gn1C+oGKusnJyaFRo0ZWx3Cuw3J7MJ8ntwvzOA5XX/v37yc1NdX+eMuWLVUuRZSUlLBx40ZatmzptIBCuJpt4MQDmBUDJ95+AWPyozJwQvDdd9/x3Xff2R8vWrSoyhycJSUlpKSkEBfnXVPj/HHPV5nOxFep2DjbCNhDqWitUUpZHUmcgsNF3ebNmyv1lVu8eHG12wUGBnLnnXeefjIhGpBqFoIxaSrmsw/CLz+gl32AuuJvVscSFjt48CDffPON/fH27dur/GELCAigbdu2TJgwoYHTuY7WGtV7II2OplMqZ+p8V3Rr8POHwgLIzoQWUVYnEqfgcFF34YUX0rdvX7TWPPzww9x55520bVv5f3Z/f3+io6MJDAx0elAhXE217YC6IQn9zkz0pwvQbTug+gywOpaw0OjRoxk92tbncuzYsTzxxBN07NjR4lSup5TCGHsLkTExpKWlobW2OpKwgPIPgJhY21x1B1OlqPMADhd14eHhhIeHA/DEE08QHx9P48aNXRZMCCsY/S/ATN2DXvMJ5rsvYcTEomLk8pOA+fPnWx1BiAanYtujD6babhfWU6Yoc3f1GijRtWtXKeiE11JX3wQJZ0JxIebsGeiCE1ZHEhYpKipq0P2EcDsVI2BlsIRHcLioe+aZZ9i3b5/DT1xaWsry5ctZsWJFvYIJYRXl749x+xQIj4AjhzDfe1kuP/mou+66i+XLl1NQUODQ9nv27CE5OZnly5e7OJkQDUO1bg+APuj4339hHYcvv4aGhjJ16lQ6derE+eefT7du3WjVqlWlbQoLC9m9ezfff/89X3/9NcHBwdx1111ODy2Eq6mQMIw7HsT851TY8j/0qo9QI0dbHUs0sOuvv54PP/yQ+fPn07dvX7p160ZcXByhoaEEBASQn5/PkSNH2L17N9999x0HDx5kwIABDB061OroQjhHxZm6I2no4mKUt03d42UcLuomTZrERRddxEcffcScOXMoLy8nMDCQkJAQAgMDyc/P5/jx42itiYyMZPTo0YwcOZKAgABX5hfCZVR8Z9TYieh5r6OXvIdu3wnVue63jRKea/DgwQwYMID169fzxRdf8L///a/a7QIDAznnnHNISkoiPj6+gVMK4UKh4dAsFI4fg7QD0L6T1YlELeo0S3BcXBz33Xcfx44dY+vWrezatYucnBxKSkqIi4ujdevWdOvWjc6dO8t8NsIrqCEXwd5f0d+sx3zznxiPvYQKa251LNGAAgMDGTFiBCNGjCA7O5udO3faj3vNmjWjdevWdOzYUSZdF15JKWU7W7djq22whBR1bq1eR6HQ0FDOP/98zj//fGfnEcKtKKXgb5PQv++DQ/sx3/gnxv89hZI/4D6pefPmDBgg09wI36Jat0fv2CqDJTyA028TJoS3UY0aY9zxEDQOgj0p6CXvWR1JCCEajtwuzGPU+3RDYWEhP/74I1lZWZSUlFRZf/XVV59WMCHciYpujXHTPZivPYv+4mN0hzNQfc+1OpZoYL/++isbN24kMzOzynFPKcXjjz9uUTIhXEfFtpfbhXmIehV1u3fv5tlnnyU/v+Ybn0tRJ7yN6jMQNXI0euVSzDkvY7Ruh4qOtTqWaCDr1q3j9ddfp2nTpsTExFQZBFafaW9WrlzJsmXLyM3NJTY2lgkTJtClS5dqt/32229ZtWoVqamplJWVERsbyzXXXEOvXr3q0xwhHNeqDSgD8o9DbjaEt7A6kahBvYq69957j+bNm/Pwww/Trl076SAsfIYafQN63y7YtR3z1WcwHn4e1TjI6liiASxbtowBAwaQlJTklFH9mzZtYu7cuUycOJHOnTuzevVqZsyYwcyZM4mIiKiy/Y4dO+jRowfXXnstTZo0Yd26dSQnJzNjxgzi4uJOO48QNVEBgbb7wKb9butXJ0Wd26pXn7oDBw4wduxYOnToIAWd8CnKzw/jtikQ2hzSfkf/e7ZMTOwjMjMzGTp0qNOmaVq+fDlDhw5l2LBh9rN0ERERrFq1qtrtJ0yYwOWXX07Hjh2JiYlh/PjxxMTE8MMPPzgljxC1UdKvziPUq6gLCQlxdg4hPIYKDbfdccIw0Ju/RK/71OpIogG0bt2aY8eOOeW5ysrK2Lt3Lz179qy0vEePHuzcudOh5zBNk8LCQpo2beqUTELUSm4X5hHqdZpt1KhRfPHFF/Tt21c6TAqfpDp1RV19E3rBO+gF76LbdUR1OMPqWMKFrr32Wv7973/TrVs3mjc/vbkK8/LyME2T0NDQSstDQ0PJzc116DmWL19OcXFxrVOslJaWUlpaan+slCIoKMj+c20q1nvzMV7aWIfnaROHBvShVLd7v3zhc3RUvYo6rTWHDx9mypQp9OnTh2bNmlXZJjEx8bTDCeHO1IWXoX/bAT9swnw9GePxl1DNQk+9o/BIK1eupKCggHvuuYf27dtXOUOmlGLKlCl1es7q/gg58odp48aNLFy4kAceeKBKYfhnS5cuZdGiRfbHcXFxJCcnExkZ6XDG6Ohoh7f1VNLGUyvz70caQPpBoiNa2PrZuRlf+BxPpV5F3X/+8x/7zwcOHKh2m/oUdTISTHgSpRTGhLsxD+2H9EOYbz2Pce80lOFndTThAgcOHMAwDEJCQsjOziY7O7vS+rqcJQgJCcEwjCpn5Y4dO1ZrkQa2ARavv/46f//73+nRo0et244ePbrSsbgiY2ZmJmVlZbXuq5QiOjqa9PR0r+03Km10nNYagptAwQnSfvwe1cZ9Buf4wufo7+/v0JexehV1s2bNqs9utZKRYMITqcbBGHdOxZxxv+02Oh/PQ42+3upYwgVmz57ttOfy9/cnPj6ebdu20a9fP/vybdu2cfbZZ9e438aNG3nttde455576NOnzylfJyAgoMaBHY7+8dNae+0fygrSRgfFtreN/D+wF6Oij50b8YXP8VTqVdTV5dS9o/48EgxsI722bt3KqlWrGD9+fJXtJ0yYUOnx+PHj+f777/nhhx+kqBMNSrVqi7rhLvRbz6M/W4ju2BXVva/VsYSbS0xM5JVXXiE+Pp6EhARWr15NVlYWw4cPB2DevHlkZ2dz1113AbaCbvbs2UyYMIGEhAT7Wb7AwECCg4OtaobwIap1e/Su7XAo1eooogZuMR9JxUiwK664otJyGQkmPIXR73zM3Sno9Z9hvvMixmMvoVo4/8uP8B4DBw7k+PHjLF68mJycHNq0acPUqVPtX5pzcnLIysqyb7969WrKy8t55513eOedd+zLBw8eTFJSUoPnFz7o5CVXmdbEfTlc1E2fPp2JEyfSunVrpk+fXuu2db1djruPBPOVkTW+0E5XttEYO5Hy1F2QugfzzX/iN+UZlL9z5jSrC1/4HBvK2LFjefrpp+nYsSNjx46tdVulFB9++GGdnn/kyJGMHDmy2nV/LdSmTZtWp+cWwtnstwuTos5t1Xv0a21/MOp7TdvdR4L5ysgaX2inq9pY9tgLpN/9N/TenQR9vpDw2/7PJa/jCF/4HF3t6quvtk9fctVVV0mhLHxbq7agFOTlovNyUCHhVicSf+FwUffEE0/Yf3b2N0Z3HwnmCyNrwDfa6fo2Gqib7kXP+gf5H39AQUw7jLPOdcHr1MzbP0dHR4E5wzXXXGP/ecyYMQ3ymkK4K9WoMUTGQMZhOLgfukpR527qdUeJujBNk+nTp5OWllbjNn8eCfZn27Zto3PnzjXuV9Fx+O6773Z4JFhwcLD9X8WlV/hj1ExN/xzZxhv++UI7Xd1G1fNs1Mgrbb//c/+FmX7I69po9efn7kzTZOzYsezdu9fqKEI4l9wuzK25vKgDSElJobCwsNZtEhMTWbNmDWvXruXgwYPMnTu3ykiwP0+lUlHQ3XDDDfaRYLm5uRQUFLi0LUI4Qo2+Hjp1haJCzNefRZcUWx1JCCFOm7LfLmyfpTlE9dxi9CvISDDhXZSfH8ZtD2A+eS8cTEV/8CbqxslWxxJCiNNSMVhCztS5J7cp6kBGggnvosJaYNx6P+bMx9Ebv8Ds1BVj4DCrYwkhRP1VnKlL+x1dVobyd6sywuc1yOVXIXyV6tITddm1AOj/vibfboUQnq1FFDQOgrIyOHLY6jTiL6SoE8LF1MVjoFtvKCnBfCMZXST9PoUQnkkZBrRuB4CWfnVuR4o6IVxMGQbGLf8H4RGQfgj9/myPGcUphBB/ZR8sIbcLcztS1AnRAFSzEIzbp4CfH/q7r9DrP7M6khBC1I99WpP91uYQVTRIURcREUFAQMPfLkkId6I6nIG6agIAev476H27rQ0kXEYpxeDBgwkJCbE6ihBO98e0JqlWxhDVcPmwFcMwmD17tqtfRgiPoC68DL17O/z4DeYbyRiPzUQ1aWZ1LFGDU93v9a/mz58P2Iq6SZMmuSKSENZr3d7235ws9InjcgxzI/Uu6tLS0vjiiy84dOgQJSUlldYppXj88cdPO5wQ3kYphTHhbsyDqZCZjvnuSxhJj9g6Hwu389f7va5fv56ioiL69u1LWFgYOTk5bNmyhUaNGnHBBRdYmFSIhqOCgiGiJWQdsZ2t69zd6kjipHoVdQcOHOCRRx6hefPmpKen065dO44fP052djYtWrSgZcuWzs4phNdQwU0x7ngI85kHYNt36JVLUBddbXUsUY0/3+/1k08+ISwsjMcee4zGjRvblxcWFvKPf/yDRo0aWRFRCGvEtoesI+iDqSgp6txGvU4PfPDBB/Ts2ZMXX3wRgDvuuIPXXnuNBx98kNLSUsaNG+fUkEJ4G9U2HjX+dgD00v+gd/5scSJxKqtWreKyyy6rVNABBAUFcdlll7Fy5UqLkgnR8KRfnXuqV1G3b98+hgwZYr8sUTE9Q58+fbj00kuZN2+e8xIK4aXUoOGoAUNBm5hvPofOzbY6kqhFdnY2fn5+1a7z8/MjNze3YQMJYSFlHwGbamkOUVm9iroTJ07QtGlTDMPAz8+PEydO2NfFx8ezb59MSCjEqSilUNfdaZvIMy8X863n0OXlVscSNWjdujXLly+nrKys0vKysjKWL19O69atLUomhAUqBksc3o825bjlLupV1DVv3py8vDwAoqOjSUlJsa87cOBAlcsTQojqqUaNMO54yHbbnV3b0R/9x+pIogbjxo1j586dTJ48mTlz5rB06VLmzJnD5MmT2bVrl3Q7Eb4lKhoCA6GkBDLSrE4jTqrXQInOnTuza9cu+vXrx6BBg1i4cCG5ubn4+/uzfv16zjvvPGfnFMJrqejWGDdOxnzjn+gVi9Edu6B69rM6lviLPn368PDDD/Phhx+ycuVKe7eTjh07cuedd9KjRw+LEwrRcJThB23i4bdf0btTUNGxVkcS1LOou/LKK8nJyQHgiiuuIDc3l40bN6KUYsCAAVx//fVODSmEt1NnDULt2YFe8wnmuzMxHp2Jioy2Opb4i+7du9O9e3eKi4s5ceIETZo0kVGvwmepLr3Qv/0K23+E80ZYHUdQz6IuOjqa6GjbHxzDMLj55pu5+eabnRpMCF+jrp6A3rcL9u7EfD0Z46FkVECg1bFENRo1aiTFnPB5qltv9PIP0Tu2os1y29k7YSmZ8VQIN6H8A2z3h23aDA78hp7/ttWRhBCiZnEJENQECvJh/29WpxFIUSeEW1HNIzFu+Tsohd6wAvObdVZHEkKIaik/P+hi60uqt2+xOI0AKeqEcDvqzL6oS2z3HNX/fhV96IDFiYQQonqqa28A9PafrA0iACnqhHBL6tKx0KUnlBRjvv4suqjQ6khCCFGF6trL9sPeX9EFJ2rdVrieFHVCuCFl+GHcej+EtYD0g+j3Z9mn0BBCCHehIqMhqhWYJsjtDi0nRZ0Qbko1C8W4/QHw80N/9xV6zSdWRxJCiCpUt4pLsNKvzmpS1AnhxlTHrqirJwCgF76L/nWbtYGEEOIv7EVdyk/WBhFS1Anh7tSwy1D9h4Bp2u46cTTD6khCCPGHzt3Bzx8y09EZh61O49OkqBPCzSmlUNcnQdsOkJ+H+eoMdHGx1bGEEAIA1TgIOpwByChYq0lRJ4QHUIGNMCY9DM1C4cBeGTghhHAr0q/OPUhRJ4SHUC0iMW5/EAwDvXkD+ouPrI4khBDAH0Udv/6MLiuzNowPk6JOCA+iOp+JGjMRAL3oPemYLIRwD23ioWkIFBfC3l+tTuOzpKgTwsOooZegBg4DbWK++Rw6M93qSEIIH6cMwz4RsfSrs44UdUJ4GKUU6m93QvtOcOI45uyn0cVFVscSQvg66VdnOSnqhPBAKiAQ486pEBIGh/aj574sAyeEEJay3zLswG/o43mWZvEEuqgA/dO3Tn1Of6c+22lauXIly5YtIzc3l9jYWCZMmECXLl2q3TYnJ4f333+fvXv3kp6ezkUXXcSECRMaNrAQFlLNIzDueAjzhUfQ32+Eth1QF11ldSwhhI9SYS2gdTvbF80dP6H6nW91JLekc4+i1yxHb1gBRQUYT72GimrllOd2mzN1mzZtYu7cuVx55ZUkJyfTpUsXZsyYQVZWVrXbl5aWEhISwpVXXkm7du0aOK0Q7kF16ooadxsAeun76F9+sDiREMKX2UfBpvxobRA3pA8dwJzzL8yHbkWvWAyFJ6BlKziW67TXcJuibvny5QwdOpRhw4bZz9JFRESwatWqarePioripptuYvDgwQQHBzdwWiHchxo8CnXeCNAa863n0UdkRnchhDX+mK/uR+kSAmit0Tt/pvzlJzGn3YXetAbKy6BjV4ykRzCmz0Z16uq013OLy69lZWXs3buXK664otLyHj16sHPnTqe9TmlpKaWlpfbHSimCgoLsP9ekYl1t23gDX2inN7ZRKYUefwflhw/Ab79SPvtpzH/926vaKITwEB27QkAg5GbD4d+hdVurE1lCl5ejt/wPvXIJ7N9jW6gU9B6AMeIK1Mk7cDibWxR1eXl5mKZJaGhopeWhoaHk5uY67XWWLl3KokWL7I/j4uJITk4mMjLSof2jo6OdlsWd+UI7vbGN5dNeIv2ev2EePsDR5x6l5aPPofzc4n9xIYSPUIGNIKEbbP8RvX0LyseKOl1chN64Gr36Y8g6YlsYEIg6dxhq+OVO6ztXE7c64ld3ZsGZZxtGjx5NYmJilefOzMykrJYZsJVSREdHk56e7tWnk32hnd7eRnX7g/DcwxRt/orDL0xD/W2S152x8/f3d/iLmBCi4amuvW2XX1N+hBFXWB2nweidP2O+ngz5J0f+Nm2GuuAS279mobXv7CRuUdSFhIRgGEaVs3LHjh2rcvbudAQEBBAQEFDtOkf+wGutvbIQ+CtfaKfXtjG+M8at/4f5ejLmhhWo0OYYl46zOpWoQV1G/AOkpKTw3nvvcfDgQcLDw7nssssYMWJEAyYW4tRUtz7ohe/Cru3o0hJUQKDVkVxO/7AJ8+3noawMIqNRw69ADRyGatSoQXO4xUAJf39/4uPj2bZtW6Xl27Zto3PnzhalEsIzGX3PJeyOKQDoZfMwv1xpcSJRnbqO+M/IyOCZZ56hS5cuJCcnM3r0aObMmcM333zTwMmFOIVWbSCsBZSWwO7tVqdxOXP955hvJNsKuj4DMKbPwrjg4gYv6MBNijqAxMRE1qxZw9q1azl48CBz584lKyuL4cOHAzBv3jxmzZpVaZ/U1FRSU1MpKioiLy+P1NRUDh48aEV8IdxKs8RrUJeMAUD/5zWnT3ApTl9dR/yvWrWKiIgIJkyYQGxsLMOGDeOCCy7gk08+aeDkQtROKYXq1gvw7luGaa0xl32A/u9roDXq/JEYt0+x9MykW1x+BRg4cCDHjx9n8eLF5OTk0KZNG6ZOnWrvO5OTk1PlG+yUKVPsP+/du5eNGzcSGRnJ7NmzGzS7EO7IuOJvmLnZ6K9XY775HMbf/4HqWPOlPdFw6jPif/fu3fTo0aPSsl69erFu3TrKysrw9696OK/viP8/r/e2Ppl/Jm104et264P+eg16+4+oMTe79rUsaKM2y9H/fQO94XPba186DuOy8Zb/LrlNUQcwcuRIRo4cWe26pKSkKssWLFjg6khCeCylFOr6JHReLvz8PeYr/8B4KBkV08bqaD6vPiP+c3Nzq92+vLyc48ePEx4eXmWf0x3xD945UvyvpI3OVz5kJIffeh4OpRLVKAC/5hEuf82GaqMuKeboc49SuGkdKEX4nQ/S9JKrG+S1T8WtijohhHMpPz+M26dgvvAo7NuF+dITGA89hwpvYXU0Qd1H/P91XcVgn5r2qe+I/4ptvXmkOEgbXa5dB0jdQ/raFRjnDnPZyzRkG3XBCczZT6N3/gz+/hgT7+d4n3M5npbm0td1dNS/FHVCeDnVqDHG5Mcxkx+EI4cw/zUNY8ozqOCmVkfzWfUZ8R8WFlZl+7y8PPz8/GjatPrP8nRH/Fds560FTwVpo2uorr3RqXts05sMHOry13N1G3VuNua/psPBfdA4CCPpEdQZPdzqd8dtBkoIIVxHNQvBuHcahIbDof22b5qlJVbH8ln1GfHfqVOnKttv3bqV+Pj4avvTCWE1+y3DUn5Em6bFaU6PPnLY9sX44D4ICcN4YAbqjB6n3rGBSVEnhI9QES0x7pkGQcGwazvm2y+izXKrY/msuo74HzFiBFlZWfZ56tauXcvatWu59NJLrWqCELWL7wyNgmyT8f6+z+o09ab377EVdFlHIDIa48FkVNsOVseqlny9E8KHqDZxGJMexvzXNNiyCf3hW3Dt7ZaP2PJFdR3xHxUVxdSpU3nvvfdYuXIl4eHh3HTTTfTv39+qJghRK+UfAGd0h62bbbcMa+eehVBt9I6tmLNnQHEhtO2Acc/jqJCqg5LchRR1QvgYdUYP1M1/R7/1HHrdZxDa3D6nnWhYdR3x37VrV5KTk10dSwinUd16o7duRqf8BBdfY3WcOtG//Yo56ykoKYYuPTHunIoKCrY6Vq3k8qsQPsg4exBq7EQA9Ef/wfx0gVt19hVCeIeKfnXs2YEuKrQ2TB3oQ/sxX37SVtB17Y0x+XG3L+hAijohfJYx7FLUyfvC6o/+g17wjsd3ZhZCuJnIGIhoCeVlsPMXq9M4RGemY858AgrybffTnjQVVcMocncjRZ0QPsy4bPwfZ+xWL0PPeQl9ivnLhBDCUbZbhp0cBbt9i8VpTk3n5WC+9AQcy4ZWbTHufhzVqLHVsRwmRZ0QPs648DLULfeBnx/6m/WYr85AFxdbHUsI4SVU14qpTX6yNsgp6IITmC9Ng4w0aBGFce90VJNmVseqEynqhBAY/S/ASHoEAgNttxSb+Rj6RL7VsYQQ3uCMHmAYcOQQOuuI1WmqpUuKMWc/ZZt6pVkoxn1PeuSdd6SoE0IAoLqfhXHfkxDcBH77FfO5qejco1bHEkJ4OBXcxDZnHbaJiN2NLivDfPM52LUdgoIx7p2GatnK6lj1IkWdEMJOdeyK8cAzENrcdueJZx9EHzlsdSwhhIez96vbsNKt+u1q00S/9wps3QwBgRh3Peq2Ews7Qoo6IUQlKrY9xkPJEBUDRzMwkx9EH/jN6lhCCA+mBo2A4KZw4Df08g+tjgOcvFfswnfR36wDw8C4fQoq4UyrY50WKeqEEFWoiJYYDz4LbePh+DHM5x5G7/zZ6lhCCA+lwppjXD8JAP3ZIvSeHRYnAv3ZQvTqZQCoCfegevazONHpk6JOCFEtFRKO8X9PQ8KZUFSI+dI09I/fWB1LCOGh1FmDUP0vAG1ivjsTXVRgWRZzwwr0R/+x5Ro7EWPABZZlcSYp6oQQNVLBTTDunQa9+kNZKeZrz2KuXII2y62OJoTwQOra26BFFGSmoz9825IM5ncb0f99zZbnkjEYF15mSQ5XkKJOCFErFRCIcceDqEHDQZvoRXMx/zkVnX7Q6mhCCA+jgptg3HwvKIX+enWDn/03N61Fv/MCaI0aPAp1+XUN+vquJkWdEOKUlJ8f6oa7UDfcBUHBtilPnrwXc9VSOWsnhKgTlXAmauSVAJjvz0Ify3H5a2qtMT/5ED3nJSgvR/Ufghp/O0opl792Q5KiTgjhEKUUxnkjMKa9At16Q2kJeuEcOWsnhKgzdfl4aBMH+XmYc19Ga+2y19JlZej3XkYvm2d77YuuQt10L8rwc9lrWkWKOiFEnajmkRj3TJOzdkKIelP+ARi3/B/4B8AvP6DXf+6S19GFBZivPIn+eg0oA/W3SRhX3ogyvLP88c5WCSFcqsazdskPodPkrJ0Q4tRU67aoq24EQC961+ln/HV2FuY/H4KUn6BRY4y7HsEYPMqpr+FupKgTQtRblbN2e3diPnkP5ko5ayeEODU1NBG69ISSEsy3X3Ta3Sb0wX2YzzwAB1MhNBzjgRmoHmc75bndmRR1QojTUuWsXVkpetHJs3aHD1gdTwjhxpRhYNx0r+1uE/v3OOVuEzrlR8zkhyD3KMS0wZj6HKpdx9MP6wGkqBNCOIX9rN2Nk/84a/fEXZQnP2Sb6PNEvtURhRBuSIW3cNrdJsyvV2O+/CQUFULn7hgPJqNaRDkrqtuTok4I4TRKKYxBwzGmzbJNWKwU7ElB/+dVzPtvoPzVGegt/0OXllodVQjhRk73bhNaa8o/noee+7JtypJ+g21fMps0dVFi9+RvdQAhhPdRzSPwS3oYnXMUvflL9Dfr4eA++PEbzB+/geCmJw/iQ6BjF6+bK0oIUXfq2tvQu7fb7zahJtxd6/Zaayg8AcdyyP7gDfSa5bbnuXgM6orrfPK4IkWdEMJlVHgL1MjRMHI0+mAq+pv16G83QO5R9Jcr0F+ugBZRtolA+w9BRcdaHVkIYZGKu02Yzz+C/no1ZoczUBEt0ceyITcbjuVAbjY6NxuOnfxXUgJAAYBhoK67A+N87x7hWhsp6oQQDULFtkddPQF95fWw8xdbgbdlExzNQH+6AP3pAtSFl2OMvcXqqEIIi1TcbUKvWIx+fxYOTUkc3JSAmFjKLx2H6tbH1RHdmlsVdStXrmTZsmXk5uYSGxvLhAkT6NKlS43bp6Sk8N5773Hw4EHCw8O57LLLGDFiRAMmFkLUlTL8oEtPVJee6PF3oLdtRv9vHWzfAnGdrI4nhLCYunw8+sBvsG83hDWHsOao0OYQGm77+eQyTi4zGjUmOiaGtLQ0l96ZwhO4TVG3adMm5s6dy8SJE+ncuTOrV69mxowZzJw5k4iIiCrbZ2Rk8MwzzzBs2DAmT57Mzp07efvttwkJCaF///4WtEAIUVeqUSPU2efB2eeh83Jto2aFED5N+Qfgd9+TVsfwSG4z+nX58uUMHTqUYcOG2c/SRUREsGrVqmq3X7VqFREREUyYMIHY2FiGDRvGBRdcwCeffNLAyYUQzqBCwlABgVbHEEIIj+UWRV1ZWRl79+6lZ8+elZb36NGDnTt3VrvP7t276dGjR6VlvXr1Yu/evZQ5aUZqIYQQQghP4RaXX/Py8jBNk9DQ0ErLQ0NDyc3NrXaf3NzcarcvLy/n+PHjhIeHV9mntLSU0j/Nj6WUIigoyP5zTSrWefvwaF9op7RRCCGEt3KLoq5CdX+EHCm2KlR0kKxpn6VLl7Jo0SL747i4OJKTk4mMjHQoX3R0tEPbeTpfaKe0UQghhLdxi6IuJCQEwzCqnJU7duxYlbNxFcLCwqpsn5eXh5+fH02bVj+D9OjRo0lMTLQ/rij+MjMza71kq5QiOjqa9PR0rx5Z4wvtlDZ6Pn9/f4e/iAkhhC9xi6LO39+f+Ph4tm3bRr9+/ezLt23bxtlnn13tPp06deKHH36otGzr1q3Ex8fj7199swICAggICKj29R3h5+fn0HaezhfaKW30XI7+/ypqVpf30Bfeb2mjd/DmNjraNrd5BxITE3nllVeIj48nISGB1atXk5WVxfDhwwGYN28e2dnZ3HXXXQCMGDGClStX8t577zFs2DB27drF2rVrueeee+r82tX1v6uOr5wd8IV2ShuFL3P0mAe+8XskbfQOvtDGU3GL0a8AAwcOZMKECSxevJgpU6awY8cOpk6dav+QcnJyyMrKsm8fFRXF1KlTSUlJYcqUKSxevJibbrrJJXPUFRYW8uCDD1JYWOj053YnvtBOaaMQjvGF3yNpo3fwhTY6ym3O1AGMHDmSkSNHVrsuKSmpyrKuXbuSnJzs6lhordm3b59X9k/6M19op7RRCMf4wu+RtNE7+EIbHeU2Z+qEEEIIIUT9SVEnhBBCCOEFpKhzQEBAAFdffXW1I2e9iS+0U9oohGN84fdI2ugdfKGNjlJaLkILIYQQQng8OVMnhBBCCOEFpKgTQgghhPACUtQJIYQQQngBKeqEEEIIIbyAW00+7K5WrlzJsmXLyM3NJTY2lgkTJtClSxerYznFggULWLRoUaVloaGhvPXWWxYlOn0pKSksW7aMffv2kZOTw/3331/pnsJaaxYuXMiaNWvIz8+nU6dO3HLLLbRp08bC1HVzqjbOnj2bDRs2VNqnU6dOPP300w0dVXgoOe55FjnuyXEPpKg7pU2bNjF37lwmTpxI586dWb16NTNmzGDmzJlERERYHc8p2rRpw2OPPWZ/bBiefQK3uLiY9u3bc8EFF/DCCy9UWf/xxx/z6aefMmnSJGJiYliyZAlPPfUUL730EkFBQRYkrrtTtRGgV69eTJo0yf7Ym292LZxLjnueR457Nr5+3POt1tbD8uXLGTp0KMOGDQNgwoQJbN26lVWrVjF+/HiL0zmHYRiEhYVZHcNpevfuTe/evatdp7Xms88+Y/To0ZxzzjmA7RZ0t956Kxs3bmT48OENGbXeamtjBX9/f6/6XEXDkeOe55Hjno2vH/ekqKtFWVkZe/fu5Yorrqi0vEePHuzcudOaUC6Qnp7O7bffjr+/P506deLaa6+lZcuWVsdyiYyMDHJzc+nZs6d9WUBAAF27dmXnzp0ec3BzREpKChMnTqRJkyZ06dKFa6+9ltDQUKtjCTcnxz3vI8c93znuSVFXi7y8PEzTrPILERoaSm5urjWhnKxTp04kJSXRqlUrcnNzWbJkCY8++igvvvgizZo1szqe01V8btV9pllZWRYkco3evXszYMAAIiIiyMjIYP78+Tz55JM8++yzMuu6qJUc9+S456nkuCdFnUOUUg4t80R/PpXdtm1bEhISmDx5Mhs2bCAxMdHCZK7118/P226sMnDgQPvPbdu2pUOHDkyaNIktW7bYL78IURs57nkfOe55P8/uGepiISEhGIZR5dvpsWPHvPZ0buPGjWnbti1paWlWR3GJir4Wf/1M8/LyvPYzBQgPDycyMtJrP1fhPHLc8z5y3PPOz7U6UtTVwt/fn/j4eLZt21Zp+bZt2+jcubNFqVyrtLSUQ4cOER4ebnUUl4iKiiIsLKzSZ1pWVkZKSorXfqYAx48f5+jRo177uQrnkeOe95Hjnnd+rtWRy6+nkJiYyCuvvEJ8fDwJCQmsXr2arKwsr+lY+v7773PWWWcRERHBsWPHWLx4MYWFhQwePNjqaPVWVFREenq6/XFGRgapqak0bdqUiIgILr74YpYuXUpMTAzR0dEsXbqURo0aMWjQIAtT101tbWzatCkLFiygf//+hIWFkZmZyQcffECzZs0qzekkRE3kuOd55Lgnxz0Apb3toroLVEzCmZOTQ5s2bbjxxhvp2rWr1bGc4qWXXmLHjh3k5eUREhJCp06dGDduHLGxsVZHq7ft27czffr0KssHDx5MUlKSfRLO1atXc+LECTp27Mgtt9xC27ZtLUhbP7W18dZbb+W5555j3759nDhxgvDwcLp168bYsWO9Zo4x4Xpy3PMsctyT4x5IUSeEEEII4RWkT50QQgghhBeQok4IIYQQwgtIUSeEEEII4QWkqBNCCCGE8AJS1AkhhBBCeAEp6oQQQgghvIAUdUIIIYQQXkCKOiGEEEIILyBFnRBCCCGEF5CiTgghhBDCC0hRJ4QQQgjhBaSoE0IIIYTwAv8PjzWHbcZfRwkAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" @@ -496,7 +564,7 @@ "plt.subplot(2, 2, 1)\n", "plt.plot(track[0, :], track[1, :], \"b\")\n", "plt.plot(x_ref[0, :], x_ref[1, :], \"g+\")\n", - "plt.plot(x_traj[0, :], x_traj[1, :])\n", + "plt.plot(x_traj[0, :], x_traj[1, :]) #根据mpc优化后的a和delta,预测的轨迹\n", "plt.axis(\"equal\")\n", "plt.ylabel(\"y\")\n", "plt.xlabel(\"x\")\n", @@ -509,42 +577,62 @@ "\n", "\n", "plt.subplot(2, 2, 2)\n", - "plt.plot(theta_mpc)\n", - "plt.ylabel(\"theta(t)\")\n", + "plt.plot(theta_mpc) \n", + "plt.ylabel(\"theta(t)\") # 航向角\n", "\n", "plt.subplot(2, 2, 4)\n", "plt.plot(delta_mpc)\n", - "plt.ylabel(\"d_in(t)\")\n", + "plt.ylabel(\"d_in(t)\") # 前轮转角\n", "\n", "plt.tight_layout()\n", - "plt.show()" + "plt.show()\n", + "\n", + "# 下图展示的结果并不准确\n", + "# 这是因为在做约束条件中,xt+1 = Axt + But + C时,A,B,C是线性化的模型,且是基于猜测的x_bar和u_bar来线性化的\n", + "# 所以需要通过滚动优化,获得更准确的猜测和状态猜测\n", + "# 这里有一个问题,那是否要将这次计算的u,作为下一次的猜测基础?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## full track demo" + "## full track demo " ] }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, + "execution_count": 38, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T08:19:27.567266Z", + "start_time": "2024-10-23T08:19:11.796354Z" + } + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/marcello/.conda/envs/jupyter/lib/python3.8/site-packages/cvxpy/problems/problem.py:1054: UserWarning: Solution may be inaccurate. Try another solver, adjusting the solver settings, or solve with verbose=True for more information.\n", - " warnings.warn(\n" + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:27: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[0, 2] = np.cos(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:28: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[0, 3] = -v * np.sin(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:29: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[1, 2] = np.sin(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:30: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[1, 3] = v * np.cos(theta)\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:31: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " A[3, 2] = v * np.tan(delta) / L\n", + "/var/folders/hd/8kg_jtmd6svgg_sc384pbcdm0000gn/T/ipykernel_12777/1770301921.py:36: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", + " B[3, 1] = v / (L * np.cos(delta) ** 2)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CVXPY Optimization Time: Avrg: 0.1677s Max: 0.2731s Min: 0.1438s\n" + "CVXPY Optimization Time: Avrg: 0.0791s Max: 0.1699s Min: 0.0546s\n" ] } ], @@ -560,6 +648,10 @@ "opt_time = []\n", "\n", "x_sim = np.zeros((N, sim_duration))\n", + "x_sim[0,0] = 0 # x\n", + "x_sim[1,0] = -0.5 # y\n", + "x_sim[2,0] = 0.0 # v\n", + "x_sim[3,0] = np.radians(-60.0) # yaw\n", "u_sim = np.zeros((M, sim_duration - 1))\n", "\n", "MAX_SPEED = 1.5 # m/s\n", @@ -572,10 +664,7 @@ "\n", "# Starting Condition\n", "x0 = np.zeros(N)\n", - "x0[0] = 0 # x\n", - "x0[1] = -0.25 # y\n", - "x0[2] = 0.0 # v\n", - "x0[3] = np.radians(-0) # yaw\n", + "x0 = x_sim[:, 0]\n", "\n", "# starting guess\n", "u_bar = np.zeros((M, T))\n", @@ -587,10 +676,12 @@ " iter_start = time.time()\n", "\n", " # dynamics starting state\n", + " # 获取当前时刻的状态,x_sim是通过ode计算出的真值\n", " x_bar = np.zeros((N, T + 1))\n", " x_bar[:, 0] = x_sim[:, sim_time]\n", "\n", " # prediction for linearization of costrains\n", + " # 获取各参考点处的线性化模型参数\n", " for t in range(1, T + 1):\n", " xt = x_bar[:, t - 1].reshape(N, 1)\n", " ut = u_bar[:, t - 1].reshape(M, 1)\n", @@ -599,6 +690,7 @@ " x_bar[:, t] = xt_plus_one\n", "\n", " # CVXPY Linear MPC problem statement\n", + " # 构建MPC问题和求解器\n", " x = cp.Variable((N, T + 1))\n", " u = cp.Variable((M, T))\n", " cost = 0\n", @@ -651,15 +743,18 @@ " solution = prob.solve(solver=cp.OSQP, verbose=False)\n", "\n", " # retrieved optimized U and assign to u_bar to linearize in next step\n", + " # 将本次计算出的u_bar作为下次猜测的起点\n", " u_bar = np.vstack(\n", " (np.array(u.value[0, :]).flatten(), (np.array(u.value[1, :]).flatten()))\n", " )\n", - "\n", + " \n", + " # 本次的执行值\n", " u_sim[:, sim_time] = u_bar[:, 0]\n", "\n", " # Measure elpased time to get results from cvxpy\n", " opt_time.append(time.time() - iter_start)\n", "\n", + " # 用ode模型仿真车辆运动\n", " # move simulation to t+1\n", " tspan = [0, DT]\n", " x_sim[:, sim_time + 1] = odeint(\n", @@ -675,15 +770,18 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, + "execution_count": 39, + "metadata": { + "ExecuteTime": { + "end_time": "2024-10-23T08:19:28.719495Z", + "start_time": "2024-10-23T08:19:28.541069Z" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAALICAYAAACJhQBYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xT9f7H8ddJ073oAGpD2UPBAQUUEUWgotcJTtybi+Ck+ruCKCqiKBZw4bgizuu+4lasAxD0skVFRmW2BUpbRkt3z/n9EVJa2kJ3kvb9fDx4JDnz0xzaJJ98vp+vYVmWhYiIiIiIiIiIB7O5OwARERERERERkaNRAkNEREREREREPJ4SGCIiIiIiIiLi8ZTAEBERERERERGPpwSGiIiIiIiIiHg8JTBERERERERExOPZ3R1AfaSnp7vt3NHR0WRmZrrt/HJ0ukbeQdfJ8+kaeT5dI8+na+QddJ08nzuvUWxsrFvO607Vfd7ypN8VT4oFFM/RVBVPbX63VIEhIiIiIiIiIh5PCQwRERERERER8XhePYRERERERESkuZs9ezYrV64kPDycpKSkSusty2Lu3LmsWrUKf39/xo4dS+fOnQFYvXo1c+fOxTRNhg0bxogRI5o4epGGowoMERERERERD3bmmWcyceLEatevWrWKnTt38uyzzzJ69GheffVVAEzTZM6cOUycOJGZM2eyePFiUlNTmypskQanCgwREREREREP1rNnTzIyMqpdv3z5cs444wwMw6B79+4cOHCAPXv2sHv3bmJiYmjbti0AAwcOZNmyZbRr165OcVj79mC+Mp1sX1/Mnn2wDR9Rp+OI1JUSGCIiIiIiIl4sOzub6OjossdRUVFkZ2eTnZ1NVFRUheUbN26s9jjJyckkJycDMG3atArHBCj1Mdjn60tp2lZse7OIvuqWBv5Jas9ut1eK050Uz5HVNx4lMERERERERLyYZVmVlhmGUe3y6iQkJJCQkFD2uMrpN+9+BP+P5pK/ONkjpuf0hmlC3ckb4qnNNKpKYIiIiIiIiHixqKioCh8Ks7KyiIiIoKSkhKysrErL68sWFg4HDmCZJoZNbRWl6eh/m4iIiIiIiBfr168fCxcuxLIsNmzYQFBQEBEREXTp0oUdO3aQkZFBSUkJS5YsoV+/fvU+nxEaDpYJ+QcaIHqRmlMFhoiIiIiIiAebNWsWa9euJScnhzFjxnD55ZdTUlICwPDhw+nTpw8rV67kzjvvxM/Pj7FjxwLg4+PDTTfdxNSpUzFNkyFDhhAXF1fveGyhYc47uTkQHFrv44nUlBIYIiIiIiIiHuzuu+8+4nrDMLjllqobasbHxxMfH9+g8dhCw513cvdD25r3LxCpLw0hERERERERkRqzhbZy3jmQ49Y4pOVRAkNERERERERqzDg4hMTKVQJDmpYSGCIiIiIiIlJjtrByQ0hEmpASGCIiIiIiIlJjRlAIGDY4kOvuUKSFUQJDREREREREaswwDPDzg5Iid4ciLYwSGCIiIiIiIlI7dl8oVgJDmpYSGCIiIiIiIlI7vr5QUuLuKKSFUQJDREREREREakcVGOIGSmCIiIiIiIhI7fj6QXGxu6OQFkYJDBEREREREakdux2rRAkMaVpKYIiIiIiIiEjtqAJD3EAJDBEREREREakduy+oAkOamN3dAYiIiIiIiMiRrV69mrlz52KaJsOGDWPEiBEV1n/22WcsWrQIANM0SU1NZc6cOYSEhDBu3DgCAgKw2Wz4+Pgwbdq0+gdk94X8A/U/jkgtKIEhIiIiIiLiwUzTZM6cOUyaNImoqCgmTJhAv379aNeuXdk2F154IRdeeCEAy5cv58svvyQkJKRs/eTJkwkLC2u4oHx9IUcVGNK0NIRERERERETEg6WkpBATE0Pbtm2x2+0MHDiQZcuWVbv94sWLOe200xo1JsPuqx4Y0uRUgSEiIiIiIuLBsrOziYqKKnscFRXFxo0bq9y2sLCQ1atXc/PNN1dYPnXqVADOOussEhISqtw3OTmZ5ORkAKZNm0Z0dHSV29ntdvxDQym2zGq3aSp2u93tMZSneI6svvEogSEiIiIiIuLBLMuqtMwwjCq3XbFiBT169KgwfGTKlClERkayb98+HnvsMWJjY+nZs2elfRMSEiokNzIzM6s8R3R0NIWlJlZBQbXbNJXo6Gi3x1Ce4jmyquKJjY2t8f4aQiIiIiIiIuLBoqKiyMrKKnuclZVFREREldsuXryYQYMGVVgWGRkJQHh4OP379yclJaX+QdntmoVEmpwSGCIiIiIiIh6sS5cu7Nixg4yMDEpKSliyZAn9+vWrtF1eXh5r166tsK6goID8/Pyy+2vWrKF9+/b1D8rXD4qL6n8ckVrQEBIREREREREP5uPjw0033cTUqVMxTZMhQ4YQFxfH/PnzARg+fDgAS5cu5aSTTiIgIKBs33379vH0008DUFpayqBBg+jdu3f9g7L7qgJDmpwSGCIiIiIiIh4uPj6e+Pj4CstciQuXM888kzPPPLPCsrZt2zJ9+vSGD8jXF0wTq7QUw8en4Y8vUgUNIREREREREZHasfs6b1WFIU1ICQwRERERERGpHV8/560SGNKElMAQERERERGR2nFVYKiRpzQhJTBERERERESkdsoSGKrAkKajBIaIiIiIiIjUjq96YEjTUwJDREREREREasVQBYa4gRIYIiIiIiIiUjuuJp7qgSFNSAkMERERERERqR1fNfGUpqcEhoiIiIiIiNSOn7/zVgkMaUJKYIiIiIiIiEjt+B0cQlKkBIY0Hbu7AxAREREREfE2P/zwQ4228/HxYfDgwY0cjRscrMCwigox3ByKtBxKYIiIiIiIiNTSK6+8wnHHHXfU7VJSUpp1AoPiQvfGIS2KEhgiIiIiIiK15Ofnx+TJk4+63Y033tgE0biB78EERpESGNJ0lMAQERERERGppSeffLJG2z3xxBMNcr7Vq1czd+5cTNNk2LBhjBgxosL6P//8k6eeeoo2bdoAcMopp3DppZfWaN86cVVgqAeGNCElMERERERERGrpmGOOqdF2MTEx9T6XaZrMmTOHSZMmERUVxYQJE+jXrx/t2rWrsN1xxx3H/fffX6d9a81uB8NQBYY0Kc1CIiIiIiIiUg9ffPEFW7ZsAWDDhg3cdttt3H777WzYsKFBjp+SkkJMTAxt27bFbrczcOBAli1b1uj7HolhGM4qDCUwpAmpAkNERERERKQevvzyS4YOHQrAu+++y/nnn09gYCCvv/46jz/+eL2Pn52dTVRUVNnjqKgoNm7cWGm7DRs2cN999xEREcG1115LXFxcjfcFSE5OJjk5GYBp06YRHR1d5XZ2u53o6Ggy/AMI8LERVs12TcEVi6dQPEdW33iUwBAREREREamHvLw8goKCyM/PZ8uWLTz44IPYbDbefPPNBjm+ZVmVlhlGxclLO3XqxOzZswkICGDlypVMnz6dZ599tkb7uiQkJJCQkFD2ODMzs8rtoqOjyczMxLL7UrBvH0XVbNcUXLF4CsVzZFXFExsbW+P9NYRERERERESkHqKioli/fj2LFy/muOOOw2azkZeXh83WMB+3oqKiyMrKKnuclZVFREREhW2CgoIICAgAID4+ntLSUvbv31+jfevMzx+K1cRTmo4SGCIiIiIiIvVwzTXXMGPGDD755JOymT9WrlxJ165dG+T4Xbp0YceOHWRkZFBSUsKSJUvo169fhW327t1bVm2RkpKCaZqEhobWaN868/PDUg8MaUIaQiIiIiIiIlIP8fHxvPzyyxWWDRgwgAEDBjTI8X18fLjpppuYOnUqpmkyZMgQ4uLimD9/PgDDhw/n119/Zf78+fj4+ODn58fdd9+NYRjV7tsgVIEhTUwJDBERERERkXpITU0lJCSEVq1aUVBQwGeffYbNZuOCCy7Abm+Yj1zx8fHEx8dXWDZ8+PCy++eccw7nnHNOjfdtEH7+UFjQ8McVqYaGkIiIiIiIiNTDM888Q15eHgBvvvkmf/31Fxs2bOCVV15xc2SNzNcPCjWERJqOKjBERERERETqYffu3cTGxmJZFsuWLSMpKQk/Pz9uv/12d4fWqAw/fywNIZEmpASGiIiIiIhIPfj6+pKfn09qaipRUVGEhYVRWlpKcXGxu0NrXH7+oCae0oSUwBAREREREamH0047jUcffZT8/PyyPhSbN2+mTZs2bo6skfn5QbESGNJ0lMAQERERERGphxtuuIHffvsNHx8fjj/+eAAMw+D66693c2SNzD8QCvKxLAvDMNwdjbQASmCIiIiIiIjUwYMPPkifPn2Ij4/npJNOqrCuS5cuboqqCQWFQEkJFBWBv7+7o5EWQAkMERERERGROrj22mtZuXIlL774Ivv37+ekk04iPj6eE088kYCAAHeH1/iCQ5y3B3KUwJAmoQSGiIiIiIhIHXTv3p3u3bszatQo9u7dy8qVK1m0aBEvv/wyHTt2pE+fPvTp0weHw+HuUBuFERyCBZCXC5HR7g5HWgAlMEREREREROqpVatWDB06lKFDh1JaWspff/3FqlWrSEpKYvDgwVx00UXuDrHhBbkqMHLdG4e0GEpgiIiIiIiINCBXM8/jjz+ea6+9lpKSEneH1DhcQ0jylMCQpuFRCQzTNLn//vuJjIzk/vvvd3c4IiICJCTYee89d0chIiLiuTIzM/nwww/ZsmULBQUFFdY988wz2O0e9bGr4RyswLAO5KA5SKQpeNRv0ldffYXD4SA/P9/doYiIyEGLFtkASEoKJTExx83RiIiIeJ4ZM2YQGxvL5Zdfjp+fn7vDaTrBoc5bVWBIE/GYBEZWVhYrV67k4osv5osvvnB3OCIiLd7hCYsZMw49Lr9OiQ0REWnp0tLSeOyxx7DZbI12jtWrVzN37lxM02TYsGGMGDGiwvpFixbx6aefAhAQEMAtt9xCx44dARg3bhwBAQHYbDZ8fHyYNm1awwQVEAg2W4vpgWEV5EHmLox2ndwdSovlMQmM119/nWuuueaI1RfJyckkJycDMG3aNKKj3dfp1m63u/X8cnS6Rt5B18kzJSTYWbTIxowZzm9WHI5YAEaNiiE5uYQZM/x44gnndGmu+1Om+PDgg6Vui7kl0++R59M18g66Tp7PU69R3759Wbt2Lccff3yjHN80TebMmcOkSZOIiopiwoQJ9OvXj3bt2pVt06ZNGx5++GFCQkJYtWoVr7zyCo8//njZ+smTJxMWFtagcRmG4RxG0kIqMMxXnobfl2N78WMMu6+7w2mRPCKBsWLFCsLDw+ncuTN//vlntdslJCSQkJBQ9jgzM7MpwqtSdHS0W88vR6dr5B10nTxPUlIo772XicMRy/jxOWVJDHAOJ/H3d5bGHrpusWRmZvLYY7HcdtuusmMkJuaoOqOJ6PfI8+kaeQddJ8/nzmsUGxtb7bqbbrqJSZMm0bZtW8LDwyusGzt2bL3PnZKSQkxMDG3btgVg4MCBLFu2rEICo0ePHmX3u3XrRlZWVr3PWyPBoZDbQl7rN6133ubmQKtI98bSQnlEAmP9+vUsX76cVatWUVRURH5+Ps8++yx33nmnu0MTEWlRkpJCmTEjtCxp4bo9PJEBh6oyyt93JSxcw02qG3YiIiLSnMyePRubzYbD4WiUHhjZ2dlERUWVPY6KimLjxo3Vbv/DDz/Qp0+fCsumTp0KwFlnnVXhS+HyalrxXr4SJjsiCgryiHRTZUxTVuVkhoRSeiCHVr4++NbgufEEzS0ej0hgXHXVVVx11VUA/Pnnn3z++edKXoiINLHyyYe0tHQcjljS0tIZNSqmwnKgbJ0r4eFSPvlxuKqSGUpqiIhIc/DHH3/w8ssvExgY2CjHtyyr0jLDqHrejz/++IMff/yRRx99tGzZlClTiIyMZN++fTz22GPExsbSs2fPSvvWtOK9fCVMaVAw7Eitdlsr7wD4+WM00kwstanKKb3jCowzzsZ22U11Olepr3P47N7tWzGCw6vcpiGrhCzTBLO0XsNVPK2yrKp4jlTddLjG6zIjIiJew5WIcFVSlK+oSE52zl0/fnzlRIMr+eBKbJRX/ljlqzWAShUernOJiIh4ow4dOpCT03gJ+aioqApDQrKysoiIiKi03datW3n55Ze57777CA099LoaGekc7hAeHk7//v1JSUlpsNiM0HDI2VvtevOuKzH//XSDna9eCvKx5s+r+/5BQc7b3P0NEs7RmLMfx7ztkiY5l7fwuARGr169uP/++90dhohIi1G+CsKViEhLS2f8+JwK1RHl75dPZpS/n5aWXuEYh6sqmeHiSmaUT2QoqSEiIt6gV69eTJ06lU8++YQffvihwr+G0KVLF3bs2EFGRgYlJSUsWbKEfv36VdgmMzOTp59+mttvv73CN9oFBQVlEyUUFBSwZs0a2rdv3yBxARDWCnJzsEpKKq0qqxxZuaThzudOgcEAWE2UwOC3pc7zVVGB01J5xBASERFxj8N7Xhzey6I6VSU2qqrQACoMOynv8GoPl/JDTTTsREREvMH69euJjIxkzZo1ldYNHTq03sf38fHhpptuYurUqZimyZAhQ4iLi2P+/PkADB8+nI8++ojc3FxeffXVsn2mTZvGvn37ePppZwVEaWkpgwYNonfv3vWOqUxYK+dt7v7KjS1LihvuPPVkldZ/pjQjIBALmqwCo0zeAQgOadpzeiglMEREWqjqel7UNUFQVYXG4UmNw3toVJfUqCoGNQYVERFPNXny5EY/R3x8PPHx8RWWDR8+vOz+mDFjGDNmTKX92rZty/Tp0xstLiOslfND/f69lRMYxfVLYFjbN2M+ehe2fz2J0fW4eh2rQZIprkKIpp51Zf9eJTAO8rghJCIi0viO1POiIRICrmNUN+ykPNdwlfIOj03DTkRERDyUqwJj/97K60qK6nVoa8Ofztv/LajXcZyxHEpgWMV1jKv04DCZnH31j6cmfHyct1U9ty2UEhgiIi1MTXteNLQjVWhUFU9tGoMePhOKi5IZIiLSWG6//fYabdfsZ1c8mMCw9u+pvK74UF8Mq6iw9sd2VR0caID3J+WrQeqYEHANQ7GaKoHh6rmhBEYZDSEREWlB6trz4kgssxSydjvfXOTlYh3IhQO5kOf6d8C5zPU4P4+7ff0onRbE3QGBlL4UiBEQxLyrW2F+6sPoTjGYC4vBP5ChreN487/FEN2Gdsf1JC1tR52GnZRfp2EnIiLSELKzs3n//fePut2+fU30YdddWkU5b/dkVV5XvtJh3x5oHVO7Y/s4P642SNPM8rHszYaoNrU/hqsCY08TTUsaGOTst6EERhklMEREWoiG6nlh7cmCzRuwDv5jSwoU5le9sd3X+e1JUAgEBUN4JEZMHFZJEeTnOZtSZWdi5ecRX5CH9WUBk46zsN5y7v56fzCfcN5fNzyA0odaM7dfBxKuCOenP9vz9ted2Z4XS2p+bJWJGZeqGoMqkSEiIvUxaNCgClObVmfgwIFNEI37GH7+EBoO2bsrryzfd2JPVu0TGMUHqzYaogKj3CwpVnYmRpc6HMOVwMjOxLIsDMOof1xH4h/gvK2quqWFUgJDRKQFqGvlhVWQT9EfKzFXLcPasgE2bYC9B9+s+dghrhPGwCEQ1xkjrNXBREUIBAdDUIjzTU0tWKYJRQWQnw8F+VCQB/v3YmVmsO7bbOLbpnJi3A6sX1cyOD+PwX3L7RwUDNFt+eSX7qzL6cq6nK78ldMNh+OYKn/W6pqBKrEhIiI1MXbsWHeH4DkiW2NVlcAoN2zDytyF0b1X7Y7r2r8hmmaWT6ZkVB6mWrNjHExgFBU6kyohYfWP60hcM6fsy27c83gRJTBERFqQmlReWFkZWL/8iLViCaRtZY9lOle0jnG+8ejUHaNTd2jfGcPXr0HjM2w2CAhy/iu/HOg/zHk/hoPzoefl8vasHK45ZzNT7spn0m0bsXbv5OTIVYx0fFO2796iMGcy45uu3PdhV/q06ka39s6vXcpXpahCQ0REpI4io2FnWuXl5ZMGmTtrf9yyCozcusVVXSy76pjAKD1UxUH27sZPYByM2arquW2hlMAQEWnGXJUXLtVVXlgF+Vgrl2At+QHW/+5c2K0nxnmXE967H/sjYzBCG/lFuhYMw4DgUK59IBSIJXhkKLarnT/Ph0mhjB+zA9K2MvGGPUy9bQ32T9O5scfnFYa6bD3g4K+fuvHEp8dxenQvrAORGOWmKKuqQkNJDRERkcqMyNZYa3+rPKyifN+J3btqf+Cig/sX5mMVF2P4+tY9yPLVIPWpwAgNd85Ckp0J7esyDqUWXM/fjtSmGbLiBZTAEBFp5lxVF677rg/hlmnC+t+xfvkBa+UvUFjgrLK46CqMAUMwotsC4B8djZHZRM2q6qh8UsF5PwS69yL6klBs1w7i4vtjSd2eClkZ3Dg8h9emrGTNixn0DFvPOTE/AWDeDZsOtGfWSb148LSexLfqxazpsdx9X1FZMqO6YSciIiItWmS080uCvFwILjcDmKvqwc8fq04VGOWrJtKgXce6x+ia0vWYuHpUYJRCm2MgZ58zCWKWYth86h7T0biev7xcyNkLYRGNdy4voQSGiEgzdXjfC3BWYDx6+1+Yn3yO9euPzvLHwCCMk8/AGDgUuhzXrLL7rgTD+PE5zuEprWM44Zpu2M7vxrh/OofSWHm5jBqwh3en/Yr53WZOta3gYsfXABSv82H15V15/PhemIti6R4yCMsMwLDZVKEhIiJykNHmGCyAjB3QqVwCw5WAOCYOdtdjCAlgbd+MUZ8ExsEpXY24zlhLF2Dt24MRXsuEQGkJRqtYrBgH1odzsX75CZ/Jz9Q9pqMpLgZHB0jbCjtSlcBACQwRkWapqhlHnrxtKVcGvgTr1mBttkGv3hiXXI/R+5RaN9v0NpUrNJxJDQAjKISfs7pjOzeOHuc6kzypf/zOTcOyOCn8T3q3+pMLjpmP9WYuyWc8z56bQli550Tu6HIi1rp20Kk7M2bEqkJDRKSFKikpYePGjWzdupUDBw4QHBxMhw4d6NatG3Z7C/m41bYd4OzVYHTqXrbYOjgEwojrhLU1BSt3P0Zt+kYUFYGfHxQVYb02E8vPD6PvaXWL0VXN0K0nLF2A+czD2Mbcj9HmmJofo7QEfOwYx57o7EuRuhmrsADDNVtIQyspxujYFSttK9bWvzF6nNA45/EiLeQ3SkSkZUhKcn7rUb7yYmA3k+d7T+DCrd9BaDjGxddjnHomhmve9haqfHLBlcxw3Tciopi/6wTmruwOjKSdI4btK1Zw14W76BfxG/0ifuO+Nkswk6DE9OGL07pjvteV82MGYu2JwYiIqrIZqJIaIiLNx/79+5k3bx4LFiwgJCQEh8NBQEAABQUFfP311+Tm5jJ48GBGjBhBWJjn9JFqFK3bgs1WuZGnK2nQuQf8/B1s3wzHnVS22krfBv6BGFGtqz5uSTEEhkCRcxYO67eldU5gWAdjMTp3d1aLbN+M9fm7GDePr/lBSkvBbsc451Ln8Nv9eyF9G5RL2jQUyyx1ni+yjXOWlw9fw9yThe2Kmxv8XN5ECQwRkWbEVXExY0YoqevW8e+RX3Jz1w8pNu0Y512BcfZIjMNm+JAjV2gAWNgwYhx8nNafZ5fGA9CzQwh9In4vS2jkzZ/P7PjPMf8Ptucdw7O9T8T8qROfvzKU8eP9MQxDw05ERJqRyZMnM2TIEKZPn05kZGSl9dnZ2fz8889MnjyZmTNnuiHCpmPYfaH1MVg7UyuuKHYlDXpgAda2TRjlEhjm5NsB8Pn3Z1UfuKgQ/PywPfw85swHsTLr0AjUxZVMCQoBXz8oLsLavtk5NCWuUw2PUQI+PhhRrbHd/xTmxNHO/RshgeEa8oKvHwQ637tZyZ9iDUrAcHRo+PN5CSUwRESaAVflBUDnuEjGdn6dvXfM5YaO+fwe8g9OmnRpi6+4qK2qKjTKJzX2lYTxzupOQCccjrGkbt3GuSfmliU0BkSuxHrnW74/4yVybosguPdxXN/hNKzUOIhtr8agIiJebvr06UccIhIZGcmFF17Iueee2yDnW716NXPnzsU0TYYNG8aIESMqrLcsi7lz57Jq1Sr8/f0ZO3YsnTt3rtG+DSLG4axGKM+VNIiIglZRsDUFq6gQw8/fOSV6udir6sFlFReD3RfD0R6jzwCs/y2o+2wcrn4cdl9sU1/GfP1ZWLsK89G7qk+gHO7gEBIAotqAfyBs/BMrrlPDJzFcz52vHSPhQqw3ngPAfPgObPdOdfYtO/j/z9q2CWvHdmynDG7YGDyQzd0BiIhI/biadc6aEcSljs9ZMPgS7j/2eXZHnMQ7nefQ++l/KnlRT66kQnXDTgAMu501+3oyZfFgUoY8wMk/fMXpP83j3jUP8vXWgaT+vIkpvaZjPnInmTdezyvx92Imf0bP0PXOGWGgbNhP+YRU+fsiIuI5yicvXnvttSq3ef311xukD4ZpmsyZM4eJEycyc+ZMFi9eTGpqxWqHVatWsXPnTp599llGjx7Nq6++WuN9G4LRsRvsSsPKO3BooWsaUF8/jC7HYi1bhDnuMqx9e5wzaxxkvToDq7S08kGLi8DVpyuuE+TnYf3nZaxN67EKCytvfyQl5WKJiKrQENT667cKCZVqlZbAwetp2GzQpQfWrz9hPn4vpQ/fgfnZu+T/8BXWql+xMtKxsjKcyYXULVh7s7D2ZNU8XtdzZ/fDNugsbBOml60yn34A87lHsdYscz5+PBHr1SRKb78cc/48zA/mVK6GaSZUgSEi4sVc39j/+sY63rt4mrNLdafuXPqfKXzyRwyNUNAoBx2pQsNVWbFkow2H4yJm/q8/AKd0hQGRKzklcoWzQuP9n/jm9FfZc1MoS7N7c2unvlhb4nhm5mllx1eFhoiI51uwYAE33XRTpeULFy7khhtuqPfxU1JSiImJoW1b5xTnAwcOZNmyZbRr165sm+XLl3PGGWdgGAbdu3fnwIED7Nmzh927dx9134ZgdO7uTAJs2Qg9ezsXlhyqeqDHCbBiMQDWhj8wIg59uWItXYAx9DzocmzFgxYVOodQAEbXns5hKD99hfXTVwDY7n0cK/TUSrGYn78HB3Kwjbr10ELXkAy7r/N4Z4/A2r4J/voNc8aD2MZOhD4DjvxDljqHkJT9zN16Yq1d7XyQthUrbSv7j3wE6Nkb25DzwNEBo3VM9duVVWA44yWuM7R1OKeTBVi7GnPtagiPcPbKACgswPrwUDLNuLz+/TKsokLYmwWmBZYFuG6ddyspXxxTViljgGFgxDjqHY8SGCIiXiopKZTnZgYQ8OVrvHfKW2zd4GDa+mn06HEyg240AH3QbSo1qdAASM2P5ZmlAPHO2U5+/407zk5zJjWiVnJW20WYU+G3hGBS7j6ezuccS+/wIVglYRh2e7WNQZ94oil+ShEROdwPP/wAQGlpadl9l4yMDEJDG6aKLjs7m6ioQx/4o6Ki2LhxY6VtoqOjK2yTnZ1do30bRMduAFgrlgBg9OztHLZhtzuHfPQ4vuzzrvXVh1ipW5wPAoMh/wDW5vUYhycwSooPVWAcE1fplObTE8k5eyTWhVeVzahmrf4V67P/OO//49JDU6WWG5IBYIRFYBs7EfOOK5zHmv04xshrsZ17WfU/Y0kJ+PiWPTS6HV/lZ/gjciUeAI7vi+3K0VXPhFI++QMYvr74PPYipQ+Ngx3bD223b0+Vp7HKb1NH1tpVmK/OgJx99T4WgUH4PPtevQ+jBIaIiBdKSgpl/HUbGfzrM/Rp9Sdvbb2E678YRY/novUNvYeoqhlopWEnka35JP0knl/Wm6Sku3jnhQJOjlzJgMiVDChYifXx//jstDfIuTWQ5XtOYlyXvlgp7Xlu5hkVKjSeeKJI1RkiIm6waNEiwDmVquu+S3h4OOPGjWuQ81Q1vOHwPhDVbVOTfV2Sk5NJTk4GYNq0aRUSIuXZ7fYq1kWT1fU4ShZ+g7XwG6Jf/pg8Xzv5fv7ObaOjKZryArnvz6H4j5WH9nr2HbIn/hPf1C20OuyYWWYptpBQIg4u39N3IEUHEyQu+d9+At9+AkDEEy+Tt/xnXINLglP+JOjsEQDk+to5YPOhdZu2FfY/cPU/yX3nZQCsT94iLP4U/I6Pr/QzW5ZFhmkSFBZKiCvO6DMpiXubvPmfkv/lh1U+V0f0xwrMB/5J0EVXEnTupfiUS2QU5+whGwiLjCKg3PNSOnU2Rb8tZf8zUyocyq/vqZRs24S5exe+3XtRujON6Ojoaq7V0ZXuSifrxWnY2xxD0A23OxMpBhjGwS4U5asrypT7v1ZWpXHw1seHgHrE46IEhoiIl0lKCmXju7+w9/epdA628c+VT/L1zmFkPZejD7AeqKoZTqC6YSexvLT8BByOs0lLS8fav4d/DtnhHHIStZJ/9XgB80n4Y7g/m+46no7Dj6NvqyFYJd2qHWqixIaISOOZPHkyAO+99x6jRo1qtPNERUWRlXWof0JWVhYRERGVtsnMzKy0TUlJyVH3dUlISCAhIaHscfnjlRcdHV3lOrNrT0j5y3me/74NBflYPvZD28bEYfYZAOUSGNmmhdWxO4WLv2fX/n3YrrkNI9I5rWppfh6GaZXtb916H7Zr87Hmz8P66oNK59/z/lz4YwXG0POx/lhJzsLvyOs7yBlbzn6w2yvHfeZ5sPJX+Os35zEevB3bxKcrNeV0TcOaV1hEQfljBIXBiGuxXXgVbEkh1Cplf3Y2pG+FAznO5qUlJZC7Dw7kYi1dWCnuvE/fJe/Td7Hd/1RZFYqVuRuAnPx8cg+P+fj+2KbPdTY1XTgfMtIpOfcKiG6DbctGSjZvxJr3Nru3b6N1XPtqr+ORmP+eiWWamGMf4EB109zWUm5mZpX/d2JjY2t8DCUwRES8yDPT7dzT5nGsPt9Bl2M59d/TWfq3RVKSkhfepkaNQcMi+HJnL15Z0ZOkpLFc8Vwpp7gqNKJWYM17m08Gvs3mkYG80a8PP008nsG39qiyh4YSGSIiDaukpKSsQeeRkhfFxcX4+vpWu74munTpwo4dO8jIyCAyMpIlS5Zw5513VtimX79+fPPNN5x22mls3LiRoKAgIiIiCAsLO+q+DcUYch5W6mZns81F8zGO632oh4Nrm76nYb01GxwdsF1yA4bNB6tXPCxbBL8vx/r4TcxN67Bdcr1zCIqf36F9fXwgOARj5DVYCRdi/bkCa065KWpX/+rcrvcp4OeP9d08rAO5GMEhzqaY9qqvg+2me7CWLizrH2GtXlp5VpGSgz00fKr+CG3YfKBzDwKiow8mHAZVuZ11492w7jeslL+cw23KNds0P3sXtm/Cdv2dZVOnVhez0SoK4+yL4eyLsfZmY7Q6OJVvzz6A4ewX8sEcSHykyv2PxNrwJ9aKxRgXXInRQMmLhqIEhoiIl3h96m7O/v0xSkO28PzfNzHz69GUWnYlL5qRIw07cVVozFl5LA7HUNLS0nnhSZNVH6zn1MjlDIxaQffdSzAfd/bQKH2uJ0aPE+gVNhTLDKmyQkNJDRGRurv33nsZMmQIp59+OpGRkZXW79mzh4ULF/LTTz8xc+bMKo5Qcz4+Ptx0001MnToV0zQZMmQIcXFxzJ8/H4Dhw4fTp08fVq5cyZ133omfnx9jx4494r6NwYiMxueuh7FS/sJ88l9YKxbDYf0djOBQbA8/DxFRGEHBzmW9+hzqj7F0AQDmy0+BzQa+/lWfKzQMY8AQos69hN3PPAaF+Vj/c+5L1+MwgkKwvvkYK/lTjIuudiYgfP2qPlarSIzhIzAjorG+fB9rSTJmYb6zkmPRfGhzDEb8wWah9ZxVxrDb4fi+GMf3xTp/FOzJxJwzA9K3w9pVzp/9recPNSCtJubD46/guJMwTkvA+uUHrJIHax2j+c3HEB6BcfbIWu/b2AyrRvPFeKb09HS3nbu6sinxHLpG3kHX6egsyyL5wR8ZmvUCGblhxEy8m3YJ/yAtLb1JPoDqGnkO1/V2OGJJS3O+BjocsRQWFuHv70e0XxanRq3g1KjlDIxaTufgbQDsLQrj1+x4Ak48nqG3dSfulAGkpu2scBwlMxqXfo+8g66T53PnNTq8zH3//v3MmzePBQsWEBISwjHHHENgYCD5+fns2LGDvLw8Bg8ezIUXXkhYWJhbYq6v6j5v1eQ6mK/NwvrlB4hqg8+0V496LvPHryAwCGvODOcCux1KSjCGXVBxNpFqYrFKSzHHjARHB3wefs55zFeTsJYuwjjnYueUowX5R43F/OlrrHdedD4IDS9rYGmcdznWlx9gXD0G25nnHjWe2rK2bcKccrfzgc0GB6dYt01MwujUrdbHM3/9EWvOTKKe/Q97A0NqHsfebMx/3YRx9khsF19f6/MejYaQiIg0Y1ZhAesnPM/QnIX8kDGQxDUPk5XgzLLrA2fLU32FhvPbqd82FwLH43AMJy0tnZemFfDHx+sOJjRW0D7jJ8xHYOWwVpS+1JNr25+OtaM9xLRThYaISC2FhYVx3XXXcdVVV7Fx40a2bdvGgQMHCAkJoX379nTt2rVsiElLZFw3Drr1rPEQBNsQZ1LA3JoCka0xOnTB+vUnjFPOrNn5fHywzXgbfGyHll07Dmw2rK8/ci44sf/Rj3PyGc4EhmGD3P3OJEZcJ6wvD/bcqGYISX0Z7TtjXHw9RvvOWLvSsN59xbkiLLxuxzsmDgsoSd0M3U6o8X7W/34C08QYOKxO521sqsCoI2XoPZ+ukXfQdaqelbOP9IlTiSncwGNr7+ChhUNoF9euySovXHSNPF90dDQTJhSW/Z84vEIjLS0dhyMWR8COsuqMU6OW4wjcBUBGQRS/ZPdlxL+6YvQ4kXbxfUlL26EKjQak3yPvoOvk+TypAqMlqE8FRlOpSSxWRjrszXYOLbH5HPWY1vbNzuabG36HgCDoehzm7ZcDYNx4N7aBQ+sVT01Ye7OciYTIuvWgsAoLMG+/nOArb6Vg6AU128eyMCffDkHB+Nz/VJ3OezSqwBARaYas3TvJmvwIrQoyuXnVU3yXcSavHByuqg+SUpXqmoGWv7/0bwvoi8NxAampaZzW3eLUyOVlSQ3rrflYwK9D2mLO6cll7U7HyozDiG5bZTNQ/V8UETlk7969pKSkkJOTU2Hq0qFDq/+wK03DaBMLbWr+IdmI6+S80/e0QwsdHSBtK/gcPQHSEIxWUfXb3z8A2joo+m0p1DCBQeYu2LEdY9Toep27MSmBISLiYaytKeQ8MYWIgBJGLpjNZ3+2xuGgySsvxHtVNXVrpRlODIOteQ6WbLQBJ+NwHEPn4K0MPJjM8FuwgqQTf8ScANvyYpl+Ql/MX7ryn9kJJCY6j6FhJyIiTkuXLuW5557jmGOOYfv27cTFxbF9+3aOPfZYJTCaixiHM4FxsDeFNzAGn0PxB3OwbU3B6ND1qNtbG/507ndszYecNDXb0TcREZGmYv25ioLHH2BPrj9DvprLir0n4XA4vzHQB0Opj6oqNComNQwWbfDjyV8GMnbVNNq88ToJC9/joT/v5c/9PRjediHWazNZOvQ8Msfehvnm81x4zDdY+/YAzmRG+Vtw/p8VEWkJ3n//fcaOHctTTz1FQEAATz31FKNHj6ZTp07uDk0aiBHTznkna5d7A6kF45QzALA2rq3ZDhv+gJBQOKZxZqlpCEpgiIh4CPOXHyme9Sh+sTGMXDKXhRuc02alpaUzfrymSpWG4/q/VN2wE3BWaGzI7crUJWew/syH6J38HecseodH1t7D8tTO7PthMc/3mYR57/Wsu/JOHus1DWv5z0T67Sk7hiuZUT6RoaSGiDRHmZmZnHrqqRWWDR48mIULF7opImloxvARGH1Pwzj9bHeHUnOhrTCCQmBXWo02tzb8Ad16Ydg8N03guZGJiLQQlmVhfv0x1msz+TUznl6vzWVXYWtVXkiTOlKFRmJiDhY2vlsXypwtV3POZ/fR6rW3OX/xm0z9606258VyseMrzJefYnXCWfw56h5ePesdzm77I9aBnApVGarQEJHmKCwsjL179wLQunVrNmzYwK5duzC9aLiBHJkRFIJtzL8wwiPcHUqNGYaBj6M91s6jJzCs7N2QuQuj+/FNEFndKYEhIuJGllmK9d6/sf77ButDh3L98mdYt3U/oMoLcZ8aVWjYfFizrycP/ZzAWZ/ez4nf/YDt/qd4cv04dhdGMSpuHv/uex8ld13Dl6ddzdL/ewvrt2WE2nPLjqEKDRFpLoYNG8a6desAOO+883jkkUe47777GD58uJsjk5bO7mgPNUlguPpfeHgCQ008RUTcxCotxXptJtbShbyy6WqmrrsLC5sqL8QjVdUMtPz9EsuO0eVYXvh7KBMXns2s6f4seGMbpx6csjU+81PM5z9kzVlTWXHZsfyS1Y/B0f2wCtoyY0Zs2fGrmu1ERMTTjRgxouz+4MGD6dWrFwUFBbRr1859QYkAPrHt4advsAryMQICq99wawr4+UO7Dk0XXB2oAkNExA2s0lKsOTOwli7k59ajue37K7AO/klW5YV4sqpmOIHKw07uvq+QpXv68H8LzmPU/14m6OX/YEt8jOdSbqLI9OPmTv/hrZPvpHDcVfz31Jv45f73sdauJsBWAFQ/1EQVGiLiDaKjo5W8EI9gd7R33slIP+J21vbN4OiAYWuaaWLrSgkMEZEmVpa8WLaIRa1Hc9Ubo8uqLoAK90W8xdGGnRi+fhjHnsiMjWM49eNHeeXYz7h66fO8vOk6bJjE734Pc+ZD/H7WEJZcMpnx3V7m/Uf/xiouqrKHhhIZIiIiR+cT60xgHKkPhmVZsH0TRlznpgqrzpTAEBFpQmXDRg4mL858/HzAWXUBzg98aWnpqr6QZuFIw07uuq+ERZkDuOvHkYz45XX8XniHee2eYO7WUQT6FHBH1zlcuv0e8v95JZ+ceiPm+3Owlv9MTIBz+rqqKjSU1BAREanIfkwcGMaR+2BkZ0LeAYjz/Gl/lcAQEWki5Xte/Nx6NFeXq7xQ1YU0Z0cbdgJgBARxyeRePL7uLvp88CQnffc9Ny9PYu6WUZRaPuR/+w3my0+xdOh5bL/mVmb3uZ8fHvgG6+91PD/LH9AMJyIiIocz/P0hsvWRp1Ldvsm5rRckMNTEU0SkCTiTF7Owli5k2rrbeeDfw+ENZ+WFwxFLWlq6mhZKi3OkCo39JaG8vqob0A2H4y5St27lnWkZrPvqb/pG/EZ8xO+0y0jGnAZ/nOVH6bTOTDq2L+b/YjDad2HWjL5lx3f9bul3TES8UW5uLjNnzmT37t20bt2ae+65h5CQkArbZGZm8sILL7B3714MwyAhIYFzzz0XgA8++IDvv/+esLAwAK688kri4+Ob/OcQN2rrOPIQku2bnVUaDs9u4AlKYIiINLpDyYsF/Nz6VmZ/dQOzHc51mnFEpOoKjUrTttp9uWaSA8eL/XlsyRk4HLG09d9NfMQa4lv9Tt99a7iuw4dYrxZhAX8OD6R0WgeMuM6kfRCPdWkUz886pVJSQ0TE082bN48TTjiBESNGMG/ePObNm8c111xTYRsfHx+uvfZaOnfuTH5+Pvfffz8nnnhiWSPR8847jwsvvNAd4YsHMGIcWIvXYVkWhmFUWm+lboY2sUeepcRDKIEhItKILPNQ8uLJ9eN44asbK6x3fUjTBymRiqobalL+/spNxcBxOBzDSEtLp0O7NnQL2USvsPUcH7aeXvvX03PdAqaf+BXmY/DXcB9KH2mP0b4zez7ug3V+JC/N68GY/7NjGIaSGiLikZYtW8bDDz8MOKdoffjhhyslMCIiIoiIiAAgMDAQh8NBdna2ZkIRp7axUJgP+7KhVVTl9albvKL/BSiBISLSaCzTxJr7DNbSBRgjruGF0TdWGDLicMTqw5JIDdSkQgOgxLKTvC4E6IvDcQEABibtg9KcCY2w9RyftY5ef6/ikV7fYz4NowHzrmBoG0v7xV0xe0RixDh489vuXHdfODOei9bvqYi41b59+8qSExEREezfv/+I22dkZLB582a6du1atuzbb79l4cKFdO7cmeuuu67SEBSX5ORkkpOTAZg2bRrR0dFVbme326td19Q8KRbwzHjCu/dkLxCen4tf1x4V1lslJWRkZhA8+GxCmiDu+j4/SmCIiDQCy7Kw3n0F69efmL5+DM+NvgWoOGSkqg9gIlIzVVVoHP475Zrdx+GIY8lGHxyOhINrLNr6Z9I99G+6BG/h4tNS6B24mVMiV2J9ugsLuAYwbze45EAMpTNjMGIc/PRHHENGhkJENEREQXgkho9PE/y0ItLcTZkyhb1791ZaPmrUqFodp6CggKSkJG644QaCgoIAGD58OJdeeikA77//Pm+++SZjx46tcv+EhAQSEhLKHmdmZla5XXR0dLXrmponxQKeGc/+QGdj673r12I7pmKfCysjHcxS8oLDKWiCuKt6fmJja97MXgkMEZFGYH36DtZPX2GcPZLnvrpZzTpFGpHr96m6YSfluX4HZ8xoza7C1izKHMDrWw+tD/TJp1PQNrqEbGX25D9Y/mI2cQdSsJZ8z+CCfMyXyx3MsJHjE0loXCRERmO4EhsRrTFaRUJwCASHQlDV33SKiLg8+OCD1a4LDw9nz549REREsGfPnrJmnIcrKSkhKSmJ008/nVNOOaVseatWrcruDxs2jCeffLLB4hYvEREFfv5Vz0SSsQMAo80xTRxU3SiBISLSwMzvPsX68gPe3X4R/7prImCoWadIEztShUZiYg4zZoRWSCyCs0IqvzSQtTk9WJvTg8/HDAfgrt8ALMLsuaxd/DvXnG/x1rMbYE8mX72YxxXdt0PaNgpXrsTPKsC5dUW7/AOciYyg4LKkhlGW4AiGgEDw9QNfPww/v7L7+PqBnx/4+oOvr/O+3Q98fMDmAz42MGxVNmUTkeahX79+LFiwgBEjRrBgwQL69+9faRvLsnjppZdwOBycf/75Fda5kh8AS5cuJS4urkniFs9h2GwQ48Dasb3SOutgAgMlMEREWh5z8fdYH8yB+IFM+GoiaWk7VHkh4ma1rdAAKvSqcTLYXxJKu1MGAjBz2YkkJuZw39hYrvrGuU9XxzGkbkzhjVn5XH/Rdqy8XJI/LSHh1N0EWqXkZ+7GOpALeTmwewfWllzIy4WiwgoxHJ78qBFXQsPmAzabM7HheuzjWuZTzbJy29rtGH7+zm/qXP/8y98PAD//Q9uEtYLwCAgOVRJFpJGMGDGCmTNn8sMPPxAdHc348eMByM7O5uWXX2bChAmsX7+ehQsX0r59e+677z7g0HSpb7/9Nlu2bMEwDFq3bs3o0aPd+eOImxgxcVh//1V5xe6dzr/tYa2aPKa6UAJDRKSBWKt+pfT151iceTI3Pv40Jj6qvBDxUFU1Az36sJPQsmUzZhx6fCjJAUZQMA+80I0bJkZjADeOiCXtsXRGjorhvfd2Agf/Hjx8aDrX8Xdm8cJMX8bdmg3Fhbzxb1+uv2ovFBfy8bs+XHLhPqziIr793MbZQ/fzU7LBmWfkQ2kpixfZOW1APpilLPvVh/5981m53E5873woNfn9NxsndC8As5R1a2306F5IynobXTsXglnK1k0GHeKKoKSEHaklHNNmP1ZxEft3FxEWkE/xgUJ8rYoJFqgiyWL3ZZ8RRXj7VtAqklWbYogfEsrXv8Ry7pVBEB7BM+905e77ig49B4dNaVvVsoZcX5NtExLsvPdelf8NRNwmNDSUhx56qNLyyMhIJkyYAMCxxx7LBx98UOX+d9xxR6PGJ17iGAcsXYBVWIjh71+22MrYAa1jvCYJbViWVadEvydIT09327k9rTmLVKZr5B2ay3Wy/vqNopmPYu/YiWNfepWN2/Y2m8qL5nKNmjNdo4ZX1Qfd8lUZ5Ss1qjJ+fA6JiTnV7lNVpceR1tdm24Y+V+r2VCgu5sRjW7Fm+VYoKuTcYaF89cl2/nmVDy89mQJ7s/n4tXwuHpYGe7PZv30PYb4HKjwnJaYP9vbtMTp25f4X+/Hk+63B0YF2HTq45ec62rbimdz59642jQabi+o+b3nS644nxQKeG4+1/GfMl5/C9uAsjPady9aXPjgWYuPwuW1Ck8ZTnpp4iog0IWvzRgpmPc7m/XFc+sqL5JUG4XA4O397e/JCpKWqW2PQI1doeOvfA8NmA39/sosiMKLyAVizLxajRyu+3BmLLaEnAHffFctlXzk/7BzviCX1778ZdIIvP3+5DmtPFrPv38OdJ6zCWvUrT5zwHeZjgN3OZwO7Y77Tkcva9cNKaw3HtHPXjyoi0nxFt3XeZmXAwQSGZZZC5k6Mkyr3VfFUqsCoI0/LrEllukbewduvk7VjOwcemUBgqwD6f/AGKzcVN5vKCxdvv0Ytga5R06pu+MHh3+5fckkUv/7qf6RDtVAWcYHpnBj+FyeF/8kJ4X9xYvhfhB6s2MgrCeCX7L58kvYPvssYTH5poFuiHDCgkI8/znLLuaV6qsBoWqrAqD1PjcfK2Yc5/lqMUbdiG3YBAFbWbsz7b8a4diy2M85p0njKUwWGiEgTsLJ3s+/Rh8k/4Mvw719hV2FrHA7nuuaSvBCRysr/bh+pQuPjj7OaxRCSxlnv4NcUA+hZNkzljGNLWPDmYoI3b+TYL5fxfJ9J4B/Ax38P5bLpJ9PhnHPYlprR6D8XHGrmKiLSbISEOWeyyso4tCzD+bfOaO0dM5AA2NwdgIiIN7IO5JLx4BRCfQ9w7bLnWLLR+ec0LS29bOy7iLQstWkMKhUZNhubDnTENmAItitHM/DHz7Hd+zjGyWeQ0HYR5jMP87+h52G+92+szRup41wtNZaUFHr0jUREvIhhGBDZGitrd9kyK/vg/ag2boqq9pTAEBGpJau4iG0TphFWkMqon5L4K6e7149xF5GGU1WFxumnm2XLqkpwVJf0qMu29V3vCee6Z/wBjB7HY7vudt7s9RG22yawL7oX1oKvMR9PZPWIizE/fw9r984G+bmSkkIrNGSdMcP5WIkMEWlWIttUrMDYc3AoR0S0e+KpA/XAqCNPG9sklekaeQdvu06WWcq6e2fRPWcB41ZN5aXlJzS7nheH87Zr1BLpGnk+XaOGYeXlYq1YgvW/BbD+dzBsGKefhXHRVRhhEfU+fnR0NP7+fsChmWTEs6gHRtNSD4za8+R4zDefx1r9P3xmvFXl46aOx6U2v1uqwBARqSHLslhx/5t0z1nAo3/dzec7zlblhYhIEzKCQrCdPhyfe6die3IOxtDzsBYnY04cg/nlB1hFhXU+dlJSaFnyAlSFISLNUKtIyNmHVVICgLUnEyJbuzmo2lECQ0Skhqxv/0ufPZ/wyqareeTnoYB6XoiIuIsR2RrbqFuxPfw8HHcS1ry3MR+8DfN/C7BM86j7Hy4xMYfCwqIKw0vS0tL1911Emo9Wkc7b/Xuct9mZXjV8BJTAEBGpkS8f+hXr4zf4NH04U9fdpcoLEREPYcQ48Bk3Edu9UyEkHOvVJMwn7sPauLbWx5oyxYcZMw5VXDgcsarCEJFmwwiPct7ZdzCBsScTIyLKfQHVgRIYIiJHYa1dxVk7noQeJ5C45mEsbKq8EBHxMEaPE7A9kIRx492wNxvzqfspfWkaVsaOGh/jwQdLy/6+u6gKQ0SajVYHewXtzcbKz4P8PIhUBYaISLPx5tSdFDwzjfX7O9PruecoMp3jo8t3qxcREc9g2GzYBg7F9thLGBddBb+vwHxoHOZXH1KbvvXlExaqvhCRZiPcOYTE2pvtlTOQANjdHYCIiKeysjI4a90E/GJDuP67Z1m3dT8OR4gqL0REPJzh749x/iisQWdhvT8H65O3YPtmuOFODP+AI+6blBRaYRjJjBnOx/rbL+6Sm5vLzJkz2b17N61bt+aee+4hJCSk0nbjxo0jICAAm82Gj48P06ZNq9X+0gKEhYNhg33Zzv4XOPsJeRMlMEREqvD8UwaXb52Cv08hCfPmsKuwNQ6Hu6MSEZHaMFpFwej7oGNXrI/fwNqVhm3cAxhRbardJzHxUKLCVW2Xllb1VJIiTWHevHmccMIJjBgxgnnz5jFv3jyuueaaKredPHkyYWFhdd5fmjfD5gPhrWBvlnMGEtAQEhERbzfz6QBO/OURQgvSGL3iaTbkdgFg/PgcfQMnIuJlDMPAdvbF2O58CDIzMKcmYm3444j7JCWFVhgqqGae4k7Lli1j8ODBAAwePJhly5Y16f7SzES1wVr3O9Z7rzgfHxxW4i1UgSEiUk7S0yHcEzEFK3o5xs338Ms3/UhLS8fhiFXiQkTEixnH98U2cTrmC1MxZzyIMWo0tjP/UeW2riqM8sNJVIUh7rJv3z4iIpzNFyMiIti/f3+1206dOhWAs846i4SEhFrvn5ycTHJyMgDTpk0jOrrqb+ftdnu165qaJ8UCnh/PPkd7Cv5eV/a4dUyMW+Op9f4NGIuIiFdLSgqFL97B6vYj09eP4blLri5bXr4jvYiIeCcjph22CU9jvpqE9c6LmNs3Y1x5K4bdt8rtExNzyhIYmjZbGtOUKVPYu3dvpeWjRo2q1TEiIyPZt28fjz32GLGxsfTs2bNWcSQkJJQlPgAyMzOr3C46OrradU3Nk2IBz4/HDCtXcREU3OSxVvX8xMbWvDm+EhgiIjjfmN5zyn+x1r2KMegsnvvqZtLS0vWGVUSkmTGCgrHd/gDWvLexvv4Ya8c2bGPuxwhrVWE7NfOUpvTggw9Wuy48PJw9e/YQERHBnj17KvW4cImMjCzbvn///qSkpNCzZ88a7y8tROu2ztuoNtj+9aR7Y6kD9cAQkRYvKSmUZW/+SdHc2SzYPYBOD0wBDCUvRESaKcPmg+3i6zFuSYQtKZjT/g9r/54K2yQm5pCWll5h6EhaWrpeF6TJ9evXjwULFgCwYMEC+vfvX2mbgoIC8vPzy+6vWbOG9u3b13h/aTmM4IMJrGPiMCKi3BtMHSiBISItWlJSKOOvWMNLff6Fb/s4bls1ja2pGfqGTUSkBbCdMhhb4mOwLxvz+alYhQUV1quZp3iCESNGsGbNGu68807WrFnDiBEjAMjOzuaJJ54AnH0uHnroIe677z4mTpxIfHw8vXv3PuL+0kIdewL0HYjtytHujqRODMuyLHcHUVfp6e5rpuRpY5ukMl0j7+DO65SUFMo7L+Tz2cAbALjol7nsLGir5MVh9Lvk+XSNPJ+ukWezVv+KOfsJ/E8+neKb7nFONViOmnl6Dnf+LtVmnH5zUd3nLU/6m+ZJsYDiOZr69sBQBYaItEhJSaGMH7uL1/vfzTEROdywfBYr/i5V8kJEpAUyeg/AuOJWCv+3EOuD1yqtL/+6oOoLERH3UQJDRFqcpKRQnp0ZyA9XPkOPkL+5ZuFT/JXTXT0vRERaMNuw8wm64Aqs7z/HTP6sbPnhw0hmzAjVMBIRETfRLCQi0qI4p0TdT9v5z3Bm61+4b80k3v2tA0lJqrwQEWnpQq6/nbzUrVgfzMGKbI0RfyqJiYdeH1yJDA0jERFxD1VgiEiL4RrD/MTgb7my/TyeTbmJ91NHqPJCREQAMHx8sN2cCB27Yc5Jwtq0HlAzTxERT6EEhoi0CK4kxUWx3/CvHrP5b9o/uPuHi9TzQkREKjD8/bHdPgnCIzGffwxr986yKVXHjz/0eqEpVUVEmp5mIakjT+vmKpXpGnmHprhOrsqLUyJX8Hb/21mx90SuW/Yct99dqDefNaDfJc+na+T5dI28Q/nrZO1Mw5z2fxAahu2BGRgBgcChYSRKgLuHZiERadlUgSEizZqr8qJr8GY+HDqebXntGPRWopIXIiJyREaMA9tt98OudKx5b6uZp0g5999/v7tDKONJsYDiOZr6xqMEhog0W67Ki96d/Hi9/11k7Ang+uXPMOOlY5S8EBGRozJ6nIBx5j+wfviC8SOWkZaWXqGBp4aRiIg0LSUwRKRZC/TJZ8XNtxPtl03MoxO5/DY17BQRkZozLr4OIqIw33iOWdP91cxTRMSNlMAQkWbHVeY7c0Ywz540idItmxi3+glmfByv5IWIiNSKERCE7ZpxsGM7d3Z/Tc08RYCEhAR3h1DGk2IBxXM09Y1HCQwRaZbS0tK5v8fznB2zAPuVN3PSNb31BlNEROrEOKEvxoAhWF9/hJW6ucLriaovpCXypA/FnhQLKJ6jUQJDRKQcV9+Le05Zxm1d3uSNrZcRd91od4clIiJezrjiZggKIf3J2bRv16ZsuZp5iog0Hbu7AxARaSiuGUcWv76Bp/s8zsKdp7B3+D9Jm7/D3aGJiIiXM0LCMK78JzGvPMWWOS9jO3tkWT+M8o09RZqz1atXM3fuXEzTZNiwYYwYMaLJYxg3bhwBAQHYbDZ8fHyYNm0aubm5zJw5k927d9O6dWvuueceQkJCGuX8s2fPZuXKlYSHh5OUlARwxPN/8skn/PDDD9hsNm688UZ69+7dqLF88MEHfP/994SFhQFw5ZVXEh8f3+ixAGRmZvLCCy+wd+9eDMMgISGBc889t0GfH1VgiIjXS0oKLau8GNitlFfi/4+N++IYu2oaluHj7vBERKSZMPqdBiedTPHH7zCwW2nZcjXzlJbANE3mzJnDxIkTmTlzJosXLyY1NdUtsUyePJnp06czbdo0AObNm8cJJ5zAs88+ywknnMC8efMa7dxnnnkmEydOrLCsuvOnpqayZMkSZsyYwQMPPMCcOXMwTbNRYwE477zzmD59OtOnTy9LXjR2LAA+Pj5ce+21zJw5k6lTp/Ltt9+SmpraoM+PEhgi4vVmzHBWXoTb97No1O1YQI9nJnDLnajvhYiINBjDMLBdfRv2ADuLRj/I+Hv2la1TM09p7lJSUoiJiaFt27bY7XYGDhzIsmXL3B0WAMuWLWPw4MEADB48uFHj6tmzZ6XqjurOv2zZMgYOHIivry9t2rQhJiaGlJSURo2lOo0dC0BERASdO3cGIDAwEIfDQXZ2doM+P0pgiIjXclVeAHRo14YX4++nKH0Xo1c8zYy3uuuNpIiINDgjIgrj0hthwx/cc/pXZctVfSHNXXZ2NlFRUWWPo6KiyM7OdkssU6dO5V//+hfJyckA7Nu3j4iICMD5IXr//v1NGk915z/8OYuMjGyS5+zbb7/l3nvvZfbs2eTm5rolloyMDDZv3kzXrl0b9PlRDwwR8UquISNOFlN6Pcmg6KV8e8y/GHRjVyUvRESk0RiDziLjg6/Je+Y9fI1LKbZ8mTHD+bo0fnyOXoOkWbIsq9IywzCaPI4pU6YQGRnJvn37eOyxx4iNjW3yGGqqquessQ0fPpxLL70UgPfff58333yTsWPHNmksBQUFJCUlccMNNxAUFFTtdnWJSRUYIuJ1XM06wVmye3PHd7m6/Se88PcNnPvoaXrjKCIijcqw2Wj7z2voEJzGprffKFuuYSTSnEVFRZGVlVX2OCsrq+xb9aYUGRkJQHh4OP379yclJYXw8HD27NkDwJ49e8oaWDaV6s5/+HOWnZ1dFn9jadWqFTabDZvNxrBhw/j777+bNJaSkhKSkpI4/fTTOeWUU4CGfX6UwBARr+KqvHB1fr/qpC1MOm4WKSGnU3zutW6OTkREWozj+5IaeCK75nxIoE8+oGae0rx16dKFHTt2kJGRQUlJCUuWLKFfv35NGkNBQQH5+fll99esWUP79u3p168fCxYsAGDBggX079+/SeOq7vz9+vVjyZIlFBcXk5GRwY4dO+jatWujxuJKFAAsXbqUuLi4JovFsixeeuklHA4H559/ftnyhnx+DMsddS0NJD3dfVNWRUdHk5mZ6bbzy9HpGnmH2lwnV+WFwxFLWlo6g7oXs+Cc69httqVt0jQM/4BGjrZl0u+S59M18ny6Rt6httfJSlmL+eT9LG59C1e+MQbQlKqNzZ2/S548VKGprFy5kjfeeAPTNBkyZAgXX3xxk55/165dPP300wCUlpYyaNAgLr74YnJycpg5cyaZmZlER0czfvz4RptGddasWaxdu5acnBzCw8O5/PLL6d+/f7Xn/+9//8uPP/6IzWbjhhtuoE+fPo0ay59//smWLVswDIPWrVszevToskqZxowFYN26dTz00EO0b9++bHjRlVdeSbdu3Rrs+VECo470RsTz6Rp5h5pep4o9LyDEnsunp95Iu1ZZBD+WhBHdtjHDbNH0u+T5dI08n66Rd6jLdSp9/jHY8CcnfPYZ+4rD1QOjkSmBIdKyaQiJiHi8w3teGJisve//6BK6leB7/qXkhYiIuM1b+/6JmZfHuM6vA5QNc9QwEhGRhqcEhoh4tMN7XjgcsdzT7RX4bSk+o27B6HGCmyMUEZGW7IYHWuNz6pmMOfZ9YgJ2AWrmKSLSWJTAEBGPdXjlBUDq5x9xd7dXMU4bhjH0PHeGJyIiAsCcjFspKjS5u+urgJp5iog0FiUwRMQjVVV50SM0hYKXZkHnHhhXj3XL3OMiIiKHu3VCCP5n/YNR7T+lc/AWQFUYIiKNQQkMEfE4VVZerF/HR0PvwS8sCNtt92P4+rozRBERkQqMcy/D5u/nHOYIqr4QEWkESmCIiEepqvLCxyhhywMzCLd2Yxs7AaNVlJujFBERqWjGv+N4ce3lnH9MMh2CUtXMU0SkESiBISIeo6rKi7S0dD66egbt81ZiXDMWo3MPd4YoIiJSpcTEHMb9dyg+vjZu7fQ2oGEkIiINTQkMEfEIVVVeAMx7eBV9sz/AGHIuttMS3BmiiIjIEc2Y04F3N53P5e0+I9ovS808RUQamBIYIuJ21VVePHL7Oi7IfhI6dce47GZ3higiInJUiYk5XP3G2fj7FHNjx/cAVWGIiDQku7sDAMjMzOSFF15g7969GIZBQkIC5557rrvDEpEmMGWKDzNmOKsv4FDlxazpftxR9CDYfLD98//UtFNERLyCEePAiD+V64o/4sVN11dI0os0htmzZ7Ny5UrCw8NJSkqqtH7RokV8+umnAAQEBHDLLbfQsWPHJo5SpGF4RAWGj48P1157LTNnzmTq1Kl8++23pKamujssEWkCCxY4p0ItX3kxfnwOd7ZJgtTN2G4ejxHVxp0hioiI1FhSUijnP/dPwn1zuCruEzXzlEZ35plnMnHixGrXt2nThocffpinn36aSy65hFdeeaUJoxNpWB6RwIiIiKBz584ABAYG4nA4yM7OdnNUItKYkpKcb+gWLXL+GXJVXiQlhXLPgE+wfv4O49zLMU7o684wRUREaiUxMYev10bAsSdyS6f/4Gcr0jASaVQ9e/YkJCSk2vU9evQoW9+tWzeysrKaKjSRBucRQ0jKy8jIYPPmzXTt2tXdoYhII0tLSy9LXKSlpZOUFMr4y9dgPvESHHsixkVXujlCERGR2ktKCmXZm6N55+TbGRH7NQ7HRQCMH5+jRIa41Q8//ECfPn1qvH16enqVy6Ojo8nMzGyosOrFk2IBz4rHk2KB6uOJjY2t8TEMy7KshgyqPgoKCpg8eTIXX3wxp5xySqX1ycnJJCcnAzBt2jSKioqaOsQydrudkpISt51fjk7XyHMlJNjLKi/KG376fuZ2vx6rIJ/IGa/j0yrSDdHJ4fS75Pl0jTyfrpF3aMjrZFkWa6++ib27Cxi28EMKCnX9G4I7f5f8/Pzcct6ayMjI4Mknn6yyB4bLH3/8wZw5c3j00UcJDa16SFNNP2950t80T4oFPCseT4oFqo+nNr9bHpPAKCkp4cknn+Skk07i/PPPr9E+1WUEm4KnZbOkMl0jz+ZwxJZVYIwfn8P48fsxX34SVv2KLXEqRvde7g5RDtLvkufTNfJ8ukbeoaGvk7lsEdYr07l1xXR6Xd1P1RcNwJ2/S7X5lripHS2BsXXrVp5++mkmTJhQq59DFRi150nxeFIs0DAVGB7RA8OyLF566SUcDkeNkxci4n1cfS9cw0ZctwDW95/DiiUYF1+v5IWIiHi9pKRQOo68hK0HHPyz01tq5iluk5mZydNPP83tt9/u0UkYkZrwiB4Y69evZ+HChbRv35777rsPgCuvvJL4+Hg3RyYiDSkx0Tn2t3zfi1GjYhh/2W+Yj78OJ52MMXyEW2MUERFpCK7XPDP5HDq8P4cTwv7im7/C3R2WNEOzZs1i7dq15OTkMGbMGC6//PKyMv3hw4fz0UcfkZuby6uvvgo4Z4CcNm2aO0MWqTOPSGAce+yxfPDBB+4OQ0SawOHfPH33ZS4Zdz8NoWHYbrgTwzDcFJmIiEjDSkoK5d/PXsvSof/hho7v43A8DKiZpzSsu++++4jrx4wZw5gxY5omGHErK3s3FBZg/fwdxHWC8y9zd0gNziMSGCLS/CUlhTJjRsXkhcMRy9fXPUGvzFRs9zyKERLmpuhEREQanrMKA1bcdzYXGl/y+Lo7WbO5wN1hiXgta282ZKRjZWdiBIdAh64QHV334xXkYX33GexKg6g2GEPOw6hDE3nLNCErA9K3k2+VYubsBx8f8LFjBAZBaDjYfcHXD9rEYNh86h7zzjSs/y3A2poCufsxWsdgHciBfXshbQu4WlwaNgqPaQcdutX5XJ5ICQwRaRKub5pcSYy0tHSs35ZiPv8xxvCRGD17uzE6ERGRxhM/fjjmQ/O4Mu4TkpIuV/WFtFjWjlSspQvgQA7GuZdhtIrC2vY31sJvISAQ48KrMPz8q973z1WYs6fCwZlRLAAfO3t6noR1w10YYa1qF0vOfsxXk2DtqkPLvv0vttsmYJx0cs2OkbUba+E3WD9+Cfl5AOw/fJvDd7LboVN3jJMHY5yWgOHrW7NzWRbWLz9izZ3lXODnD/4BWJs3OB9HRmMMHAptHRgn9MV8bRb7kh7EeOLfGMHNp/eOEhgi0uiqqr7o3cmPRWc/R1inbpgjrnFTZCIiIo3L+Rp4Mm/2P5XrOnzEwJnXM2NGqIaRSItjfv851nv/LntsrVgCEdGwNeXQRgX5GNeMrbSvZVmYH74GYRHOL74iorBy9sH63yla/jNM/Ce2f/4fxgl9ax7P3Fmw/neMa8dhnD4cNq3HfHs25uzHMa67HdtpCUfc38rZj/nU/ZC9G9p1xDi+L8S0I7xjZ/bn5joTLSXFWPl5UJAHJcVwIBdrx3ZY+xvWxrVY383DuPAqbKcMPmq81pcfYH36DnToiu2qf2J07lH23LBpPcR1qpD8sV13O+bURFj5i/PnayaUwBCRRnd4887x9+zjbvsE2JBP+D2PsLeGmWcRERFv43oNtH4/C/PZX/hHzA+8tPx4d4cl0qSs3P1YH70OPU7AdtmNUFCA+Z+XnMmL1jHY/m8a1rf/xfr+c8z2nbGdcU7FA/yxAtK2Ylx/B7ZBZwFgAJw+nPArbiT76YcwX5qGcfF12IZdcPR4Nq2H35djjLgG2xlnOxd2ORbbfY9jzn4C691XsI7rjRFZ/fAU6+fvIHs3tvseh269yvq4+UdHY5SbKrSq7m5WSTHW8p+xvvgAa85MzM0bMC6/qdqhJdbunVhffwjxp2K79V4M+6H3zoZhQJdjK+/UoSs+MQ5Kly+GZpTA8IhpVEWk+Tp86lSAPf/9Gv5chXH5TdjjOrovOBERkSaQlBRK3Dnns/lAHDd2eK/sdVFTqkpLYf3yI5QUYxt1K0aHrhg9jsfnkeexJT6G7d7HMVpFYoy8FnrFY73zEta2vw/ta1mYn7wFrWMwBpxZ6di+nbpju3MydO6B9d6/sVb/78ixmKWYb70A4ZEYQ8+vsM4ICsF2w53OyonkT49wDNOZwOjaE6P78bVuQm/YfbENGILtwVkYpw3D+v5zrI/fdPbSOPxcloX50jSw+2G7/JYKyYsjnsMw8D9lMGz4Hasgv1bxeTIlMESkUbnKY9PS0gGYOvY3HjnpGeeUqYP/4c7QREREmkRiYg6paTvZ2ulC+kWuIXXxAtLS0jWERFoM6/flzmEW7TpWWG4ce2JZlYPh54/tlkQIDsX86PVDG+1Kh+2bMRIurPbDuxHV2pnEcHTA/GAOVnFR9cFs+BNSt2Bccr2zwebhx4pui9H3NKxF87H27636GGuWQkY6xpn1ey9r+PtjXHc7xunDseZ/gvXJW5U3WrcGtm3CuPxmjKjWtTq+X/wAKCmB9b/XK05PogSGiDSq8t8u+dsKuLb4UQgKxnb9HZoyVUREWpShDwwitySIP5771t2hiDQZyyyFzRswuh531G2N4BCMs0fCX79h/bHSuf8fy53rTux/5H19fbFddhPs3on5r5spvftqzA/nVqpqsJYuBP9AjPiB1R/r/FFQXIQ17+0q15s/fOmctaTfoKP+TEdjGEZZHw7r2/9ibdtUMd4lP0BQCEb/2p/L77gTwdcPSwkMEZEjcw0dcTXvdDhi+VePFyBtK7Yb78IIDXdzhCIiIk3D9ZrYrls3Pkw9ny57fuSkTv4aQiLNilWQjzlnBqWzH8favfPQivTtUJAPnavo01AF48xznZUU/37a2Ttj3e/OmTWi2x593159sI17ALr1gnYdnVUNP35VMc61q6FXHwz/qmc7ATCOaYcx+B9Yi5Mr/izgrMpY9zvGgDMxfOo+HWqF8xkGxqU3QEAQ5mf/cTbm5ODMI+t/x+jZu9rZWY54XF8/cHTA2r65QeL0BEpgiEijSEzMKRs2ApD6UzK3dH4PY8i5zi7NIiIiLYTrNTEtLZ03tl6Ov08xq55/S0NIpFmx3vs31q8/wapfMR8ai/nxG85eEQc/PBsdu9XoOIZ/ALZb74X8PKwvP4D0bRjtO9c4DqP3Kfjcdj+2xMfg+HisT9/GOuD8XbP274WsjLIZPI54nH9cAjYbVvJnFX/O35eDZWL0Pa3GMdUo7qAQjPMug9+WYn3/uXNhVgbsyYTuvep+3LhOsH1zWVLE2ymBISIN7vDGnf62AjY+NJt99rYYF1/v5uhERESanuu1cdOBjvyceTLb300mztFWVRjSLFgF+VjLFmKccQ62KbMx4gdiffMx1nfzIGMHGDZoffQKChfD0QFjUIIzebB7JxwTV+uYDMPAdskNzkTI/HnOhZs3Otd16n70/VtFYfQbhLXke6y83EMrtqZAQCA4OtQ6pqOec/hIOLE/1idvYmXtxvp7nXN51551P2hcJziQA3uyGihK91ICQ0Qa3OHVF+9e9TxdQrYRccc4jIBAN0YmIiLiHq7XxvHjc3h728W0C9zJtq++UBWGNAvW78uhqAjjlDMwYtph3JIIfQZgzXsHa8PvEBld49kzXIwLrzp0P7Z9neIy2nV0JiG+/xwrZz/W9oP9JTp0qdn+Z42AwgKsLz8sW2Zt2wTtOmHYGv6jtGEY2K4aA6aJ9c3HzgamhgEx7ep+TFeiJX1bA0XpXkpgiEijcH2jdGL4n/Tb8wHG6cMxjjvJzVGJiIi4V2JiDvN3ncmugmj+njvf3eGINIy/14GfPxxs1GkYBrYrbgEs56wfbY6p9SGNVpHQq4/zQT2qHYwLRjmTED9+6azmaBWF4R9Qs33bd8YYeHCa013pzoagqVtqNaSl1vFGtcY4dSjWz99hpayFiGgM39olfyo4+Nwf3svDWymBISINqnzzTj9bEUknPsKOvGhe2HmHu0MTERFxK9drZIll593tI+iQu5QBXS0NIxGvZ237G+I6YdgONbU0otpgDHZOM2rUIYEBYLttIrY7HsSIcdQ5NiO2PZzQD+vHL7HSt9VqKAuAMfJasNuxvnjP2Y+isKBRho9UOOc5F0NpKfz1W52SPxWER4Kfn3MoTzOgBIaINKjyw0du7/IaPUI34fjXGO74v+bROEhERKSuyjfzfHf7CCwMljz1poaRiFezTBO2b8aIq1yVYJx7KYSEQg16TlTF8Pc/6vSpNWE7+2LI3Q9bNmJEx9QuhvAIjEFnYS37GWvTBueyqDb1jumI52wTi9HXOc1rfWfuMwwDWh+DtVsJDBGRCso37+wZup5xXebyUep5zJg/xN2hiYiIeATXa+WOghiSd53O7nk/0CkuWlUYUmezZ8/mlltuITExscr1lmXx2muvcccdd3DvvfeyadOmhg0gK8M5TWpcp0qrjLAIbNPfwHZaQsOes7a69wLXLCita5fAADCGngdmKdYnbzoXRLZuwOCqOedZFznvRETV/2BtjlEFhojI4VzfLNmNEqaf+ChFvmFc/tFV+mZJRETkoPLNPN/adinR/nv4++P/6rVS6uzMM89k4sSJ1a5ftWoVO3fu5Nlnn2X06NG8+uqrDRtA5i6g+mEiht3esOerA8MwnDN8QN36cbSJhRP6OXtoAERGN2B01Zyzcw9s9z2BccGV9T9W6xjI3NUsplJVAkNEGozr26N/dn6TE8LXEzp6DEawvlESERE5XGJiDosyT2HrAQfb31YzT6m7nj17EhISUu365cuXc8YZZ2AYBt27d+fAgQPs2bOnwc5vZWU47zTysIr6MvoOxHbbBIz4gXXbv//ph+7XsAlofRndezXMDH4R0VBcBLnenyh1fzpMRJqFpKRQZswI5dOXs/hm0L/5PP0sxl1wCePH5+hbJRERkXJcr5kA72y/mInBzzGkRz7nj26j10xpcNnZ2URHH6oYiIqKIjs7m4iIiErbJicnk5ycDMC0adMq7Fee3W4vW5ebf4ADhkF01x71my2jjsrHclTDL6jzeUoHDiZzzgyAI56vVvE0MlcsBR06sw9oZRXj68bYGuK5UQJDRBpEYmIOM2aE8OPoR9j3RwAXvXstI8LS3R2WiIiIx0lMPJTcP6HThSR2e4mnL3yPvok3ujkyaY6qGjZgGEaV2yYkJJCQcKhfRWZmZpXbRUdHl60zt2+B8Eiy9u2rf7B1UD6WxnXwOQuPPOL5mi6eo3PFYtn9ANi7KQUjrAF6atQznsPFxsbW+BgaQiIi9VK+cefI2K9h/e9MW3c7M/4d5+7QREREPJbr9TO7KIIvdybQafd3dImLVDNPaXBRUVEVPjRmZWVVWX1RV1b2bohq/KaWnsD21Fxsk591dxi1F+GserD2eEZipT6UwBCRenE1Iwu372fScbOgU3faXpqgElgREZEjKN/M893tIwj3zWXj+x/q9VMaXL9+/Vi4cCGWZbFhwwaCgoIaNIFB9m6MJpiVwxMYEVEYoWHuDqP2wlqBjx2aQQJDQ0hEpN6SkkL5vx7PE+m3F9s1D5LY/oC7QxIREfF4h3phxPN3bnuyk37iksuuVf8oqZVZs2axdu1acnJyGDNmDJdffjklJSUADB8+nD59+rBy5UruvPNO/Pz8GDt2bMMGkLPP+QFZPJZhs0GrSMhWAkNEWjDXG6+Twv/g04H/Ze6WUTxy6ul64yUiIlIDrl4YSUmhvPvJSCYd9wypS3/FcLR3d2jiRe6+++4jrjcMg1tuuaVRzm0VF0NBPoSGN8rxpQG1isTav9fdUdSbhpCISJ0lJuaQum07jx//BBmF0dz6+UWkpaUreSEiIlILiYk5fJR2PkWmneXP/OTucERqLudg405vHFbR0oS1gn0NN32uuyiBISJ14mo+9uDpizkhfD2Prh1Pu65d1XxMRESkFso38/x25xA67fqOznFRej0V75DrTGAYIarA8HRGeKQSGCLSciUm5pD65+/c2/1FFuweQPcrT1H1hYiISC25mnmmpaXz7vYRRPjtI+Wj/+r1VLxDzn7nrYaQeL7wVnAgxznsx4spgSEidZKUFIr1wWv42oqZ9Oe/SLw3190hiYiIeCVXFcbirP5sy3Ow+MmfcDhiVYUhHs/SEBLvEXZw5pmcvW4No76UwBCRWktKCmXZm39iLVvE7L9vYGtenN5oiYiI1JGrCuOe8Qd4d/sIBkatIHXFMlVhiOfLdSUwVIHh6YzwgwkMLx9GogSGiNSazSrh4eOSoHUML266vqz0VW+0RERE6i4xMYcPUy+gxPRh6cyf3B2OyNHl7AebDQKD3R2JHE1ZAiPbvXHUkxIYIlJjZY3GPvmGbqGbufnr+yg0/VV5ISIiUk+u19iMwmiSM06n4475dGzXWq+x4tkO5EBQCIZNHys9XmgrACxX3xIvpf9pIlJjiYk5pK77i3u6vcyC3QOYu7Ir48fnqPJCRESknso38/zP9pFE++9h86fz9Bornq0gHwKD3B2F1ETIwT4luUpgiEgL4Ppm6M1LPyHYJ59H/xpPu3YOd4clIiLSbLheaxfuHkBqfgw/TVEzT/FsVkE++Ae6OwypAcPfH/z8lMAQkZYhMTGH1F9+5qq4T3hz62VcMLq1+l6IiIg0IFcVxt3j8/hg+4Wc0fp/pK5eqdda8VwF+RCgBIbXCAk7NPWtl1ICQ0RqxLIstj39GnuLw5i5cbTeTImIiDSSxMQc3k+9kFLLxi9JC90djkj1lMDwLiFhWKrAEJHmLikplH/2+4t2+Wt4esNt7CsJU0mriIhII3ANI9lREMNPuwfSMe0b2rdro9dc8UwF+RjqgeE9QsK9fgiJ3d0BiIjnG39HJmZGEmu3dOM/20aSlpbu7pBERESapcTEQ82xb+gzgjn97mXrF59h9B7g5shEqqAKDK9ihIRh7d7h7jDqRRUYInJESUmhTD8rGbJ3M3ntvZj4qPpCRESkEbmqMH7YPYhdBdF8N3mhXnvFM6mJp3cJDYNc7x4GrgoMETmi8Tduwtw0ly+2JvC/7L6aNlVERKSRuaowkpJCef+LCxnX5XVSf/8NI7K1u0MTD7R69Wrmzp2LaZoMGzaMESNGVFifl5fHs88+S1ZWFqWlpVxwwQUMGTKk3ue1TBMKVYHhVUJCIf8AVkkJht07UwGqwBCRI/rrsXfAgsfX3Qmg5IWIiEgTSUzM4f3tF+FjmCyevsjd4YgHMk2TOXPmMHHiRGbOnMnixYtJTU2tsM0333xDu3btmD59Og8//DBvvvkmJSUl9T95YYHzVgkM7xF8sIorz3vfzyuBISLVenfKZnrk/MCstdeRmh8LoBJWERGRJuAaRrI938GC3QNov/1r4hxt9RosFaSkpBATE0Pbtm2x2+0MHDiQZcuWVdjGMAwKCgqwLIuCggJCQkKw2RrgY2BBvvNWCQzvERjsvM3Lc28c9eCddSMi0ugss5TLeYb0/LaM/3Y4Mzqj5p0iIiJNpHwzz1v7juCl+PvZ9s2XGCf0c3Nk0hCef/75Gm1nt9sZM2ZMteuzs7OJiooqexwVFcXGjRsrbHPOOefw1FNP8c9//pP8/HzuueeeahMYycnJJCcnAzBt2jSio6OrjSsi0J8sILR1GwKr2a4p2O32auN0B0+K5/BYCtsew16glb8vvm6IsSGeGyUwRKSSpKRQ0j/4nqdO3MTj6x7js86dy5ZrCImIiEjTSEoKZcaMUHyN1uwujGTFxIWMXnmh+lE1A0uWLGHkyJFH3e6LL744YgLDsqxKywzDqPD4t99+o0OHDjz00EPs2rWLKVOmcOyxxxIUVHn604SEBBISEsoeZ2ZmVnne6Oho9uxwzmaRW1zKgWq2awrR0dHVxukOnhTP4bFYJaUA7N2RhhHRxu3xuMTGxtb4GEpgiEgl42/biZn2HMu2nsRnO84mLS1dyQsREZEmVr6Z50dfns+tnd4h9c8/MFpFujs0qaeoqCguu+yyo263ePHiox4nKyur7HFWVhYREREVtvnxxx8ZMWIEhmEQExNDmzZtSE9Pp2vXrnUL3qXg4DAEDSHxHoEHk1b53juERD0wRKQS64v3sHL2M3ntfYAzi6/khYiIiHskJubw7vYR2G2lLHrqZ3eHIw3gueeeq9F2s2bNOuL6Ll26sGPHDjIyMigpKWHJkiX061dxmFF0dDS///47AHv37iU9PZ02bRrg2/eiIuetv3/9jyVNI8jZA8PKO+DmQOpOCQwRqeC1x/dQ9O0XvLftIv7Yfyygxp0iIiLu4mrmuSWvPUuy+hK39WvaOWL0utyM7dq1i927d9doWx8fH2666SamTp3KPffcw6mnnkpcXBzz589n/vz5AFxyySVs2LCBxMREpkyZwtVXX01YWFj9Ay05mMDw9av/saRpuJp45ntvAkNDSESkguuDn4Vgf6ZvuA1Q404RERF3Kt/Mc2z/kTzXexLbv/sGo2dv9wYmDWbWrFn84x//oEePHvz444+8+uqr2Gw2brzxRoYOHXrU/ePj44mPj6+wbPjw4WX3IyMjmTRpUoPHbbkqMHx9G/zY0kj8A8CwgSowRKQ5+PiRP+GPFUxZOZrMImdHa1VfiIiIuJerCuObnUPYUxTOp/ct0utzM/LHH3/QpUsXwNm088EHH+Txxx9n3rx57g3saIoPJjDsqsDwFobNBoGBXt0DQxUYIgKAVVLMiOLnoa2D17++AkBdzkVERDxA+WaeH399Ltd1+JDUdX9hhIa7OzRpACUlJdjtdrKzs8nNzeXYY51DePft2+fmyI6iuNh5qyEk3iUwWBUYIuL9rO+/gF1p2K64mWLLWQqo5IWIiIjncDbzHImfrYSfnjjy7BTiPTp27Mgnn3zCRx99VDYUJDs7m8BAD5/do0RDSLxSYDCWF/fAUAJDRLCyMyn8+F2Sd51Ou3MuLFuu8lQRERHP4BpGsjG3M8uzTyR289c4HMfodboZGDNmDNu2baOoqIhRo0YBsGHDBgYNGuTmyI6iWE08vVJQsJp4ioh3sz6aiw2TyWvvJS0tHYcjVs07RUREPEj5Zp53nTySGSc9QuqP32F0P97NkUldff/99/Tp04eYmBjuuuuuCusGDBjAgAED3BRZDRUVgY8Pho+PuyOR2ggMgqyazXLjiVSBIdLCffDoBqxli3hm/Y1sz3fgcMQC6BsdERERD+OqwvhyZwL7i4P56G418/Rmf//9N5MmTeK+++7j3XffZd26dViW5e6waq64WA08vZChCgwR8VZWSTGXFM+E1jG89M11gHPa1KSkUPW/EBER8TDlm3l+8u25XNHuUy798BqMYCUwvNHo0aMB2LZtGytXruTdd98lPT2d448/nj59+tC7d2/CwsLcHOURlBSp/4U3CvTuBIYqMERasIUPfQs707juqwkUmv4AZRUYIiIi4pkSE3N4d9sIAnyK+OHxX9wdjtRT+/btGTFiBI888gjPPPMM/fv3Z82aNdx333088MADrF692t0hVq24SP0vvFFQMOTnYZmmuyOpE1VgiLRQVvZuBu17A3oP4KevTgM0baqIiIinS0oKZcYMZ8XFb3t7EpPzNQ7H9Ywfn6vX8GYgKCiIgQMHMnDgQABSUlLcHNERFBcrgeGNAoPAsqCwwHnfyyiBIdJCmR/MASzm5BxqGqU3PiIiIp6tfDPP+waMYNoJj5O68EeMLse6OTKpj7/++ovNmzdTUFBQYfnFF1/spoiOzirWEBKvFBjsvM074JUJDA0hEWmBrD9XwYolPPn7LTzyXLey5WoEJiIi4vlczTw/TT+bAyWB/Gfcz3oN92KvvfYaM2bM4K+//iItLa3sX3q6h88IpyEkXskIOpjA8NI+GKrAEGlhrOJizP+8DG1imTB7GC90dC7XtKkiIiLeoXwzz8/mn81Fsd9w1SdXYXjht6kCixYtIikpicjISHeHUjvFxarA8EblKzC8kCowRFoY69uPISOda76YQLuOHcqW65sbERER75KYmMN/to8gyF7Ad1P/5+5wpI6io6Px9cZEgCowvJMrgZGf59446kgJDJEWxErdjPXFBxj9T2dh5qllVRfjx+eQlpauHhgiIiJewjWM5Ld9vVi7vxttNnytLyO81JgxY3j55Zf55ZdfWLt2bYV/Hk0JDO90cAiJlZ/r5kDqRkNIRFoIq6QEc+4zEBTMi3sSK6xT4kJERMS7lG/mOXHgCKb0mk7qkkUYHbq4OTKprU2bNrFq1Sr++usv/PwqJgRefPHFo+6/evVq5s6di2maDBs2jBEjRlTa5s8//+T111+ntLSU0NBQHnnkkfoHXlyMoQSG93ENNfPSCgwlMERaCOubj2DbJm5dMZ1vd7UDnMNGwPktjpIYIiIi3sU1pWq4/R88cOyzfHjrzzzw5+maFt3LvPvuu/zrX//ixBNPrPW+pmkyZ84cJk2aRFRUFBMmTKBfv360a9eubJsDBw7w6quv8sADDxAdHc2+ffsaJnDNQuKdXE08D3hnBYaGkIi0AGVDR04+g9dW9ihbnpaWrqEjIiIiXiox0TkE9OY7Db7YkcCI2G9I/ftvva57GX9/f3r27FmnfVNSUoiJiaFt27bY7XYGDhzIsmXLKmzz888/c8oppxAdHQ1AeHh4vWMGNITESxl2X/DzUwWGiHgm19CRA4Ry6tSH2Ptwq7J1DkesvqURERHxcomJOYyYO5JL233JN1OX848pp7s7JKmFK664gtdff51LL72UsLCwCutstiN/35ydnU1UVFTZ46ioKDZu3Fhhmx07dlBSUsLDDz9Mfn4+5557LoMHD67yeMnJySQnJwMwbdq0sqTH4ex2O0ZJCQGhYYRVs01Tsdvt1cbpDp4UT3Wx7A4Jw88sIbyJ42yI50YJDJFmzvraOXQkdOxE/nwpD4ejFYASFyIiIs2AaxgJHMPGnE5E7fkGh+MKvc57EVefi++++67Suvfff/+I+1qWVWmZYRgVHpeWlrJ582YefPBBioqKmDRpEt26dSM2NrbSvgkJCSQkJJQ9zszMrPK80dHRWEWFFJSUUlTNNk0lOjq62jjdwZPiqS4W0z+Qguwsips4zuriqer/YnWUwBBpxqztm7G+fB/j5MEYfQZU6EyuNzUiIiLer3wzz8mDLuKh42aRuvQXDEeHo+wpnuL555+v875RUVFkZWWVPc7KyiIiIqLSNqGhoQQEBBAQEMBxxx3H1q1ba/Wh8XCWZUFJsXMognif4BDIUw8MEfEgzqEjsyA4lBf33IPDEXvwGxonTbUmIiLSPLimVP049XwKS3159frFep33Iq1bt67239F06dKFHTt2kJGRQUlJCUuWLKFfv34VtunXrx/r1q2jtLSUwsJCUlJScDgc9Qu6uMh5qx4Y3ikwGPIOuDuKOlEFhkgzZX31IWzfjG3sRMb1sTHu/9LLZh1JS0t3c3QiIiLSUFxVGElJoXzzwxAuafclt3x1CYafv7tDk2q89957jBo16qjbffDBB1x++eXVrvfx8eGmm25i6tSpmKbJkCFDiIuLY/78+QAMHz6cdu3a0bt3b+69915sNhtDhw6lffv29YrfKip03tEsJF7JCA7B2rHd3WHUiRIYIs2QtXEt1lcfYJw8mBk/nMWM8yt+A6PmnSIiIs1PYmIOl70xkoti5/PVY6s479EB7g5JqvHVV18xdOjQKntYlPf1118fMYEBEB8fT3x8fIVlw4cPr/D4wgsv5MILL6xbsFWwig5WYNhVgeGVVIEhIp7C2puF+fKTENUG4+p/khjkTFS4qi+UuBAREWl+XM08DWLYcqAdrf74BofjYr3ue6jCwkLuuOOOo27n66kVDhpC4t2CQyD/AJZpYhxlphtPowSGSDNilRRjvvQkFORju2cKRlAISUmhFd646E2MiIhI81O+mefU00dw/7HPk7piKUZMOzdHJlU52uwinq6sAsNTEyxyZIHBYFlQkA9Bwe6Opla8K90iIkdkvfdv+HsdthvuxHC0L/s2xlV9AWreKSIi0ly5mnl+mHo+xaYPL169RK/70iisYmcPDEOzkHin4BDnrRfORKIKDJFmwvz5O6wF32CcPRKj36AK69LSnA081bxTRESk+SrfzPO7n87gUscX3PbNSAx9Sy4NTD0wvJsRGIwFXtkHQxUYIs2AtXkj1jsvwXEnYYy8ruwbGNe0qa4KDH0DIyIi0vwlJubw7raRRPnv5fPHfnN3ONIclc1CogSGV/LiCgwlMES8nLV/L+ZLT0B4BLZb78Pw8SExMadCtUVaWrqaeImIiLQAri8xFmWeQmp+DOFrvtEwEmlwVrF6YHi1wIN9L1SBISJNySotxXxlOuTsx3bbBIzQsLI3Lof3vRAREZHmz/Ulxva0Xby3fQSDopeSunK5vsTwcAUFBWRlZVFQUODuUGrkUBNPVWB4pYMVGJYXVmCoB4aIF7M+fh3W/45x490YHboAh8a/atpUERGRlsnVxLuN/wju6vpvXrvqZ6auu1vvCTzMtm3bSE5OZuXKlezevbtseZs2bejduzdnnXUW7du3d2OE1VMFhpfz4goMJTBEvJQ5/xOs7z7FGHIetoFDK6wrXyaqNyoiIiItS/lmnvN/PJPL233ObV9fhOHn7+7Q5KBZs2aRmprKwIEDueOOO3A4HAQGBpKfn09aWhpr167l2WefpV27dtx9993uDreysgoM/Z/ySgGBYNi8sgeGEhgiXsayLKzP38P6/F2MfoMwLr+5bJ3rG5fyHI5YfeMiIiLSAiUm5nD5G5dw3jHf8/VjKzj30YHuDkkOGjRoEP369au0PCQkhB49etCjRw9GjhzJihUr3BDd0bmmUVUFhncybDYIDPLKCgz1wBDxIpZlYX38ujN5MXAYxq2JGPZDeciqmnempaUreSEiItLCuHpiLc7qz9+57Yle+6WaeXqQ8smLjRs3VrlNSkoKffv2baqQasXSLCTeLzjEKyswlMAQ8RKWaWL952Wsbz/BOPNcjOvvwLD5lK2vrnmn3qiIiIi0PK4vNdLSdvD2tkvoG/E7qb/8rC81PNBjjz1W5fKpU6c2cSQ1d6iJpyowvFZgMJYqMESkMVhmKdYbz2H99BXG2SMxrvqns/SrHNcbElcFxvjxOaq+EBERacFcX258lHY+BaX+vHnrQn254UFM08Q0TWeFrWWVPTZNkx07duDj43P0g7hLcREYBvioI4HX8tIKDP2PE/FwVkkJ1pwZWMt/xrjgSowLRmEYRqXtDn8zosSFiIhIy1a+mednycMZGfs11827HCMwyN2hCXDllVeW3R81alSFdTabjZEjRzZ1SDVmFRWBr1+V70nFSwQGw95sd0dRa0pgiHgwq7gI8+Wn4LelGJfeiO3syi9khzfudA0hSUoKVRJDRERESEzM4dw5l3B5u89JnvoLZz02zN0hCfD8889jWRYPP/wwjzzySNlywzAICwvDz69m/SVWr17N3LlzMU2TYcOGMWLEiCq3S0lJ4YEHHuCee+5hwIAB9YrdKi5S/wsvZwSHeOUQEiUwRDyUlZfrTF6sXY1x1RhsQ86tcjvXtyuuxEX5Jp4iIiLSsh36ouMYft93LLE5X+BwXMP48bn6osPNWrduDcDs2bPrfAzTNJkzZw6TJk0iKiqKCRMm0K9fP9q1a1dpu3feeYfevXvXJ+QyVlGh+l94u8BgyPe+ISTqgSHigay1qzAfvhPWrcG44a5qkxdq3CkiIiJHUr6Z51tbL+XY0L9J/el7JS/c7I033mDv3r1H3Gbv3r288cYbR9wmJSWFmJgY2rZti91uZ+DAgSxbtqzSdl9//TWnnHIKYWFh9Qn7kKJCVWB4u6BgKCrCKi52dyS1ogoMEQ9iFeQ7p0n96WuIaYft/qcwOnWvdvvDqy/Gj8/RGxIRERGpwFWFEehzNg8cN4uf7v6BO1Yn6H2DG8XGxjJhwgTatWvHcccdR2xsLIGBgeTn57Njxw7Wrl1Leno6F1988RGPk52dTVRUVNnjqKioStOyZmdns3TpUiZPnsyLL754xOMlJyeTnJwMwLRp04iOjq5yu30lJfgEBFa7vinZ7XaPiMPFk+I5Uix5bdqSA0QG+uPTKtLt8dT4GA0Ui4jUk7XhT8zXn4HMXRgJF2GMvAbDz/+o+5WvttCbEBERETlc+WaeH3x9ITd0eJ+Rf/6B0UQfWqSys846iyFDhrB8+XJWrVrFsmXLyMvLIzg4mPbt23PWWWfRt2/fo85EYllWpWWHN9Z8/fXXufrqq7HZjl58n5CQQEJCQtnjzMzMKrfzKSyg1LBVu74pRUdHe0QcLp4Uz5FiMU3nbfb2bRglplvjiY2NrWLrqimBIeJmVnER1ry3sb77FKLaYEucitHj+KPud3jzTnAOH9G3KSIiIlKVxMQcBr50GTd3fJcl037ktGmXuDukFs1utzNgwIB6NdSMiooiKyur7HFWVhYREREVtvn777955plnANi/fz+rVq3CZrNx8skn1/m8FBdBDZuMimcygkKwwOumUlUCQ8SNrC0bMV+bBTu2Y5xxDsZlN2AE1GxqMzXvFBERkZoq/8XHj7sHckLhF3RsN4Y77inQFx9u9vrrrzNo0CC6du1a6327dOnCjh07yMjIIDIykiVLlnDnnXdW2OaFF16ocL9v3771S15waBpV8WJBwc5bL5uJRAkMETewigqxvv4Y66sPICwC210PYxwfX+P9VX0hIiIiteH64gPgqpOu4K2T72TTxx9hO2WwmyMTy7KYPn06/v7+DBo0iEGDBtW4pN7Hx4ebbrqJqVOnYpomQ4YMIS4ujvnz5wMwfPjwxom5qBCC1TTeqwWFAM6ZD42jbOpJlMAQaULWgVysn77C+v5zyNmHMWAIxqhbMYJDanUcNe8UERGR2nJ9AWIQw6YD7cme/h0X/3Kl3ke42Y033sj111/PH3/8wc8//8wDDzxAmzZtOP300zn//POPun98fDzx8RW/CKsucTFu3LgGidkqVgWG1wv2zgoMTaMq0gSsvVmYH87F/NfNWPPehg5dsN37OLab76l18gKoNE2q3nSIiIjI0bimVL1n/AHe3HoZ/SLWkLpkod5HeACbzcaJJ57I2LFjSUpKIjQ0lLfeesvdYVWvqBDD19fdUUh9BLoSGOqBISIHWTtTsb79BOvXH6HUxOg/COOcSzDiOtX5mK5vT8oPIdHwEREREampxMQcjn32Au7rPpstz83nxKdr33tBGlZBQQFLly5l8eLFrF27lp49ezZYtURjUAWG9zN8/ZzX0MsqMJTAEGkE1uaNmN98BKt+BbsvxqDhGMNHYLSOqfexExNzmDEjlLS0dByOWDXvFBERkRor30fr47TzuNz4jOM73suNd/joixA3mTFjBqtWraJz586cdtppjBs3jrCwMHeHdURq4tlMBIWoAkOkpbL2ZmP9sQLr159g/e8QFIzxj8swhp2PEdaq3sc/vHGnq/9FUlKo3nCIiIhIjZRv5nlmj8u5rsNHvHDV+wxOvMDNkbVcnTt35rrrriM6OtrdodSYVVzk/AZfvFtIKFbufndHUStKYIjUkWWWwuaNzqTFmuWw7W/nisjWGJfdiHHG2TWeErUmqpo2VckLERERqa3yX4oszuxPp/zPaN/uZu66J1/vK9xgxIgR7g6hVizLgqJCUA8M7xfWCnL2uTuKWvGYJp6rV6/mrrvu4o477mDevHnuDueopkzxKbvvaqhYvrFiVfc9fb0nxeKp659/CsylC/k98TnMxOsxp/0fpV98CH7+GCOv5e2Or2Kb9iozf7+uLHnRkLFcckkU5elNhoiIiNSWq5nn+PE5vLblChyBu9g67796XyE1U1oClqUhJM2AERrudQkMw7Isy91BmKbJXXfdxaRJk4iKimLChAncddddtGvX7oj7pae7b+x/+d4DrvtVLfOm9Z4US0OsLywsIjMzs877p27bDrt3cuM/8njtsVVYf66kZP167LZSsovCiTqjDxzfl+OvOJe1Ww406nM9fnxOheEjLs2hcWd0dDSZmZnuDkOOQNfI8+kaeT5dI+/Qkq6TqwrDRikLBl/M7qIoLv7lNY9/b+HOaxQbG+uW87pTVZ+3rPw8zDtHYVx2I7bhI90QVUWe9nvrSfEcLRbzvX9jLfken2ffc2s8tfnd8oghJCkpKcTExNC2bVsABg4cyLJly46awHAX8/Vn+HzgDkofKwLD4NOBfpQ+Xsy8U/0ofdy57JNT/SidVgzAfwf4UTqtiI8H+FP6ZBFg8NEAP0qfKgLgg1MCKJ1exPun+FH6tHOfd0/2p/TpQrDZeKNfMKXPFvFq3yBKZxdh2Hx4rncw5quFYPPhqRNCMN8sYGqvUMz/FIDNxqRjwzA/ygebjcRu4ZifHeCOLq0wv8kHuy9Xx7XGXJwHvr4MbxuD9XsO+PrSt9VurK376R6Sj5WxF3z9iPANwipw7gduz3c1uCCfPKytKVg7Urm3+15KX1xH8uk7Mcdtg9IS5vQDax7QvjOzN13P3a8eS/wZg9n+xi4A9hWHA43bvbeq4SMiIiIideV6b5GUFMqcj6/k0V5Pk7roR4zOPdwdmni6YudnGHz93RuH1F9oOOTnYRUXe820uB5RgfHrr7+yevVqxowZA8DChQvZuHEjN998c4XtkpOTSU5OBmDatGkUFRU1aZxTpvjw2GM+TDp2Jl1CtmBgYRxcZxjOp9HgsNuy5VRYTrn1h/apfCybYeJjlGI3SsvuO/+Z+OBcZj+4zHXf5lpvmPgYJfgYJjajYS5zqWWjyPSlsNSfQtPv0L9SPwpN57KCUv/K90v9KCi7DSjbp8AMOLivHwWlAWXHK7tf6keJZS97xsqeccv57LseW4BlGdhtJYTZcwm15xLqm1vhfqj94OOD9yP89tE5eCuOwF1lP1+J6cPWPAcpuZ34+0BHUnI7kZLbkb8PdCSnJKRBnsOGcvrpJsnJJe4Oo97sdjslJd7/czRnukaeT9fI8+kaeYeWep0igkr439BzyWwzgIGvPerucI7IndfIz6/lDZmosgIjazfm/TdjXH8HtkFnuSGqijyp4gE8K56jVmAs/BbrrRewPfkaRmTjN5FtNhUYVeVQDMOotCwhIYGEhISyx039H+O225z/4AqPHTZR3frU7al0bB/Dlr+3Q0kR8SdEsfJ/26CkmOFDWjH/yzQoKeGqy0P5zxs7GXNzCC8+nwHFRUy6P4jHJmdCSTHPT/fn7tuzee9lP266bi8UF/HZx3Yu+Mc+KC7m10UWQ0/ezV9rLI7rmgfFRWTtLCEqrACKisAyG/ciHUVBqT8BEYH8nR5GlxMCMNoex5NvXMz9s8Ihph09Tu7LltTdDKnyudzvEcN1ypd2esjfxnrxpD/yUjVdI8+na+T5dI28Q0u7Toeaefrx7vaR3OLzHzqFZzNqbLDHDiPREBIPUFzovFUPDK9nhIY7v0rP2QdNkMBoCB6RwIiKiiIrK6vscVZWFhEREW6MqPkxbDZKLDuGvz/4+5NRGI3R2lnBsjYnFqOLs7/CwsxYjN7pfLEzlpdPdX5ofmNrLI+f7byfNDqW8ZemM/muWG651rls3IOxjPjSef/yp2NJ+286ZztiSXvfuaxPuQ/g7du1YWvKFk48Loo1y7dBcREJZ7Yi+atUKC52JlBe38FttwYz+5ldUFTEpAdCeWzKPsDioQfDefTRvTw8OYyHH3Y2nHnkkVAmP+S8//AjETz8VAm33BHHR1/4s6+4hNMSOrF4ZS4EBtG9QwfS0tKdCYp3nTE9/1AsE+Kd94stzy+d8tQ3FCIiIuJdyk+p2r/LFdzS8T/8b9ocbJfd6ObIxKMVO4e8e8uQAzmC0HDnrRc18vSIBEaXLl3YsWMHGRkZREZGsmTJEu688053h3VEkyaVlt0fPz6nwm119z19fVOc66578jECgrjhdjtGVGsAzr01FKNzMAD9rgvF6NOBbleGYjvNuV/UJaHYhjnvR6wOxZaQQ/hvodjOci4LWxOKbbjzfvjvzv16XR2K34n+GJmZXDImFCPUp0l+vsZ+rgcMKERERESkoZSfUvXrnUM548vvOCXxHsbcVaovTaRqZT0wVIHh9cJaAWDt20Pl8Q+eySN6YACsXLmSN954A9M0GTJkCBdffPFR93HnLCQtrcTQG+kaeQddJ8+na+T5dI08n66Rd2jJ1ykpKZQf5mzls9Nu4P/Zu/O4qOrvj+OvO+wIKouKgvtuLmlaaWqatH3bzEptt83UchtsM20zzUoGl8zKzNZfaYtWtpPaolmamqmZWy6AioDIIoow9/fHOAgICgrMAO/n4+GDmTt35h65InPPnM85xuChWPpd6+qQiqQlJBWryB4Y/27EPm08FuskjLadXBBVQe72c+tO8ZwpFjP7GPaHbsG48U4s/7vFZfFUuh4YAF26dKFLly6uDkNEREREpNqJikrHZmvPmkMdafHpEoL7Xo1h8XB1WOKOnBUY3ppCUtkZ3j7gHwCpyWfe2U24TQJDREREREQqXv5lJPP+u405QY9zb9cdtL/9Ai0jqQTWr1/P/Pnzsdvt9OvXj/79+xd4/JdffuHzzz8HwNfXl/vvv58mTZqc/QFznEtI1AOjSqgdjJma4uooSkwJDBERERGRaix/M89GEX3Ye6Q+bw5+C4+oVi6OTM7Ebrczb948JkyYQEhICE888QRdu3YlIiIib5+6devyzDPPEBAQwLp163jjjTeYMmXKWR/TzFYPjCqldghUogSGxdUBiIiIiIiIa0VHBxIe3oBc05O3dg2GbZu5pl0K0dGBrg5NTmP79u2EhYVRr149PD096dGjB6tXry6wT+vWrQkICACgZcuWBaY/npUTU0jwVAVGVWDUDq5UCQxVYIiIiIiIVHPOKozo6EBen9GfMS3f5IuRb+Ax/HFXhyankZKSQkhISN79kJAQtm3bVuz+S5cupXPnzsU+HhsbS2xsLABTp04lNDT0lH2O+HiTDgTXC8Mj+NTHK5qnp2eRcbqKO8VTklgy6oeTuWo5IUFBGB7l2/emLL43SmCIiIiIiAjgbObZgHd238JIr/mY++MxwsJdHZYUo6iBkoZR9EDMjRs3smzZMp577rliXy8yMpLIyMi8+0VNjLCf+LQ+JT0Dw17aiMueO039APeKpySx2H1rgD2XpJ3bMYJCTrtvecVTmikkWkIiIiIiIiJ5y0gA3t41iGO5Xrx39/daRuLGQkJCCiwJSU5OJigo6JT9du/ezeuvv84jjzxCYOA5nk/nEhJv9cCoCozQuo4byQdcG0gJKYEhIiIiIiJERaUTH59AfHwCSdkhfBJ/Lbc3W4L1/j2uDk2K0bx5c/bt20diYiI5OTmsXLmSrl27FtgnKSmJadOm8fDDD5fqk+5iOceoqgdG1RBSDwAzqXIkMLSEREREREREgIIjVd/YeQe3NVzErP7Lyb32Lo1UdUMeHh7ce++9TJ48GbvdTt++fWnYsCHff/89AFdccQWffPIJGRkZvPnmm3nPmTp16tkfNDsbvLyLXaoilUxIHcfXpETXxlFCSmCIiIiIiAhQsJmnzdaIb/f3ZWTHhVgeuhLwd3V4UoQuXbrQpUuXAtuuuOKKvNvDhg1j2LBhZXfAnOMYGqFaZRjePlArCCpJBYaWkIiIiIiISAHOaos5O++CI5mYv/zg4ojEbRzPxlD/i6olpG6lWUKiBIaIiIiIiOTJ38zzr8PtWZl8AfHvLCFmmq+LIxO3cDwbvH1cHYWUIaNeAzgQ7+owSkQJDBERERERyZO/mSfAazvvooHfAUb3+NrFkYlbOK4lJFVO/YaQmoKZdcTVkZyREhgiIiIiIlJA/iqM5Qd78E9aC7bM/ILoaTVcHJm4mqklJFWOERbhuLHf/aswlMAQEREREZECnFUYVms6YDBn5920DtyJNXKpq0MTVzuerQqMqqa+I4Fh7tvr4kDOTAkMEREREREpkrOZ55f7LuewV33s33yCaZoujkpcSj0wqp7QMPD0gvjdro7kjJTAEBERERGRU+RfRpJrevLiurth578snLTTxZGJS6kHRpVjeHpCRBPM3dtdHcoZKYEhIiIiIiKnKNzM8+O466BmbW4OfNfFkYlLHc/GUAVGlWM0bg57drp9hZUSGCIiIiIiUqT8VRjH7D688McdsHkd701OcHFk4jLHj6uJZ1XUuAVkZULiPldHclpKYIiIiIiISJEKNvOE9/bcDH41uC1EVRjV1vFs0BKSKsdo0RYAc+tGF0dyekpgiIiIiIjIaTmbeWbkBPCHf39Y+xvmvjjXBiWuoTGqVVNYBNQKgi1/uzqS01ICQ0REREREipV/GQnAgwvu5miON39Hf+HCqMRl1MSzSjIMA6N1R8x/1mPm5ro6nGIpgSEiIiIiIsUq3MwzOTsYv8hIzsv4ATPloIujkwqXoyaeVZVxQXdIPwxbNrg6lGIpgSEiIiIiIqdVuArj4onDOH4c/pz6tQujkopm5uZCbi4ogVE1degKfjUwf/ne1ZEUSwkMERERERE5rcLNPOOP1sf7kt50zlyCmZ7m4uiqt/Xr1zN69GhGjhzJ4sWLT3ncNE3eeustRo4cybhx49i5c+fZHyznOICWkFRRhpc3Rp+rMNeuxIzf4+pwiqQEhoiIiIiIlIizmSfAO/vvguxjmEu/dGFE1ZvdbmfevHmMHz+emJgYVqxYQVxcweaq69atY//+/cycOZOhQ4fy5ptvnv0Bs7MB1MSzCjMu7w81ArDPi8bMzHB1OKfwdHUAIiIiIiLi/qKjA7HZAvPuT5jdgbpd+tDn66/wv/JGDF9/F0ZXPW3fvp2wsDDq1asHQI8ePVi9ejURERF5+6xZs4bevXtjGAatWrUiMzOTQ4cOERQUVPoDHnckMDRGteoyAmthuXcs9tlTsD81Ahq3wPD1O/cX9vaGcZPO+WWUwBARERERkTOKikrPq8Bw9sP438xrsU9ZjvnTdxhX3ujK8KqllJQUQkJC8u6HhISwbdu2U/YJDQ0tsE9KSkqRCYzY2FhiY2MBmDp1aoHnAeSSy6HwxngFBZ/ymKt4enq6TSzgXvGcdSx9ryK7QQRHPv+Q3AMJmMmJ5xyL4etbJt8bJTBERERERKRECldhRPTsw4cXdqPT4i+oedm1GF5eLoyu+jFN85RthmGUeh+nyMhIIiMj8+4nJSUV2sMDnpmFV2hoEY+5RqgbxQLuFc85xRISBveOLbNYTCAnJ6fIeBo0aHDqE4qhHhgiIiIiIlIihZt5AvSafB0BOcmYv/3owsiqp5CQEJKTk/PuJycnn1JZERISUuCisah9RCoLJTBERERERKRU8jfztH3dExq3wPz2M8eYTakwzZs3Z9++fSQmJpKTk8PKlSvp2rVrgX26du3Kzz//jGmabN26FX9/fyUwpNLSEhIRERERESmxwstIbDE12VxvKG9c8CjmnyswLuztwuiqFw8PD+69914mT56M3W6nb9++NGzYkO+//x6AK664gs6dO7N27VpGjRqFt7c3I0aMcHHUImdPCQwRERERESmxopp5vrmmFfanIzC/+RSzW69ieyxI2evSpQtdunQpsO2KK67Iu20YBvfff39FhyVSLrSERERERERESiU6OjAveQEQ0TAC63f3Q9x/sPFPF0YmIlWZKjBERERERKRUnFUY+ZeTTF/ZEfuTodi/W4RHh65neAWpDE43HaI0kyPKmzvFAu4VjzvFAucejyowRERERETkrBRo5jkjCKPfdfDv35i7d7gwKilvjz/+uKtDyONOsYB7xeNOsUDZxKMEhoiIiIiIlFrhZSQ2WyDtHribbIsfZuznLoxMRKoqJTBERERERKTUoqLSiY9PID4+IW/blt1p+Fx2OebqXzAPJbswOhGpipTAEBERERGRs1K4CiM8vAE9nrwPe66JuWyJCyOT8hQZGenqEPK4UyzgXvG4UyxQNvEogSEiIiIiImfFWYVhtZ7shbFqu4Hlgosxf/oW82iWC6OT8uJOF8buFAu4VzzuFAsogSEiIiIiIm4gfzPP6OhALJf3hyOZmCt/dF1QIlLlaIyqiIiIiIictfyjVMHRzNNmu4zfB7SjfuwXmH2uxrB4uDBCKSvr169n/vz52O12+vXrR//+/Ss8hoceeghfX18sFgseHh5MnTqVjIwMYmJiOHjwIHXq1GHs2LEEBASU+bFfffVV1q5dS61atYiOjgY47bEXLVrE0qVLsVgs3HPPPZx//vnlHs/ChQv58ccfqVmzJgC33norXbp0Kfd4kpKSmD17NqmpqRiGQWRkJP/73//K/PujCgwRERERETlrRTXzjI9PIPzua+HgfvhrtQujk7Jit9uZN28e48ePJyYmhhUrVhAXF+eSWJ5++mlefvllpk6dCsDixYvp0KEDM2fOpEOHDixevLhcjtunTx/Gjx9fYFtxx46Li2PlypXYbDaefPJJ5s2bh91uL/d4AK655hpefvllXn755bzkRXnH4+HhwZ133klMTAyTJ0/mu+++Iy4ursy/P0pgiIiIiIjIOSmqmWfj/gNI86yH/YfFrgtMysz27dsJCwujXr16eHp60qNHD1avdo/k1OrVq7n00ksBuPTSS8strnbt2p1S2VHcsVevXk2PHj3w8vKibt26hIWFsX379nKPpzjlHU9QUBDNmjUDwM/Pj/DwcFJSUsr8+6MEhoiIiIiInJOimnnuiUuk1oBrYdtmzD07XRidlIWUlBRCQkLy7oeEhJCSkuKSWCZPnsxjjz1GbGwsAIcPHyYoKAhwXEinpaVVWCzFHbvw9ys4OLjCvl/fffcd48aN49VXXyUjI6PC40lMTOS///6jRYsWZf79UQJDRERERETKROFmnkaPy8DTE/O3pS6MSsqCaZqnbDMMo8LjmDRpEi+++CLjx4/nu+++Y/PmzRUeQ0kU9f2qCFdccQWzZs3ipZdeIigoiHfffbdC4zl69CjR0dEMGTIEf3//Yvc723hKnMB455132LVr11kdREREREREqrbCy0hstkAiWrVmm18PzN9/wszJcWF0cq5CQkJITk7Ou5+cnJz3yXpFCg4OBqBWrVp069aN7du3U6tWLQ4dOgTAoUOH8hpYVoTijl34+5WSkpIXe3mqXbs2FosFi8VCv3792LFjR4XFk5OTQ3R0NL169eKiiy4Cyv77U+IERm5uLpMnTyYqKorFixcXOJiIiIiIiFRvxTXzbH1XL0g/DJvWujA6OVfNmzdn3759JCYmkpOTw8qVK+natWuFxnD06FGysrLybm/YsIFGjRrRtWtXfvrpJwB++uknunXrVmExFXfsrl27snLlSo4fP05iYiL79u2jRYsW5R6PM1kA8Mcff9CwYcMKicc0TV577TXCw8O59tpr87aX9ffHMEtRu2G321m3bh2//PILa9eupWXLlvTu3ZuLLroIX1/f0v4dz1lCQsKZdyonoaGhJCUluez4cmY6R5WDzpP70zlyfzpH7k/nqHLQeTp3hUeqAngaOWy89ir8O7XDY/jj5/T6rjxHDRo0OPNOVdzatWt55513sNvt9O3blwEDBlTo8Q8cOMC0adMAxwfsPXv2ZMCAAaSnpxMTE0NSUhKhoaFYrdZyGaM6ffp0Nm/eTHp6OrVq1WLgwIF069at2GN/9tlnLFu2DIvFwpAhQ+jcuXO5x7Np0yZ27dqFYRjUqVOHoUOH5lXKlGc8W7Zs4amnnqJRo0Z5S4tuvfVWWrZsWabfn1IlMPLbu3cvM2fOZM+ePXh7e3PJJZcwcODACimLcVICQ05H56hy0HlyfzpH7k/nyP3pHFUOOk9lJ38iIz4+AftHczF/+gbLtHcwagSe4dnFUwJDpHorVRPPI0eOsHTpUp599lmefvppWrRowbPPPktMTAy+vr5MmTKlvOIUEREREZFKoshmnjk5mH/84sKoRKSy8yzpjtHR0fz111+0bduWyy+/nG7duuHl5ZX3+F133cWQIUPKI0YREREREakkCi8jsdkCsdl68ueNzajz21Lo+z8XRicilVmJExgtW7bkvvvuo3bt2kU+brFYmDt3blnFJSIiIiIilVBUVHpeBYZzKkl8/D7s31+K+fF8zH1xGPUjXBmiiFRSJV5Ccv311xebvHDy8fE513hERERERKSSKzxSNTy8AV0eHIQdC+ZvS10YmYhUZqXqgSEiIiIiInImzpGqVuvJXhjr/8vG0qEL5qrlmHa7C6MTkcpKCQwRERERESkXpzTz7HoJHEqChN0ujEpEKislMEREREREpMwVXkZiswVy8Z2RAJj/bnJVWCJSiSmBISIiIiIiZc65jCQ+PiFv2x87TAipi7l1owsjE5HKSgkMEREREREpF0U18/zkr24c+Wszpmm6MDIRqYyUwBARERERkXJRVDPPW55shn9uKuzb67rARKRSUgJDRERERETKVf5mnm/9chGAlpGISKkpgSEiIiIiIuWm8DKSp19pzf6jddjyxb8ujEpEKiMlMEREREREpNyc2szTILVuB1pb/lIfDBEpFU9XByAiIiIiIlVbdHQgNltg3v13VlzECx2W8tbUNO57opYLI5PTSUhIKHJ7aGgoSUlJFRxN0dwpFlA8Z1JUPA0aNChm71OpAkNERERERMpV4Waeq1IuAOCenr+7MiwRqWSUwBARERERkXKXvwpjR2ZjDh4L5uMp/xEdHXiGZ4qIOCiBISIiIiIi5a5gFYbBrsyG3NxvT4EJJSIip6MEhoiIiIiIVBhnwiIluzZJuzJcHI2UN/uPX2LG/efqMKSKUAJDREREREQqRP6RqinZQdjT0ggPb6BlJFWUmXUE86O52GOednUoUkVoComIiIiIiFSIqKj0vAqMGX2DCPZKJS4uHsMwXByZlIuEPY6vnl6ujUOqDFVgiIiIiIhIhXFWYSRn18bTkst5TQJVhVEFmUePYP9+keNOnTDXBiNVhhIYIiIiIiJSYZzNPC/q5wdAsM8h4uMT1MyzijGXfwNrfwPAqBXs4mikqlACQ0REREREKtz/BjqWFQR7par6oipKS827aeYed10cUqUogSEiIiIiIhUqOjqQq29pAUCw9yFsNi0jqXIOJTuWjkQ0heNKYEjZUBNPERERERGpUFFR6ViHZGN/HEK8UwGIj09wbVBSpsyUgxBaD7KPwfFsV4cjVYQqMEREREREpMLNeCscgBCfQwCEhzdQFUZVknIQI7iOYwKJKjCkjCiBISIiIiIiFW7MI9ng6UW/7kl529TMs2owc47D4UMQXAe8vFWBIWVGCQwREREREalw5pFMyDlOt8v88rap+qKKOHwITBOCQsDLC3JUgSFlQwkMERERERGpeCmJAAwb3yZvk5p5VhEZjioaI7AmhiowpAypiaeIiIiIiFS8JEcC4/VPvDCaJhAe3gBQM88qITPN8bVGTUcFhnpgSBlRAkNERERERCqcmXQAgFcXNmfKzAZ5252JDKs1Xf0wSunVV19l7dq11KpVi+joaAAyMjKIiYnh4MGD1KlTh7FjxxIQEFCucZgnKjCoEaAeGFKmtIREREREREQqXnIi+Pgy4lGD+PgErNaTyQo18zw7ffr0Yfz48QW2LV68mA4dOjBz5kw6dOjA4sWLyz+QzBPnLiAQPL1VgSFlRgkMERERERGpcGZSIoTUxTAMgAIJC/XAODvt2rU7pbpi9erVXHrppQBceumlrF69uvwDcSYw/ANPNPFUBYaUDS0hERERERGRipd0AELqAo6Ehc12MmlhsznuaxnJuTt8+DBBQUEABAUFkZaWVuy+sbGxxMbGAjB16lRCQ0OL3M/T07PYxwDSc3PI8vOnTlgYGbVqk5mbS0hQbQyPsr/8PFMsFU3xnN65xqMEhoiIiIiIVLzkRIyWbQFH9YUzUaFmnq4TGRlJZGRk3v2kpKQi9wsNDS32MQB7UiKmfwBJSUnYTywfSdq/H8PHt2wDLkEsFU3xnF5R8TRo0KCYvU+lJSQiIiIiIlKhzCMZkJUJIfXytkVHB+YlL8CRyNBI1XNXq1YtDh06BMChQ4eoWbNmuR/TzEiHgBPH8fJ2fFUjTykDSmCIiIiIiEjFOjFC1Qg9mcCIikpXM89y0LVrV3766ScAfvrpJ7p161b+B81Md0wgAUcPDFAjTykTSmCIiIiIiEiFMnf+67gRFnHKY2rmefamT5/OhAkTSEhIYNiwYSxdupT+/fuzYcMGRo0axYYNG+jfv3/5B5KRhuGswPBUBYaUHfXAEBERERGRCmWuWgb1G0KDhgW2q5nnuRkzZkyR25966qkKi8E0TTh8CGo5GoeeXEKiCgw5d0pgiIiIiIhIhTET98GOLRgD7soboeqkZp5VwLEsyD6Wl8AwvLwwQaNUpUxoCYmIiIiIiFQYc9VyMAyMiy4t8nE186zkUh0NQ6lZqAIjWwkMOXdKYIiIiIiISIUwTdOxfKRVe4zgOkXuo2aelVyaI4FhOJeQOEenHstyUUBSlSiBISIiIiIiFWPnv3BwP0b3vmfcVc08KyfzcKrjhjOBcWIaiXkk0zUBSZWiBIaIiIiIiFQIc9Vy8PLG6NLjtPsVXkZisznuT5rkUc4RyjlLK7SExK+G46sSGFIGlMAQEREREZFyZ+Ycx1z9C8b5F2H4+Z92X+cykvwNPOPjE5g4Mbe8w5RzdfgQeHjkVV7g70xgZLgupmrOzD5G7oTh2H/+ztWhnDMlMEREREREpPxt/BMy00u0fASKbubp4+Ot5STuLisT/GpgWByXmoa3D3h6qQLDhcz1v8OBeMz3ZmNW8nG2SmCIiIiIiEi5s/+2DAJrQbvOJdq/qGaex45lq5mnuzuaBb5+Bbf513AkNsQlzDW/nryzZYPrAikDLk9gvPfee4wZM4Zx48bx8ssvk5lZOf5h519/lz8L7Lxd1LaK3re0z7vpphBERERERMqauXUTrFuFcUkkhkfp+ljkT1hERnqWdWjl6sCBAyX6k5iY6OpQy4xZXAIjU0tIXCZuF3S6EDy9MDevd3U058QwTdN0ZQB//fUX7du3x8PDg/fffx+AO+64o0TPTUhIOPNO5cDcF0fzCzuxc28y4Chnc67Pc94ualtF73suz6sKQkNDSUpKcnUYcgY6T+5P58j96Ry5P52jykHnqXyYx45if3YUmCaWp2diFL64PY3o6EBstlOXjFit6RVeidGgQYMz71TIoEGDSrSft7c37733Xqlfv7wVd711up+V3OgJcDwbj8dfOrnthUfA1w+Psc+VeYzu9nPrbvGE1KpJ4qDLMK65BXPHFkhLxeOZWS6Lp6jvT2l+tlyewuzUqVPe7VatWrFq1SoXRnNm5r9/Y5/2JNuugtxnm2KEN2J4sw6YfwdDg8ZAfVeHeM6iowNVmiciIiIiZcL87F04uB/LuCmlSl6Ao/oiKiq9QC+MyvSBm4+PD+++++4Z97vnnnsqIJoKcjTrZANPJ/8akKHrC1fI3RcHph3CIjCOZ2P++CWmaWIYhqtDOysuT2Dkt3TpUnr0KH6kUmxsLLGxsQBMnTqV0NDQigoNcCwbmfJ8PaZ1XElydhAtE3fSZtsWnmjzE/aZjn3+vjyAVTc1Z0r75jzRowX/pjenlleNUxoQFb59psfPdt+zfd7q1TWIjc05/TfEzXl6elb4vxEpPZ0n96dz5P50jtyfzlHloPNU9rI3ruPQ0iX4XXMzNS/pU6rnTprkwcSJuacsG3G+X+3Vy+7271eHDBlSov3uvvvu8g2kIh07CiF1Cmwy/AMwE/e5KKDqLSd+DwBGWDhmeirk5EBmOgTUdG1gZ6lCEhiTJk0iNTX1lO2DBw+mW7duAHz22Wd4eHjQq1evYl8nMjKSyMjIvPsVXZozfLjjDzxYYLlF28aBbI79HTN+F4unJHN35CZabf6BOxp9dvLJtR0VGq8vOY9hk0IwwhvTvOeF7Nyb4nZLSMLDG/DRR/t54onKXYnhbuVbUjSdJ/enc+T+dI7cn85R5aDzVLbMo1nYZzwHdcI4dvXAEn9vndXAzz/fgOefP7VfRv7lIxV5us5mCclll11Wov369OlT6td2W0ezTq208a+hKSQukhP3n+NGvQbgTCIdPqQExulMnDjxtI8vX76cP//8k6eeeqpSlrKk5QRitGyH0bIdE29vwL3fJ9AhvD5xGzdC/C6eG5bKxHs3YMbv5u7GCzHnZ2MCW660kDuhPnM6t8H+VX2MRs2p4+3tkr+Ds5lnUdUaQKVOZIiIiIhIxTM/eweSEx1LR3x8T7tv/iXMNtvJ20V90FaZ3pdu3LixRPu1b9++nCOpQEezwNe/4Db/QDiSgWm3541XlYqRs+0fCAvH8PWHWkGYAIdTILyxq0M7Ky5fQrJ+/Xo+//xznn32WXx8fFwdTolNmJCbdzv/aCfnbas1AyMoBIJCCLgxEMu9/QB4fZo/Y+/YCvG7WfXxfi4O38olKf9gLv4RE/gzEnKjakOjZnxyZxvMNRHQsBnWsTWKPVZJbp/p8aiodFau9ObTT5NP+QVR2X5RiIiIiIhrmf/8hbnsa4zI6zFanVfsfs7EhTNpcaYP1Xr1spdf0OVgzpw5Be6npKRgGAaBgYGkp6djmiYhISG88sorLoqwbJmm6Uhg+BSqwAgIBLsdso6c2h9Dyo1pmhzf/g9G6w6ODbWCHdtTD1H5ygYcXD6FZOTIkeTk5BAQ4PiH3LJlS4YOHVqi57pqCgmUfYmheSQT9v6HuXcn7Nnp+LpvL+SeSJT4+kFEU4yGTaFRM4ymraF+RJlnME/X6RkqVyWGykArB50n96dz5P50jtyfzlHloPNUNsyjR7A/Mwo8PLE8NQOjiA8pnYmL/B+cFcW5XMS5vyvP0dksIcnvs88+IyMjg0GDBuHj48OxY8dYsGABgYGB3HjjjWUUZdkq7RQS89gx7A/fgjHgbixX35S33f7bMsy3YrBMfg2j7rl9H0sai6u4UzxmajL2R+7BGPwAln7XOZZ1jRx0yvmpSJV+CsmsWa4b4eJODP8a0Lo9RuuT5WPm8eOQsAdzzw7YuxNz73+YK5fCsq8cpT9+NaBZK4xmbTCat4GmrRyvcw7yJyjyJzLy365MSQwRERERqTimaWJ+NBdSDmJ59IUikxdQ8L1lUcmLwstFqsL7z6+++orXX38dT0/HJZiPjw+33XYbDz74oNsmMErt2BHHV9+CS4aMgJqO65f0NCjjBIacxsEDABj1wh1fff0c1TGHU1wZ1TlxeQJDimd4eUHj5hiNm+dtM+12OJCAufNf2LkFc8cWzCUfOcq1DAPqN3QkM9p2wmjTCSOw9M1Z8q8/zN8A1PlLRGNWRURERKQw056L+f4czBU/YvxvIEaLdgUed76HdC4TKVz166y2cCY08i97rgp8fX3Zvn07bdq0ydu2Y8eOSrWM/oyOZjm+nrKE5MQ1iUapVigz9USiIijk5MagYMxD7lEhcjaUwKhkDIvFsXSkfgRc4uirYWYdgf+2Yu7cgrnjX8w1K+CX7zENAxo1x2jXCaNdZ2je1pEUKSGr9czrEJXIEBEREREz5zjmW9MxV/+Ccc1AjBtuz3ssf5+L4pYq52/cWRmXLpfEoEGDmDJlChdccAEhISEkJyezdu1a7rvvPleHVnaOHgU4dQpJgOO8mxlp5dZ7wbTbMd+KwTx+HMtdD2Oo1wYcTnZ8rR18cltoGCQdcE08ZUAJjCrA8POHdudjtDsfcGS/2bUdc/N6zM3rML9fjPnNp+DtA63aY7Q7H6P9BY4kyGnk/6VReI2imnuKiIiICJzoe/D6i/D3Goyb78FypWM5ROEGnVCyqSJV9f1l7969adasGatWreLQoUOEh4dz0003ERFx+vfklYqzAqNwAsNZFZ6RVi6HNe25mO+8gvn7T477TVpgXH1zuRyrUklNAS9v8D+ZzDHq1MPc8Q+maVbKCaBKYFRBhsUDmrXGaNYarh2EefQI/LvxZEJj4TzMhfMgvDFG154Y3Xph1Ct+LdrpOkI7t1fVXzQiIiIiUjwz6wj2VybBts0Yd44gZvUtRF15cjmyU3HVvFW12qI4ERER3HxzFb6wzjjs+BpQqNLGxw88PCGzfBIYbPkbc+WPGFfciLnuN8xd28rnOJXNoRQ8gkMdrQacQsMc02COZECNUyui3J0SGNWA4esPnS7E6HQhAGbyQcy/fsdc/Svm5x9gfv6BY7JJ114Y3XpihNY75TXU3FNERERE8jPT07DPeAbi/uOb+k9ybe8Lsd1asj4X1fVDsDVr1rB582bS0gpeyD/88MMuiqhsmYdO9FyoHVJgu2EYjj4Y5dQDw9wf5zjO5TfAoSTMHVvK5TiVjXk4BUtQKPmHDxt1whwNVQ/ur5QJjLKdwSmVghFSB8tl1+Lx2FQsL76FMfA+8PDE/Owd7E88QO6Ucdh/+BwzpWBzl6io9FPK/5xf8/8iEhEREZGqzUxNxv7yE5CwB8vw8Tz4Zv+8x8LDGxSZuACq1FSR0vr444954403sNvtrFq1ioCAAP766y/8/f1dHVrZSU12VFoEFDFIILAmZlpq+Rx3f7xj2UqtIGjSElIOYqYfLp9jVSaHkrAEhxbcVsfxYbWZuM8FAZ07VWBUc0ZwqCNTefkNmAf3Y65ZgbnmF8cyk4/fgg5dsVx2raPHxonSIzX3FBEREam+zIP7sdsmkp2Shq/1aWxLegAlG4danS1btowJEybQqFEjli9fzpAhQ+jZsyeffvqpq0MrO6nJUDvYMXigsNrBcPhQuRzWPJAA9cId1yv1IxwVBon7ILBWuRyvMjDT0yBxH56R15GT/4F6EeDhAXH/wYW9XRXeWVMCQ/IYdcIwrr4Jrr4Jc3885qplmD9/h3360xAWjtH3GowelxEVdfI5au4pIiIiUn2Yf/9J+uyZ1PDN4aZf5vDXkvan7FPcONTq/v4wMzOTRo0aAeDp6UlOTg4tWrRg8+bNLo6s7JiHkgtOvMjHqBWMGber7I9pmrA/7uTY3hPL4c2kAxjN25zmmVXc1o0AeHe4gKP5NhteXlC/Eeaena6J6xxpCYkUyQgLx9L/DscSk/vGgl8NzA/fwP7IPdg/fANzf/wZm3tqSYmIiIhI1WAeO8baR+Zhn/kse1ODsTz6An8dbk98fEKRS4tBiYvCwsLC2Lt3LwANGzbk+++/5+effyYgoAqN+0xNwSjU/yJP7WA4nOqYmFiGjm9aDykHoeWJBEZwXcfXsxwVah7Pxty9A/PY0TPv7MbMrRvB2wevFm1Pecxo3Az27HQkfyoZVWDIaRleXhgX94WL+2L+txVz6RLMn77FXLoEzuuM9fJrwewDhqXY5p6gX1wiIiIilVF0dCDWm9Zin2ejU2o8fwbdwuBvx3Csmw9Q/FQR0Pu/wgYNGkR6uuN7cvvttzNjxgyOHj3K/fff7+LIyoZpmo4lJB0uKHqH2iFg2iEt9ZQmn+fiyDefQmAtjB6XAWD4+DiWjiQnlvq1zL3/YY95CtIPY/S7DmPwA2UWZ0Uzd2+HRs0xPIu45G/SElb86OgdUr9yjfFVBYaUmNG0FZb7rFhemodxw20Qvxv7rEmMOXwXY3t/jYG9yAx84WSGiIiIiLi36OhAzNxcsj9fiH3qo6QnZTP49znc+MFjHLP75O1ntaYTH5+gaoszsNvteHt706pVKwBatGjBrFmzmDt3LhdddJGLoysjh5Lh2FGoe2ovFADDubQkNaXMDmmaJsc3r8c4rzOG98l/l4TWwzyLCgz7VwscfweokEkmpt2OfdlX2Jd9hWm3n/kJpXhd4nZhNGpW5OPG+ReBYWCu+bXMjllRlMCQUjNqBmG5djCWF97EeGCcY4LJGy+z5sZb+eyZvwFTS0pEREREKiHn+7VP5hzG/vITPNp6Dov3RtLj6wWsTO6Wt5+mipSOxWLhpZdewrOoT8MryPr16xk9ejQjR45k8eLFZX+AhD0AGA0aFf140Imqi9Tksjvmwf3YU1OgecFlEkZovVJXYNi/+wzW/obR538YV9wIcbswc46XXayFmKnJ2J8bjfl/rzv+/Pxd2b144j5HIqa4BEbtEGjZDnP1L5VuGYkSGHLWDE9PLBf2xvLUdIz7o6hT6wg3xD/J7wPuxvbgTwX2tdkCsdmUxBARERFxZzZbAN9M/IVve93G4S1xjFz/PKPWT+ZwjmMsZv4q2/zLReTM2rZty9atW11ybLvdzrx58xg/fjwxMTGsWLGCuLi4Mj2GeSKBQXEJjFqOCgyzLCswVv4IgOHsf+EUUheSD5a434aZuA9z0XvQsRvGdYOhcXPIOZ6XlDnj800T85+/MP9ew7ENazDPMG3F3B+H/dUXIHGfo99g3fqYG/8s0bFKFM8fjmsxo0mrYvcxuvaCfXshfneZHbciqAeGnDPD4oFx0aWYF1yCufJH6i9ZwM17o6h/YTd6TbuFiN6XnTJCKzo6UJl6ERERETfgfF8258VsXu/yKFfsX8aK1K5EbXiGhKNhmipSRurUqcMLL7xA165dCQkJcYz8PGHQoEHleuzt27cTFhZGvXqOCR09evRg9erVRESUvv+BuWcnaYvexWzTCaNtp5MPJOxx9KIIrFn0E2vWAoulzJaQmDu2YH61EN/eV5BdOGkSWg9ycyD1EASHnv51EhOwT30MPDyx3DEcw9cPmrTABMzdOzAaNT/9849kYn97BqxbBUCq84HawVAnDAJqgsWCYfFwjC/FwPzrdwCMux7CcnFf7P9uxFz7G6bdXvQI2sLHNE3YsgHzl+8xc3Mx6tbHuGoARo1AzJSDmN98itGtF0Z4MckkwLigO+aCudjfmYVx6VVg8YBjWXAk0/HVbscxj9YEM9+fs+XpheXmIWf/fOfLnPMriJxgeHpi9L4Ss3tfzJ++5fxPPsU+9VHeuqAXkW2GAwUbPTmnmOiXn4iIiEjFc74PmxXjS8aixYxu8SbedbKZ9M8Y3vzvNsZaM7HZNFWkrGRnZ9Otm2MZTkpK2VUhlERKSgohIScbZ4aEhLBt27ZT9ouNjSU2NhaAqVOnEhpa8OI/Z/cOUqKfJOtIJnz9CTUG3UuNG+8Eb2+Stv6NV5sOBIUWnzA4GBSCd1YmtU6zT0kc3/EvqW/FYAkOJeihJ7Dn738BHGvWglSgVs5RvE9zLDM3l9RXJnE85zhBL7yGV7PWju0hIRz0D8B3fxw1zxBr2uvzydqwmhqD78O7bSeMnONk7/2PnP+2kXsgwZFQyM11JARyczDtdrxatCVw+GN4nmigmXXBxaT9+gO1Mw/j1bTlaY9nzzpC6pRHOb5xLUZATSze3tjXrsRcugSfC3uSe2AfdkxC7h+DR2gonp6ep5xHAEJDORo1ibTXXsJ8Z1bBxzw9HckmDDAMDMMCBmAYjm1nwfDzJ3TYuOLjKSElMKTMGV7eGJHXE9jzcswfv6TnF4uJrHcbn8Rdw8AFgzBq1s5LZNhsSmCIiIiIVJT8Hx7ZbIFYr1zO973m0zxgD3S6kF4znmDlNg/mhltOeY+m92znZsSIES47dlF9DvJXgDhFRkYSGRmZdz8pKang6/j4w0V9COp7FYeeHk3mgrc4smcXRp+rsR88wPFrB5/ynPzsgbU5eiCB44X2sa/4EdJSHVUERcRVIIZ9e7G/8Cj4+WEZ+ih2b59T4/TyAyB1xzYsdYuvMrF/8SHmX6sx7hzB4ZohkO91zIZNyfp3I9mn+fuYmRnYl36NcXFfjva7gaNAaGgohxu1hEuuKPI5BpDLiUqNE69t1m8CwKE/fsUSGHTav799ng1z83qMW4di9LoCw8sby85/MX/6lmOrV0CtYIyB93HI4gVJSYSGhhZ/Tlq2x3hxHkbKicd9/cCvBoaX12ljOFtJxcTToEHRjV+LogSGlBvD1w/jmoH49/0f5jefcv3Xn3No1M+8+O9DGAwo0OAT9EtRREREpLw4ExfOD4/efCGNeRe8jH3GL0Aj7lo9g+VfX3Jib00VKSvZ2dl4e3uX2X5nKyQkhOTkk80zk5OTCQo6/YVyUQxPL4zbHsQ7NBTLU9Mxl32N+fO3mL8tBf8aGJ3OMFGldggc3Fdgk/n3n5hvz3DcCQrGuLhvsU837bnY504DT08sj76IEVKn6B2d25OLn0Ri5uZiLv8aOl2IpfdVp/5dG7fAXPrlaZd1mJvXQfYxjF5FJytKygipAyF1MbduhH7XFR/zrm2Yq5Zj/G8glsuuPfn8Zq0xmrXGHDLqjAmgU47t6QV165917BVNTTyl3Bn+AVhuupsPm79JrfZNmNJ+Kot73MN5NR2jidTgU0RERKR8ON9fOcfa+3scYUbfRdy27R66h/zJ5H9GccUvC+hyZ0eNQy0HDzzwQIn2e/DBB8s1jubNm7Nv3z4SExPJyclh5cqVdO3a9Zxe04hognH7MIw+V0PzNlhGTsSoEXD659QOPqUHhj32C0dio0Yg/LPh9Add9zvs/Q9j0P3FJy9wVIQTWAsOnWapzj/rIf0wlp6RRT8eXAdyciDzND8LWzaAnz80Of2yj5IwWrSFnadv8mr+tgy8vDGuGlD0a5QyeVEZqQJDKsy944Mxzecxf19OxKvv8E2vu3hr50Du/7I/ES1aqCeGiIiISBlzJi7AZES3DSy/dAZhvgf5JO4apv47knU7s3k93IuoqIOAEhdlLTs7m1deeeWM++Xmlmxaxtny8PDg3nvvZfLkydjtdvr27UvDhg3P+XUNiwXj9uElf0LtYMhMx8w+huHt45hI8s96jGsGYW75C/MMo0/tP38LofUwuvU887ECamJmpBX7sPn3n+DtDed1KXqHmrUdX9NSHcmQol5jy9/Q8jwMD48zx3MmdevDHz9j5hx3VEUUPpbdjrl2JbTvguHnf+7Hq6SUwJAKZRgGxsV9+eTnvvQ4+CZDmixg39BYrqtvJTz8cvI3hdEvUBEREZHSc34g5Ky+WDpvN59cPJ0Lg9ez4XBbfmr9NLfNbYQ1PJT8y0Wk7A0YUPQn5YX179+/fAMBunTpQpcuxVysVxTnUoX43dC0FeamtWCaGBf0gMR9mDv+Kfap5tEs+HcjRr9rHRM9ziSwJpwugbF5PbTq4KjWKIJRs7ZjCEdaKoQ3LjqexASM7sUveSmV4DqOKR+Hkh3TSwo7kACpKRgdzq1yprJTAkNc4uFHAe7n/eev4lYzmtm+45l9+0J6v/oUUVGeBUauioiIiMiZ5e9zYbMF0ipgB290eZarwpaTdCyIH8LG8cDXt7B3oaMvgJaLlL9bbrnF1SG4FaNNJ0zDwPx7DUbTVvD3n47lI+GNIbQurPnFMRa0qIqGLRsgN6fkF/ABNWF/fJEPmWmpsD8Oo9flxT//RAWGmZZa9NyNfXGOv1PhEa5nyQiu40iYpCQVmcAwd/7r2K9F2zI5XmWlHhjiUndMiGCG3+tM3PQIaX9t44deg3iuZywWcomOVl8MERERkdPJ/17JuVwkwi+BvZMeIfbSwVwSshrjhtvotXwxV03qzRjrkbz9lbiQimYE1oRmrTE3rMHMzMD8ezVGp26O3g0hdR2jRlOTi3yuuXs7GBY4Mer0jMcKOE0FxonExmmTD/mXkBQVz749jhsNzn0pDuCowADMlINFP77zX/CrAfXCy+Z4lZQSGOJy1nFHCLnpf3zU9h2WHuzJk21n8tFFw1k4J13NPUVERESKULg5Z3R0IKHeybx5+Qcsv3QAWb+u4PUdt9Nz+edYrh3Mg6PtgJIW4npGh66wezvm94sgOxvjxAQQI7SuY4eD+4t8nhm3G+o1wPD2KdmBTiQwihohayYmOG6cLhngXwM8PYtNYJCwx/F4nTKa4BEU6vhaTALD3LsTGjcvdiJKdVG9//biNqKi0hn+mDcPrn0JY8hozqv5LyuvHsRN4UuwWtOUxBARERHh1MQFQJvGNbEseY9f+vTnzkaf8Encdbzf6n1G/DiQe0Y6SvGVuBB34VwCYn79MYQ3xmjUzPFAfUc1hJmwp+gnxu/CKKIXRbECajoqOrIyT33sQAJ4eOZVPRQZp2FAYO3iKzAOHoDQsLJp4AkYPj4QEAiHkore4UACRlj1rr4A9cAQN2O1ZhCzqj8f/3oZtk7PENPpGZZcdxnzN44HHL+o9QtYREREqqv8iYtmDYN5sOm7PNT8bWp7p/FFwuX0nzeAxy/oRvx3jk+Y9b5J3E7DplArGA6nYLQ7/+T22sHgH+Bo8FmIeeyoozKjx2UlP05ATcfXjDTH6+Z/vcQEqFPvzMmHwFqY6YeLfiwt9eQyk7LiHwBZR07ZbGakwZGMsqv2qMSUwBC3cvKXbE26j32K5y9dyvjz5tA16C/CrniYiKuu0y9iERERqVYKTxWZPd2L+5r8H8ObvUNd32R21biQYOutPNy9FzeGaaqIO0pNTWXDhg3s2rWLI0eO4O/vT5MmTejYsSO1a9d2dXgVyjAMLHcMwz57Cka33gW2E9EYs4gEBkmOxrOl6f9gBNR0NMVMT4O6DQo+eHB/yZIBfv5wLKvox9IPYzRsWuJ4SsTXD7OIBAYHHAlJo16DUx+rZpTAELfk+CVdm9d23s1PB7sz4/yJ1J35LM+ft4kZL99LjsVPiQwRERGp0gpPFfG1HOW+Jh8wvPm71PVJZq9/Z27+8QUWbXRMLNBUEfcTFxfHggUL2LRpE82aNSM8PJzatWuTlZXFzz//zNtvv815553HoEGDiIiIcHW4FcY4/2Issz8+pZ+FEd4Yc9XyU5+Q4lhWYZxmyccpAk5UK2UW8fOQdhijUfMzv4a3T/E9MMqjAsPXr8iEiXlwn+NG4URMNaQEhritk79863Pd9HeJavUaQ5u+z651fzB6/XNAY/2CFhERkSonf+IiKiodX8tRts17C/O7zxwXTW06cvN8R+KiZ3QgoMSFu3r11Ve5/vrrGTVqFF5eXqc8npOTw+rVq5kzZw6TJ092QYSuU2QzzqA6kHUE89hRDB/fvM15kzmcjS5Lws/f8dysIwXGoJp2O2QcLlnywdsbso+dstk8nu3orVHWCQwfPziccur2pETHV2ej02pMCQxxa85fxDZbAx768RZu6nAJC/83kc/87sO74xCip91O1LgMF0cpIiIicm6cSQs42efCzyOLZ3ouZUXfdzE/TuHXpAuZvu0BFs2tR08ciQslLdzblClTTvu4p6cn3bt3p3v37hUUkZvLP7q0TtjJ7SlJYLFA7aCSv5ZfDcfXwk08j2RAbi7UrHXGlzC8fTCLSGCQdrhgvGXE8PPHPBB/6gPph8GvBoaXd5kerzLSFBKpFKxWx7rPVSldaf/RQmITe2MunEfrnybxykuGppSIiIhIpVTUOFQ/jywyFi1mRZ/rmdh2Ov+ktWRBo5lcumgCPe9pAajaojJ66aWXitw+bdq0Co7EfRnOpELhxpkpB6F2CIalFBM/TlRgcKRQAsP52oG1z/waPr5FVmA4l5UY5bGE5GgRPTfSD0PgmRMu1YESGFIpREU5PmGwWtP5Z3e6Y9zqwPuIrPszw1Mf4Ps3i8hUioiIiLih/B+85J8q0rpxTbIWf8qKPtczoe0MNqW1ZkGjWdyxeja3TWwCKHFRmW3atKlU26sl50V6ob4T5qEkCC7F8hEAL2/HqNTCTTFLk3zw9jltAqPMkwrFJDDM9MMQWLNsj1VJaQmJVConO3AbNBwynC61L+HVzk+wqPs9fD/hYf6ufZ2WlIiIiIhbc/a2cCYy2jWpwZgWb3Bvk4+o7Z3G8oPduSz6Ru7sfRnxixPY56+kRWW2YMECwNHvwnnb6cCBA9SpU4rGlFXdiaoIM/1wgb4VHE7BCG9SqpcyDAP8a5yyhMQszfKPEwkM0zQdr+d8DWdj0IAyTir4+DmOZ88tWG2SflgjVE9QAkMqnfyfPNhsHbn61w+I6fQU/TxiSF+3mZn2UYx6NNeFEYqIiIicKn+fi/DwBoR4p/BY61e4q9HHBHplsj2gJ8Gjb+SuSy4lvnmCpopUEcnJyQDY7fa8206hoaEMHDjQFWG5p5pFV2CQkX52FQh+/sVWYJQ4gWGacDzbcdvp6InXdPbZKCu+fidePwv8A05uT0vFaN6mbI9VSSmBIZVS/iZXG3cdISJ8OnvmzuK6zz7AI30jb09+jnExpSwzExERESkH+ftc2GyB1PNJ5MFm73F7o8/wsWTjcWFPIm0PsXSLY82+EhdVy4gRIwBo1aoVkZGRLo7GvRle3o6kQ74eGKbdDpkZZ1ft4FcDs3APjIzDYBhQI6Do5+TnfWISSvaxggkMZ1LEmXAoK0UkMBxTU9LVA+ME9cCQSs3Z3NPEQsMHRnPr76+SuOsoN+8YwYIx36i5p4iIiLhE4T4XUVHpNPSLZ+/UCfza5wbub74A/149ueznj7EMfYRrHqiXt78SF1XH4cMnL8RPl7xITU2tgGgqicBaBSswsjLBtEONs3hf7+dfxBSSTPD1L1lDUO8TUz8K98E4mgWenhhFjMY9J87Go/n7YGRmOP7+SmAASmBIJZe/uWd8fAKrUroS9oqNtYc60Gf3JEK+ewUzJ8fVYYqIiEg1UdRUkWY1dvHR1W/w06UDOLrsRxbGXc9bTT7Acs9o+j8YAihpUVU9++yzvPnmm2zduhW73V7gMbvdztatW3nzzTeZNGmSiyJ0Q/4BmPmXfaSnOb6eTQWGf41Tl5BkHTmZKDgTZ9XFKQmMI+BbwtcoBSN/BYZTxokkWFn326iktIREqoT8jbAi2p2Hhdk81no2w5u/yx7rdhpNHoftjQi9ORAREZFy4exv4ay2AOjXJpOHm89iae9Yjtm9mb97EET2J/O8Onn76L1J1fbSSy8RGxvL66+/TmJiInXr1sXPz4+srCwSExMJCwvj8ssvZ8iQIa4O1X34+MKx/BfwjgSGEVD6CgzDz79gMgQc90uYwDB8fDABjhVRgVHSJEhp+BSRwMh0DCgwSrLkpRpQAkOqjILNPQN54d9R/JPekpc6PM/uYY/yzZ/RREXpB19ERETKXv5xqFe3O8TcLtFcGfYT6cdr8OqOIYz6vC+T2rYjPjYBUNKiuvD09OSqq67iqquuIikpiT179nDkyBFq1KhB48aNCQ4OdnWI7sfXDw4lnbx/LhM//E6dQkJWZikqMPL1wMjHzDpS9v0v4GRc+ZMuWeXUMLSSUgJDqpT8zT2PHcvGx+dqXlnoT8NXJ7PI+17MP8dgW36lPu0QERGRc+asunBWgf46fzvvdnuLPnV+IzW7Jr+FDuGSCVfwUqtWjK55cqqIVE+hoaGEhqrJ/JkY3j6YR4/m3TdPVGCcdQ+Mo1kFx5JmHYFaQSV7frFLSMqpAuPEZBQzLTVvjKzpTMCUx/EqISUwpEpyvEFw/IcT0fNS6vqcx+tdHuGC16Zibksm2hwMhkWJDBERESm1/MtFbLYAeob8wcKL5nFxyFoOHgvmlzpDGfr+7Wzd41i7rqki4rRr1y7++ecf0tPTMU0zb/ugQYNcGJWb8fWDYycTGGSc+Lk5qzGqJ6oWsrJOTh05egQjLLxkzy8ugVGaJEhpBNYEwwJph05uK6+RrZWUmnhKleR8g+Bs7rluZzaDfn8do0c/xracyxj/J3ltRgk6D4uIiIhw6lQR0zSJrPszex66nf+76CEa+8dhDH6AS5Z9QZ8p1/Lg6JMNG5W4EIDY2FgmTpzIxo0b+fzzz9mzZw9Llixh//79rg7Nvfj4Qna+BEZmOnh4nOwPURr+zgRGvmUkZ9HE0yyiAsMoh4oIw+LhSGIczpfAyFtCogoMUAJDqjjnG4bo6ECy7d40nDCVZzdbyV37B4u638vcFzI0alVERESKVXiqiG2aP9eExfL34Ed4q6uVPZsyefzv8fT6aTGWftcxYsxxQEkLOdXnn3/O+PHjeeSRR/D29uaRRx7BarXi4aEP1Qrw8YWjR09WqGQfAx9fDMM4/fOKYBTZUyKz5BNEfE70wMhfEQLlNoUEgFpBmPkTGEeOOKoynLFUc0pgSLXgHLVqtWYwb9dt3LV6Jg38DtB/y3BWvv2vkhgiIiJSQOHEhYeRw8hu6/jfn/czp8vj+FiOMWb9syzq/A4vr7qYh8c4PqFV4kKKk5aWRtu2bQEwDAO73U7nzp35888/XRyZm/HxA9MOx7Md97OPnVzKUVrOZRdHHBUY5vFsyMk5izGqRSQw/MqhiSc4lqYUqMDIBD+/s0rgVEXqgSHVRv4Gnx/91YhLWr7Dz7eO5gPPh/C+4AGiowfpTYeIiIgAJxMX3pZsxl38O8t7v03jGvFsTmvJ8LVTeX11az5r2JD4cQmAEhdyZsHBwXmjVOvXr8+aNWsIDAzE01OXZAX45qt68PZxjDA96wSGswLjxBISZyWGfwn7STgnjWSdHGtq5uRAdna5VWAYNYMw43af3JB1RP0v8tFPi1Q7VqujW/iuI4G0e+c9Zp0/gX4fvEbonkRizGHYDS+9CREREamGJk3yYPhwR/WFj+UoKZ9+xc+XvkcDvwOsT23H+vAR3PhGe76KCMewaKqIlM4NN9xAfHw8devW5eabb8Zms5GTk8OQIUNcHZp7cY4uPZoFgbUws4+ecwWGmXXEMdXDmcAoYfLB8PBwLN3I30PDWY3hW05LOmoFQXoqpt2OYbE4ppCo/0UeJTCk2smfnIiKSqdheDS7Z73EHd98CvYtnD9nBlFRLgxQREREKpRzqsjzz3sQ80It7mz8CSv7fkAdnxRWJXdhVatxjPm6D/Ef7wM0VUTOTp8+ffJud+7cmfnz55OTk4NveV0IV1KGry8mnOw7cS5LSAo38TzxtVQNOP38C/bQOO7oc4On99nFdCaBtSA313HMGgGlazpaDagHhlRbzrntdjxoOPIJHl73PEe37ODLHnfxzuQD6oshIiJSxeXvc2FmZjC6xVz+ufEaxreZxea0VlgemcLA39/glqdaY7Vm5D1PiQs5G48++miB+56envj6+vL444+7KCI3Vbhx5okmnmelcBNP5zSR0ryeX41CCYwTvTm8yimB4X9i3OuRE//nZGVqCUk+qsCQai3/GxCb7Sp2HWnE3C7jGLB9JNYNzxDNRXqTIiIiUoU4qy3Akbjwy0nl0VazOfzQQqJaZfL9f72Ztf1e/jrcnvhWCaq2kDJT1LhU0zQ5cOCAC6JxY85xqfkTGDXO7oNFw9PLkWg40cST7LNIPvj6YeZPYOQ4KzDK51LaqBHgqEDJTIc6YeU2srWyUgJDqr38b2K+2Vyb85u+y58PjuE1z8cxWgwmetoDRI3LPMOriIiIiDtzJi5sNsfX16YeY2JbG7dv+Qzf5sdYsi+SV3bcy/8eCOPrL9KJjlbiQsrGK6+8AkBOTk7ebaeDBw/SsGHDMjnOb7/9xscff0x8fDxTpkyhefPmeY8tWrSIpUuXYrFYuOeeezj//PPL5JjloogKDONsl5DAiSUgJ97L55xFAsOvRsEeGCcSGIaX19nHdDqFKzCOHdUI1XyUwBA5wdnc82B2IC1mv8Xk815g0JKPaL3/ADPt4zju4a83MSIiIpWUM3ER4ZfA/Cve5a6Iz/FobGdxwlXM3nEPNzwYwpb1gfwYpakiUrbq1atX5G3DMGjdujXdu3cvk+M0bNiQcePG8cYbbxTYHhcXx8qVK7HZbBw6dIhJkyYxY8YMLBY37SZwoieIeSzL0Xgz+xh4n8NyjXxLQExnBUYpXs/w88dMOXhyg7MHRnktITlRbWJmZjr+/sePl9+xKiElMEROKNzcMzz8KQaPq8cVH72Fx5Gd9Hx/BlFRbvofvYiIiJzCWXURHR1I0xq7+b+r3uanS7/GxGBh3PW8tuMufttuwRregKioBPz9VaYtZe+WW24BoGXLluVa+RAREVHk9tWrV9OjRw+8vLyoW7cuYWFhbN++nVatWpVbLOfE70QFQsaJ9+bn0sQTwL+GY5IH5GvAWYrqCf/CPTDO4jVKo8aJfheZJ/7+OcfLbblKZaTvhEghzjc6YNDw7mH0Cj2f2cfH8+Uld7PguaeJq9FZn8qIiIi4sfzLRb6ae4CHm7/C0t6xHLd78e7ugZiRN/LgPF/GhzcATva5mDgxl6Qk18YuVcvGjRvzbnt6eha4n1/79u3LLYaUlBRatmyZdz84OJiUlJRyO945CwgEXz9IdEz9OecEhp//yR4Yx0808SzN6/n6wdGiemCU/xIS0zRPJDDK6ViVkBIYIkUo2NzzYq5b+Q5vXWCl/+5HeOafKKLNq4gal3GaVxAREZGKlj9xYb1pLW90sXFV2HLw8ePVzXfy8OLLeLbtecTHOpaJqEGnlLc5c+accR/DME7pjVGcSZMmkZqaesr2wYMH061btyKfY5pmiV4bIDY2ltjYWACmTp1KaGhokft5enoW+1hZSG7QCEtqErWDg0nMzsa/dhABZxlLaq0gcg4fIjQ0lExvbzKAkLAwLCVsDJoRUofMY0cJCaqN4eHJMT8/UoHadergVcRxy+J7c8DbGz97LgG1a5NomvjXql3s3/9Myvtclda5xqMEhkgx8jf3XLnNg9aN57P5kUd53vISRt31xEwbx9hxR10cpYiISPVWeKpI/SN/807Xqdgnr6R7SCAx2x7grV2DOXy8FiNrnqy2ACUupPzNnj27TF9v4sSJpX5OSEgIycnJefdTUlIIDg4uct/IyEgiIyPz7icVU5IUGhpa7GNlwR5Sl5xd20ja50g2HsnJ5ehZxmL38MTMSCcpKQn7IUflSXJaBkbWsZLFciL/kxS3F6NGIGaK43uZmpGJUcRxy+R74xdAVvJBjh5wVKEcyT5e7N//TMr7XJVWUfE0aNCgxM/Xgn6RM3A298zICaDxC68wa/s9mL98z8W/PcqrL+bkzZAXERGRiuP8/WuzBWKaJguf28pHFz3IoD2j6FDrH6ZueZjuy77EuO42Nu/KVLWFuIWcnBz++ecfVq5cCcDRo0c5erR8PxDr2rUrK1eu5Pjx4yQmJrJv3z5atGhRrsc8Z3XqQ1LiyaUf59gD4+QUkuNgGKXrKeF3oifFiVjM8l5CAlAjAPNIBhzPKf9jVTJKYIicQVRUOlFR6Vit6cTF7+flrQ9hPDCODrX+4cGUB/l2boKrQxQREakW8n9o4ExcXFbnV1bfMoGb9o6jWY09PLvZSo9lX+Lb/yYycgLyEhZKXIir7dmzh9GjR/P666/nLS3ZvHlziZaZlMQff/zBsGHD2Lp1K1OnTmXy5MmAYzpJ9+7dsVqtTJ48mfvuu899J5A41Q8H047dNsFx/1x7YGQfw8zJgexs8PLCMIwSP93w9XPccI51PX4Wo1hLq0aAo4lp3rGUwHDSEhKREjrZ3BMa3jiY9jXP580LoljU416+ePpxttXsozdHIiIi5cg5CjV6Wg2uDvuRDYPm8Xa3rew50oDxGx/n47jr2Lk3mXnhvkRFuXGTQqmW5s6dy6BBg+jduzf33HMPAO3ateP1118vk9e/8MILufDCC4t8bMCAAQwYMKBMjlMRjCYtMQH2xzs2nFMC40QFRdYRR0LAs5SJBx/HWNe8BIazAsOrHC+lA2vDvr3l3zC0EnLz1JuIe3FWYlit6WxMa8O1K95l0+HWXJPwLMaX7xM9rYarQxQREalynB8geBg5PNxtPdesuZ/XuzyGn8dRrH89w+LO7/Dibz04Zndc5Gi5iLijuLg4evXqVWCbr68v2dnZLorIjdUt1BPBOIfLVr8T45GzMh0JDO9SJjB8nQmMLMfXCkgqGLVqw+FD+ZIlSmA4qQJDpJTyNwr7679jNG34Gjuef5rRzAO/jZhHx2KbXU9vmkRERM6RM3ExK8aXhIU/srz3fBrXiGdLenMeWjeFOX+05ZOGDYkfp6ki4v7q1KnDzp07ad68ed627du3ExYW5sKo3JNRaImL4XP2FRiGXw1HNYezAqO0Sz98TiwhcfYqOe5MKpTjEpKaQXAkwxEzYCiBkUcJDJGz5GzumW33puH4KQxp3Imn7DHs+GU8n6yxERVlKdAZXURERM4s/+/O2dO92P7Ou9zS53PC/Q7wV2o7mj50N+06XsiXDSN4zaKpIlJ5DBo0iKlTp3L55ZeTk5PDokWL+OGHH3jwwQddHZpbsjw329E408MDGp9D01F/5xKSTMyzSmA4kifmsaMYcDKB4VGOl9I1azuOmXJiWoeWkOTREhKRs5S/uWd8/D7e3j0Y73HP0LpeIl9ecjfmP39hs2lCiYiISEkUmCpyNItl479mRd8bMD98g4SsMO74YxbXrXwH24+XY1gsqraQSueCCy7giSeeIC0tjXbt2nHw4EHGjRtHp06dXB2aWzLqN8Ro3gajSctSNd08hXMJyZFMR/LhbCsw8npgZIOn5ylVImXJqBXkuJGS6PiqBEYeVWCInKP8b5wiIq+msX8H5l1gJXDaMwxpfJjoaf8Dw9AbLBERkSI4Ky5stkCsw/cxsvmbJD/4Ib29D/NL+oU8tG4Kv6d0wWrNoCsZmioilVqzZs1o1qyZq8OoXk408TTPeglJoSaex3PKP6FQ80QCI/lEAqM8l6tUMkpgiJQRqzX9xKSSWvSf+RYzOk3kufOm8eEP25mw6TFAb7ZEREQKs9kC8c05zLhWr5I6YgGPtM4k9kAvZu24l3WpHYiPTyA8XB8ESOW0YMGCEu03aNCgco6kGqtxoiI6I+1EE89S9tNw7p+/iWd5JzBq1QbATD7ouK8KjDxaQiJSRvJ/IpSRE8CVi6OYuf1ebm20mI8uGob1gT0F5teLiIhUV87fh3NezObJNtO5a8tgHm4+n5+TunPVLx+w8dLnWLIpJG///H0uRCqT5OTkvD/79u1j8eLFbNy4kf3797Nx40YWL17Mvn37XB1mlWb413AsI0lOPKsKDMNicVRh5FVgnEUVR2nVrA2+frBhteO+Ehh5VIEhUg6s1nRsMbWwbR3Bv+ktmNbxWfaOeJTv/4wGwgFVY4iISPXjXC6y4NUMgr57j7siPsezSS6fJ1zJ7B33cP2DoWxeF8gPUZoqIlXDiBEj8m5Pnz6d0aNHc/HFF+dt+/333/ntt99cEVr1ElIXM+kAZB3BqFO/9M/39jk5hSTnOHiW72W04emF8b9bMD9717FBU0jyqAJDpBzkb/D52pr23PTbPMLDc/m0+32M7f21mnuKiEi1kb/68LPXDmF/eyY/9+nP3c0W4denD31//pSB3wxje2bTvN+dTkpcSFWybt06LrzwwgLbunXrxrp161wUUTUSUhf+XgMH959dMsDXD7IdCQyzIpaQAEbzNifvqAIjjxIYIuXI0RMjkI1pbeiy8AM2Hm6D+cbLjGv1KtHTamhJiYiIVFkFporE72FT1AyWXXozWT//wvt7buaiHxbT8Ikp7D4SAajaQqq+sLAwvv322wLbvvvuO8LCwlwUUfVhBIXm3TZ3bS/9C/j4YjorMM5mksnZCKx18rYqMPJoCYlIOTv5RsybwTGv8fx5LzKqxVt8//N2xvz1HBCoN2siIlJlFJgqMuhvXu08k5ynf6Rhri9zd9/O3P9u52B26Inm1wl5iQ79LpSqbtiwYUybNo0vvviC4OBgUlJS8PDwICoqytWhVX1ZmXk3jZbtSv98H9+CTTwrIqGgBEaRlMAQqQDON2U2WyC3f3sPT17Skkkdolnsfy9t7nyM6OhWeuMmIiJVgs0WSOjR7bzWJQb7s8u4NLQGs3cMYe5/t5N6vPaJqSJoHKpUO02bNmXGjBls27aNQ4cOUbt2bVq1aoVnOfdTEDCuugkz/TCWO0ZAUMiZn1CYjx8cPeK4XUFLSPAPOHlbS0jy6KdFpAJZrenYbDV5Z/cgtmU0Y07nx0l55BF+XzeVaNoCeiMnIiKVj7Pq4t3J+3mji42rdi0nLaQG07fdz7xdt3LfSAubotIJD68NaKqIVF+enp60bdvW1WFUO0ZEEzzGPnf2L+DrC4dTHLePH4caAaffvwwYlnzdHjx02e6kHhgiFSh/c8+PN4Rz3Yp3qN2kNu91G8nY8/8Pm638/zMUEREpK87lH9+/Gc8310/j9l1D6R6yhphtD3DJsi/huts5fLxWXnJefS5EpDIyfHzh6IklJMcrqAIj//ENo0KP586UwBBxAWdzzz1ZEbSd/x4/JvbE/GguL3Z4nukv+6i5p4iIuDXn76nYeXvJnTWJr3vewRVN/8S4/jYuWfYl45Zfx+GcmpoqIiJVg6//yQRGznEMLelwGdWiiLhI/jdxQ20vY235OqNbzmPNqv8YuvZlQE3NRETEfTiXiQD8OG83N+ydw5JLfid1TU3m/jeMt3cPJv0TZyVhuqotRKTq8POHo0cwTROOZ6uppgupAkPEhZxLSkwsWJffwPC1U+katoUll9yF9aa12GyqxBAREdcqMA51xxZ2jHmeLy8ZQu1DW3jx3xH0WP4Fs3bczwOjTOLjE5S4EJGqx9cfcnMhOxtycipsCYnl4YkYN9xWIceqLJTAEHEDVqtjSclX+yO5eulb2DE48tx4+jf4hujoQC0pERERl7HZAjG3/8N73R7GPvVRah76l6lbHqbHsi+YveNeho4yAU0VEZEqzM/f8fXoEUcFRgUlMIxO3bBcO7hCjlVZaAmJiBso+GYvnGtfeY/XOj/GzPMn8vrXdzD134eL2E9ERKR8OJeLfDhpFx9c+Dz2F//gvJpBTNkyknd338KRXP8T41Br6HeTiFR9zgRG1hHHGFUvb9fGU42pAkPEjTiXlKRkB9Fj4QTe3nULDzZ7n3e6jsY6LEGVGCIiUq6cv2d+nb+Nn2+cxMA9o2gTuJ3n/xnNJcu/wL//ALbtSc3bX8tFRKQ6MHwLJTDUxNNlVIEh4oas1nRsM4KwbX6MTWmtmdx+KjsfeIwlf0YDdQG9WRQRkbLjrLhY+fa/jLG/wifdN0LN2hhX3ssl993Ljr0pvBHuR1RUAqDEhYhUM35+jq+Z6WC3q4mnCymBIeKG8r8hjIq6kOvOe4PFV0ex2Oceal42hohrB+hNo4iInBNn0sI0TVa9s4Xdu+ew8OINJG4IYc5OKx/sGcDRj3zz9tc4VBGptvxqAGBmHHbcVwLDZbSERMSNRUU5mnuuTe1It88+YHtGE+yvTmFsy9eJnlZDS0pERKTUTk4VCcDcvJ69oyfw0UXD8Ty0j6c2jeOS5Z8zb9dtjBhzXFNFREQAfE9UYKSnOb5qCYnLKIEh4uaiotKxWtO5/SE/blk1l4/jrmVsy7m0+WkSr8+wKIkhIiIlUiBxsWkdn118H/aYp7CkHGDCpkfptXwxb+8ezENjjgOaKiIiksfZxDM91fFVFRguoyUkIpWA882jzdaAQV8/wFM9W/NM+xia1riHtnc+CjTIKwUWEREpis0WQJOM31nU/Uns0/+mvl89xm98nIVx15Nt9z4xVaSBfpeIiBR2oomn+c2njvuqwHAZVWCIVCJWazo2W03e2nUrt/72CnV9kjn06CMM7rQHm83xyZoqMkRExCk6OhDTNPn02Y183mMI/eMep57vQZ74+wku/WkRdW++kv/2JuXtr+UiIiKnMjwLfe6vBIbLKIEhUok4x6xareks3BDBdSveoVaTYD64aBRDm76HaZp5iQwREam+nImLDe+vY93AJ+gfN54Q70M89veTXLp8EfVuuYJsu3deokKJCxGRM2jQKO+m4eXtwkCqNyUwRCoh5xvMPVkRtHnrPb5K6MuEtjP45JrX8LEcJTo6UJUYIiLVjPP/fdM0+fv9P7E/b+WtrlY6tUjGuOth+vz0GdNWXcRx0ysvGe6kxIWIyOlZHpt68o4qMFxGCQyRSsxqTWfbnlS29XmSl/4dTv8G3/Jp9wf48NVMbDYlMUREqgPn//UxthqYa39j/8go5nUdx65/jhG14Smavfc5DQcPIcd0lECr2kJE5Cw4J5EAFF5SIhVGCQyRSiyvQ/y4DF7ZcR+eI5+kqf8efr/hdi4MWpc3hlVERKqeAomLP1fyTc/bsc95gcyUY1j/eoa+P3/Cx3HXM2pslsahilQD7733HmPGjGHcuHG8/PLLZGZm5j22aNEiRo4cyejRo1m/fr3rgqzEDIvHyTtaQuIySh2JVBFWazq22H58sbITb3aN4sOLhvFY90d4f8/NefvoTauISNURY6tBy7TlfNfrfeyv7cDH0ogx65/l831Xkmt6njJVRL8DRKq2jh07ctttt+Hh4cH777/PokWLuOOOO4iLi2PlypXYbDYOHTrEpEmTmDFjBhaLPss+axqj6jL6VytSRTgbfF7/YCgt3pzKL0kXMaX9VKa0n4J1dIqae4qIVAHR0YGYdjtfPL2G73sN5pqEZ/Ewchm5/nn6/fwxTQb3Zk9cYt7++ftciEjV1qlTJzw8HFUCrVq1IiUlBYDVq1fTo0cPvLy8qFu3LmFhYWzfvt2VoVZ+6oHhMqrAEKliHMtG6jN9TQyPtJ7DQ83fZtWgnYR6v5hXbqxP4UREKpfo6ECsYw+z9f9W8c/quVwTuJNtNOXhdc+zZN/ljLEewW7z0FQREQFg6dKl9OjRA4CUlBRatmyZ91hwcHBecqOw2NhYYmNjAZg6dSqhoaFF7ufp6VnsYxWtImM5cOJrUN16eFaC7w1UvXiUwBCpgpxvWI9zNw992JJpHZ9jySV3MXTey2w43K7APiIi4p6iowOJikrHtNvZ+n+rsKfN4dUue6B+Q4xrx3H5jbewN/4AX4R7nPJ/uv6PF6maJk2aRGpq6inbBw8eTLdu3QD47LPP8PDwoFevXoBjMlFJRUZGEhkZmXc/KSmpyP1CQ0OLfayiuSKWQ+npGF7u/72ByhFPgwYNSvx8JTBEqijnm9dw25XM+cyf5PEvsqTP/YxePYGoqPPz3hiLiIh7cf7/PN3mz9jeX5P09kJe7bKbbf82Zfr2KXz1dT/s8042k1O1hUj1MXHixNM+vnz5cv7880+eeuopDMMAICQkhOTk5Lx9UlJSCA4OLtc4qzw18XQZ9cAQqeKs1nRsH5/PtSve47f97Zlx/lO82m8hM2L8iI7WqFUREXfh/P94us0f++pf+L7XrZhvvExKsoWH1k3h8l8+4st9VzDGekRTRUTkFOvXr+fzzz/nsccew8fHJ297165dWblyJcePHycxMZF9+/bRokULF0ZaBagHhsuoAkOkijv5xjaQS0ZPYN7VH/Fgs/dpG7iNPsNGEdGqtd78ioi4gek2f1qlLeX7Xh9gvrETaMZD66bw1b5+2PHQVBEROa158+aRk5PDpEmTAGjZsiVDhw6lYcOGdO/eHavVisVi4b777tMEknOlBIbLKIEhUk04mnsGYdv8KJvTWjG5/VR2PvAYrQKmER1dL28fERGpOI7mnKkseXYt3/f6gFYJO9maL3ExxnqEvVEHCA93rA/WVBERKc6sWbOKfWzAgAEMGDCgAqOpmoyhj2J++yl46jLaVZR6E6lGoqLSsVrTCR/Yj4Gr3sDfI4vPe9zDpg/WYLNpOYmISEVxjEPNZduHK/n3Niv/S3B8Yjpi7Qtc/stHtLy1O3Y0VURExJ1YuvXEY2JMXn8RqXhuk8D44osvGDhwIGlpaa4ORaRKi4pKJyoqnbWpHQmbOY2tGc2Ye8EjWFu+jnXsYSUxRETKUf7Ehf2ZUczu/CQtW+VgDH2Uy3/5iNf/PA8TS17C2UmJCxERETdZQpKUlMTff//tVvNpRao6qzUd21tNmL3qDSa3n8qYlnP5rv8W3vhrEuBIYugNs4jIuYuODuSFF8hLXBzc+QazO+9m69ZmTN/2Al/t74c57+RnSqq2EBERKZpbVGC888473H777SrFEalAzkqMh8ZkM/jr+5m46REur7+Cz3sMwXr7P9hsqsQQETkX+aeKHP3lBw6OHMPszk+SnOyRt1Rkyf7LGWvN1FQRERGREnB5AmPNmjUEBwfTpEkTV4ciUi1FRaVjs9Xknd2DuGXlHIK9Ukl9/BH61f1FY1ZFREop//+Z023+2H//iR96D+Kw7WmSkj0YvnZqgcQFoKkiIiIiJVQhS0gmTZpEamrqKdsHDx7MokWLmDBhQoleJzY2ltjYWACmTp3q0iUnnp6eWvLi5nSOSu6FF8DfPxc4n2umvc/cC8Yx7wIr0Z8/yCs77sXf35+JE3PL5dg6T+5P58j96Ry5D5vNmynPe/LhuGX80PstzDd3YTebMXztVL7efxkmFo4dy8bHx5sXXvDB3z9X586N6GfJ/ekciVRvhmmapqsOvmfPHp577jl8fHwASE5OJigoiBdeeIHatWuf8fkJCQnlHGHxQkNDSUpKctnx5cx0js5OeHgD4v77j0/6v8WA8G/4en9frv34QWyz65XLp4M6T+5P58j96Ry5nnMc6ogLNzG65Zu0DNjFv+nNmL5tKF/vv4wnJ5gMH+4Yhxofn0B0dKAqLtyQfpbcnyvPUYMGDVxyXBE5yaVLSBo1asSbb77J7NmzmT17NiEhIbz44oslSl6ISPmwWtOxzQplzF/P8ezmsVxR92e2DBnPp6+lakmJiEgh0dGB2Kb5s/3DFfx7+1he6TyBXNODYWuncsUvH/HGn+0wseRVsanPhYhUBY8//rirQ8jjTrGA4jmTc43HLaaQiIj7yP+mOiqqLwM7tuTDfo+x5JK7CLrSSsSV1+mNt4hUa87qCdOey46PVjDrqtegcxyEN2bYl1N5Y3Ub5loshIc7PidyJC0c1ab6/1NEROTsubyJZ36zZ8+mZs2arg5DRHC8yY6ODmRF8oVc8uX7xGXVJ2f6c4xo9jbR0wIAVI0hItVK/qki9t9/ImnkKGadP4Et23wYtnYqjed+zNf7I7HF1AJUbSEiIlLWVIEhIsU6+aa7JgNmzOPlDs/xeJtX+HLZv7SY+RRZuX56Yy4iVZ6z4mK6zZ+xPZcQ2/sTzDd3k5jenPHbpvLNieachRMW+v9RRKqqyMhIV4eQx51iAcVzJucaj0ubeJ4rNfGU09E5Klvh4Q2Ii4tnUq8febLdK9CgIT3fn8Fv2y3n1IxO58n96Ry5P52j8tUwvB5z7vuCltvep0XAbv5Ja8H07Q/w7f6+mFiIj0/Ia85ZHJ2jykHnyf2piadI9eZWS0hExH1ZrekYhsHr/93FHb/P4PCuFL685G4GddyLzRaoBp8iUqVERwdi2nNZ8tQqYnsP5Op9kzlu9+LBtS9y1a//R9vbLiQufn/e/s7qCxERESk/SmCISIk4Kyys1nQ+/KsxQS9N48CxUP7v4pE80PR9rNY0bDYlMESkcnMmLnZ+9Ctbbx/D1fumnJK4MLEU+D8RtFxERESkIqgHhoiUivNNuu29Vry2cj62js8wse10Pr1mC76WCXlVGHozLyKVRf6pIjs/+hV76mvMPD8ewhtjue5xrrp+AHHx+wkPt5zyf5v+rxOR6mT9+vXMnz8fu91Ov3796N+/f4XH8NBDD+Hr64vFYsHDw4OpU6eSkZFBTEwMBw8epE6dOowdO5aAgIByOf6rr77K2rVrqVWrFtHR0QCnPf6iRYtYunQpFouFe+65h/PPP79cY1m4cCE//vhj3nCMW2+9lS5dupR7LABJSUnMnj2b1NRUDMMgMjKS//3vf2X6/VECQ0TOiuNNeyBbzQn8/UUbHmk1hxYB/zH01WnEH62fbx8REfdUoDnnJV+S/N7HzDx/L5u3tmT6tpf47us+mHNPFquq2kJEqjO73c68efOYMGECISEhPPHEE3Tt2pWIiIgKj+Xpp58uML1y8eLFdOjQgf79+7N48WIWL17MHXfcUS7H7tOnD1dddRWzZ88+4/Hj4uJYuXIlNpuNQ4cOMWnSJGbMmIHFUjYLIYqKBeCaa67h+uuvL7CtvGMB8PDw4M4776RZs2ZkZWXx+OOP07FjR5YvX15m3x8tIRGRsxYVlU7UuAxm77gXz9ETaeQfz2/X30734DV5Y1hFRNyN8/+mGTF+2Fct48fet2DOs7E/yZehf77E1b9+wLcHLmOsNZP4+AQlLkREgO3btxMWFka9evXw9PSkR48erF692tVhAbB69WouvfRSAC699NJyjatdu3anVHcUd/zVq1fTo0cPvLy8qFu3LmFhYWzfvr1cYylOeccCEBQURLNmzQDw8/MjPDyclJSUMv3+qAJDRM6Z1ZqO7fu+LFrZiTe7jOODCx9i4iVjeGvX4Lx99MZfRNzFjBg/2hz+gdhe72PO28Mxe0uG/vkS3x3oU2CqiMahioiclJKSQkhISN79kJAQtm3b5pJYJk+eDMDll19OZGQkhw8fJigoCHBcRKelpVVoPMUdPyUlhZYtW+btFxwcTEpKSrnH89133/Hzzz/TrFkz7rrrLgICAio8lsTERP777z9atGhRpt8fJTBE5JydfHMfTOsRL/DNwDk80y6a9jW3MHDkECKaNtUFgIi4VHR0INYxqXz97Gpie71P83172JwvcTHWmsm8qP2EhzvGJGqqiIhIQaZpnrLNMIwKj2PSpEkEBwdz+PBhnn/+ebceb1vU96y8XXHFFdx8880ALFiwgHfffZcRI0ZUaCxHjx4lOjqaIUOG4O/vX+x+ZxOTlpCISJmJikrH9mo9hq59GdvWodwc8RXrbn+a+r77NWZVRFwiOjoQMzeX/z76hW13jOaqfVM4ZvfhgT9f5upfP6Dd7d00VUREpARCQkJITk7Ou5+cnJz3qXpFCg4OBqBWrVp069aN7du3U6tWLQ4dOgTAoUOHCvTHqAjFHb/w9ywlJSUv/vJSu3ZtLBYLFouFfv36sWPHjgqNJScnh+joaHr16sVFF10ElO33RwkMESlTUVHpjLVmYrn+Vu5bE02zGrtZcsld/Dp/OzabkhgiUjGciYtdH/2M/amHmHH+UzRvY8Ey/Amu/vUD3lrbOi9xkb/aQokLEZGiNW/enH379pGYmEhOTg4rV66ka9euFRrD0aNHycrKyru9YcMGGjVqRNeuXfnpp58A+Omnn+jWrVuFxlXc8bt27crKlSs5fvw4iYmJ7Nu3jxYtWpRrLM5EAcAff/xBw4YNKywW0zR57bXXCA8P59prr83bXpbfH8N0RV1LGUlISHDZsUNDQ0lKSnLZ8eXMdI5cLzy8AXFrfmeb9UWa14rnyb/G8cLKHthsNfMuEnSe3J/OkfvTOXLIG4eam8uoizfwdLe5BB2PY1NaK6Zve4DvD1yKeeKzm/j4hLz9K4LOUeWg8+T+XHmO3HmpQkVZu3Yt77zzDna7nb59+zJgwIAKPf6BAweYNm0aALm5ufTs2ZMBAwaQnp5OTEwMSUlJhIaGYrVay22M6vTp09m8eTPp6enUqlWLgQMH0q1bt2KP/9lnn7Fs2TIsFgtDhgyhc+fO5RrLpk2b2LVrF4ZhUKdOHYYOHZpXKVOesQBs2bKFp556ikaNGuUtL7r11ltp2bJlmX1/lMA4S/oF5/50jlzPWW0xd6bBzPMn0K/ur3y49wYmbnqMh8ccA+CFF3x0ntycfpbcX3U/R85ERKOIuuz6eAEp731cZOLCak3Pm5BU0ZUW1f0cVRY6T+5PCQyR6k1NPEWk3Jy8QAjk8rHjiLmsNaNbzqNVwE663Wcl4rwOvPBCtktjFJHKb0aMH2O7f87S3p9ivrWXhLRWPLJtGj8c6J2XuLDZAjVVREREpJJTAkNEyp3jE89a2LYNZ1Naa2I6Pc3+kePoUvtlJk06jyNHKv7TUBGp3JxTRb559neW9v4Ac/5ejuS24v4/TyYuCo9DFRERkcpNTTxFpEI4G+W1u70bN6ycz5FcPxZePJQd73yh5p4iUmLO5py7F/zEjjtHceW+qWTm+HH/n9P436/v0/72C4iL35+3v6aKiIiIVB1KYIhIhYmKcqw/35rRgmZzX2Jlcjde7DCZKe2nYB2doiSGiBQrf+LC/tQIYjo9Q9M2nlhGjOd/Kz5g/tpWGocqIiJSxWkJiYhUOKs1Hdtr9Zm+ejqPtJ7DQ83f5vdBO3hv7YuAI4mhiw4RyT9VZM+Cn0jeMZeYTvFs3NaKmG1R/PD1pfC6kbe/xqGKiIhUbUpgiEiFy39h8dwLQ7mpcWtevfgZllxyF+EDHiWiZx9dfIhUY87EhaM552IOvf8xtk4JbExqxbht0/gh8VLAKDBVBJS0EBERqeq0hEREXCYqKp1JkzxYsv9yrvxxPsdNT7ImPcEtEV8QHa2+GCLVSf6f9xkxfthX/siy3jdjzp9BXFIA962Zxv9WfMAPiX2wWjMANFVERESkmlEFhoi41MSJuRw5cgSoz7Wz3uXVzuOJ7vgc87/dwqR/rIAuTkSqA5vNOVVkFct6f4A5P46MnFbct+ZkxYWmioiIiFRvqsAQEZdzNvdMPV6b3p88wes77+CeJgv5vwtHYH1gryoxRKowZ3POm8O/ZOedI7ly34uk59TgvjXR/G/FB3S44wLi4/fl7a/mnCIiItWXKjBExG1YrenYptfGtmUMm9Ja81KH59k74hF++HMaEJG31l0XLiKVX3R0IIaZy56Fy9n55zxsneL4+3Br7lsTzQ+JvYmP30d4uKGpIiIiIpJHCQwRcRv5L0yiojpxZdt5fH39WD71vh+/HiOAvthsSmCIVFYFp4osxxb5OnTaD42acd9n0cxf24K3DYPwcMdkEU0VERERkfy0hERE3I6z0mJjWhvOX/h/rE1tj/lWDK9FfoSHkQOgZSUilYjz53VGjB/2FT+SMvIhbJ2e5e/ttbl3jY1Gry3gh8RLsdlqAqq2EBERkaKpAkNE3NLJ6QJZNI6YzZNtZvBA0/+jXeA22jd5gUPHNTZRxN05Ky5mxvgx9uJFLO/9Kebb8ew93AbrtnHEJvbCOQ4VNFVERMTdJCQkFLk9NDSUpKSkCo6maO4UC7hXPO4UCxQfT4MGDUr8GkpgiIjbcl7E5JieDI29FfvKulzw5hz+GnwbVy2OISoqUD0xRNzYzBg/2qV+45gq8nY8aTltuHeNLS9xoakiIiIiUhpaQiIibs/56WzMb/25edVc9sXBoh73Mqzr39hsjiSGlpSIuIfo6EDMnBy+mfgry3rfxBX7XyItJ5B719i4ZsV7dLyjc5FTRURERETORAkMEXF7+cvKI+9rRPirL/P34bbM7vwkT7SeiXVsKjabEhgiruRMXOxduIz/7hrJFftf4nBOTe5ZE5OXuABNFRERcYVXX32V+++/n6ioKFeHInJOlMAQkUolKiod29xG3Pr7HN7ZfQvDm7/LsgEvUsvrsCoxRCqY8+fNzMkhbuFS7BOHE93xORq388Py8ESuXfEu765rjjNxoakiIiKu0adPH8aPH+/SGEy7HfuvP2D/aiFm1hGXxiKVl3pgiEil47zwOcQIHl3YmknnvciSHndx/9xo/k1vccp+IlK2CjTnvOgzUv/vE6Z13MeGHW2J2fY4P37dE+YYefur2kJExLXatWtHYmKiS2MwF72H+e2njtt//Ixl3BSMwJoujUkqH1VgiEilFBWVTlRUOh/F9cfvycn4ehzjh8gh/C8s1lGloSUlImWu4DjUWJZfehPmO7PYnVSbe9bEcO2Kd/kxsRdWawbx8QlKXIiICABmShLm94swevTDMvY5OLgf+9yXMe25rg5NKhlVYIhIpWa1pmNb3I33V7zPa10e5bUujzO97z1YGJZ3saWLJ5GyMd3mT5vDP7C093uYb+/l8PE23LMmhh8Te1LUVBH97ImIVC6xsbHExsYCMHXqVEJDQ4vcz9PTs9jHipIRu5hM0yTkruF41GtAVnYWabNfwG/ZEgIG3XdOMZc2lvLmTvG4UyxQNvEogSEildrJC6RAfrO/zNbY1xjZYj7tam5l9MznSctREkPkXERHB2Ide5gvn13LD73eo+W+/9ic25L71kzjh8RLsVozeDdqH+HhjhnumioiIlJ5RUZGEhkZmXc/KSmpyP1CQ0OLfawouat+huZtOeThDUlJmJ0uxujel8wFb5FVLwKj/QVnHXNpYylv7hSPO8UCxcfToEGDEr+GlpCISJUQFZXOmEeO8fjGJzHuGEHv0FVsvON2WgbsJCoqXc09RUopOjoQ0zTZ9MEaNt06jmsSnsPEYNjaqVz96wd0uOMCNFVERETOxMxMhz07MNqdn7fNMAyM24dDeGPss6dg//IjzIP7XRekVBqqwBCRKsVqTSdmzS388nsX5nR5jM97DOGeLs/x/YE+efvoAkukeNHRgVitafz1/nrsR2Yx94KdUC8c47oorhgwkL3xBwgPt5zyc6SfKxER9zV9+nQ2b95Meno6w4YNY+DAgVx22WUVc/Btm8E0Mdp0LLDZ8PHFMm4y9rdnYn7xf5hf/B80bYVl2GMYwXUqJjapdJTAEJEq5eRFVHPC7nmZPx+M5s0LxjF92/1Yx15DRMOGutASKcQ5VcQ0Tda8u5GEXbOZ33ULu/8JZ/r2Z1iccBW580++ZVC1hYhI5TJmzBiXHdtM2OO40bDpKY8ZNQLxeOhJzIP7Mdf+hvnVAuyvPI/lSRuGh0cFRyqVgZaQiEiVFBWVjm1+UwaueoMFe69jTMs3ib3xZWp5phEdHaglJSKcnCpiswVi/vMXe0c/yfsXjuR4ymEe2TCBvj9/yqfx1zJ6bJamioiIyNnZFwdBoRi+fsXuYtQJw3LljViGjIK9/2H+9E0FBiiViRIYIlJlRUWl89CYbPZFjuWJv5+gZ+gfLLnkTr6eux+bTUkMEZstEHPrJj666EHstolYUhIZv/Fx+vz0GQvi+jNqbBaApoqIiMhZM/fthfoRJdu5c3do3gZz+TeYplm+gUmlpASGiFRpUVHpRI3L4IO9N+E7fgo+Htl83+9ubmjwrZp7SrXk/Df/wfN7eb/bQ9hffoIWNXbx1KZx9P5pEe/vuZldcQcBx8+PpoqIiMjZMk0T9sdjhJUsgWEYBkaPy2DfXti7s5yjk8pICQwRqRas1nRsi7txza/vsWpfe2adP4E3Ij9kZoyflpRIteD8N/7Dm3F8f8OLDN79EO1qbmXSP2Poufxzgm+6hp17k/P213IRERE5Z4eS4VhWySswAKN9VwDMbf+UV1RSiamJp4hUCycvwgLpMXoCb1z1Mfc3/ZDzav5Lj/tHE9HuPF2oSZXkbND5zdx9jPGdwVc9f4cagRhX3kXPB+9n255U5ob7EhWVAihxISIiZWh/HECJKzAACAqBwFqwe3s5BSWVmSowRKRaiYpKxzYjiOf+iWLU+kl0qr2JhIfH0aX2BlViSJWR/9/xotdT2GyN4btet3F49SambR1Gu0Vf0vD+URzJ9QcosExEiQsRESkr5j5HAoP6DUv8HMMwoHELzD07yikqqcyUwBCRase5rr/Z4J70XzmfbLs3Cy8eSuIn32GzBSiJIZVWgakiyQf5a9xr/NhrIBGHVjFz+730XPYFM7ffz9BRpqaKiIhI+dsfB341oGbtUj3NaNICEvZiHjtWPnFJpaUEhohUS1FR6URFpfNPeiuavPESK5IuZEr7qbzc4Tmsoxx9AJTIkMpi0iQP4ETiIi2Vp9tGk/XIMFqm/MDbuwfSc/nnTNs6gvtGGYCmioiISMUw9+2FsHBHVUUpGI2bg2mHuP/KKTKprNQDQ0SqNas1HdtrDZi+JoYxLecypuWbrL99O0P/fJmEo4F5k0p0oSfu7PnnPchNN4hqOYf00f/HkCbHWBh3HTO2PUDC0TDi4xMID1fCQkREKljCHoxOF5b+eY1aAGDu3o7RvE0ZByWVmSowRKRac1ZijLEeIWr59dy3JpqOYbtZdf1tXBLyB+D4VFvE3TgrhGa87MXwZm9z66bbGd1yHksTe9Lv54UcuHwMq3fY8/bXchEREalIZloqpB+G8Ealf3JeI0/1wZCClMAQEeHkRd0PiZdy6bfvsXVfKO9f+DCTev0AmGrwKW7D+e9wZowfj3dfwcANd/BEm1f4M7UDV//6PjsuG8/OzCZ5/6aVuBAREZeI3w2A0aBxqZ9qGAY0aoapJSRSiBIYIiL5WK3p/LrVix8ueIVv9l/G+DazmNP5cV6fYcFmUxJDXCP/v7sYWw3sq39hae+bmdz+Req2r8fNv83lis8fY1Nam7wmtU5KXIiIiCuYCXscN8JLn8AAMCKaQsIezJycMoxKKjslMERE8nFe7I16JIcR617AuHkIV4Ut458hd9Csxq68nhgiFSH/VBGAhc9tZckld2G+8TJZub7cvXo6jWa+wx+HOgOqthARETcSvxsCAks9gSRPRBPIyYEDCWUZlVRySmCIiBTDas0gZuPd3PHHKyTvSufLHndzT5eteZUYSmRIeSmcuOhQ8x+W3/g8N+0dR22vw4xZ/yxX//oBne/sRHz8PiZMyAWUuBAREfdhJuyBBo1LPYHEyYho4ngdLSORfDSFRESkGM6LwWjaUmdINOuGRfPmBeN4dcfdPDymPxGNGuqCUcqFM3HR2H8vi655la96/kBKdi2e3WzlvT0389/eJD4L98j79zdxYi5JSa6MWERE5CTTNCF+N0b3y87+RcLCwcMT4ncBl5ZVaFLJqQJDROQMoqLSsb3djJtXzeWDPTcyovk7rLxlEnV9klSJIWXG+e8oOjqQUO9kgr57laW9byay7i/M2HYfH533Ps+t6EO23RugQJ8LERERt5JyEI5mQYOzmEByguHpBfUjMON2l2FgUtkpgSEiUgJRUek8NCabg1eMYsz6Z+lYazPf9LyNVe9sUXNPOSf5l4u0bFQb+xcf8kuf/tzW8DM+3Hsj77d5n+htwxn5qAmoz4WIiLg/c8cWAIymLc/pdYyIJhC369wDkipDCQwRkRKKikonKiqdzxKuIeD5aaQer8lHFz/Ew83nYR17WEkMKbH8/1ZstkDM3Fxua/gZWwbegLXVGyw/2AOfKbOZsOlxhj/mrakiIiJSuWzbDD5+ENH03F4nogkcSsLM1O8+cVACQ0SklKzWdGwfncd1K95lcfzlPNp6DrE3vsRbs3K1pEROq3BzzuhpAUTW/Zl/b7cytcMUVv/XiBtWzmf4uhcx6jVQtYWIiJSZ9evXM3r0aEaOHMnixYvL9Vjmtk3QvDWGh8c5vY4R3sRxQ8tI5AQlMERESslZiTFsdC4Dloxg/MbHuazBH3zT83as/VfnXZyKOBVOXABc3S6Vi1aO462uVixGLvf/OY0V3WNYsilEiQsRESlTdrudefPmMX78eGJiYlixYgVxcXHlciwz6YCjgWe7zuf+YnmTSHad+2tJlaApJCIiZykqKp3o6Jq8v+dmNhxux6udH+folPHc22Q00dOuAcPQBagABRMXF7cwmXX+eG5o8D1Jx4J4cuNjvPDLRXzfuBHzxzlm3evfjYiIlKXt27cTFhZGvXr1AOjRowerV68mIiKiVK9j5hyH/fHkZGdhZmSAjy/4BxQYlWqu/x0A4/yLzj3wWkEQUPPEJBIRJTBERM7JyQvNhlwz832iOz3DM+2i+fqntTy2YSIQqIvRaio6OvBEksuRvJg3y86ENjHc3Xghdiz8HnIH3Z++lvdatGCqZ4KmioiISLlJSUkhJCQk735ISAjbtm0r/QulpmB/dhTJ+bcFBELzthidL8YIroP59cfQtBVGvQbnHLdhGBDRBHPPzhI/xzRNzO8XY/62FKNNR4yB92JYzm0pi7gPJTBERM6RM0FhszXgqs+jeK5XZya0f4VOtW6l4fVjiY6+SEmMasSZuLDZArHZAvGxHGNo0/cY2eItAj0z2Fz7Ku75bCRrd+YAmioiIlJdLViwoET7eXh4cPPNN5/TsUzTPGVb/qoJp9jYWGJjYwGYOnUqoaGhBR631/An+5Hnsdjt5B7Nwn4kk9y9/3Fs/R/Y//oDEzACahI85ik8Cz33bGV06krmwvkEe3tiqVn7lMc9PT0LxJn5xUdkfDIfj7Bwcn/8khqNmlLj+sFlEktJFI7HldwpFiibeJTAEBEpI1ZrOjZbTd74705WpXThlfOf5PiL48nd9gA28xZMw0MXqVVY/sRFVFQ6Bnb2fLYAc9F7kJwI7S/g8jmPsHSLP7fX9wOUuBARqc4WL15Mr169zrjfqlWrzjmBERISQnLyybqJ5ORkgoKCTtkvMjKSyMjIvPtJSUmnvlirjoSGhhZ8bOD9WPbshJSD0Oo8Uv0DoajnngWz+XlgmiT9/AOWi/ue8nj+WMz9cdjfmwPnX4Q5/AmY8QwZi97nyMWXYVgqpv3jKd8bF3KnWKD4eBo0KHm1jhIYIiJlJP+FaFRUEK0afcCWp58myngdzF+5aM6LREW5MEApc86kBRTsc3FzhwS+vOQxzDf/YePhVkze8gwL50ZwTU4gkK6k6btcNQAAKt1JREFUhYiI4OXlxYgRI8643+rVq8/5WM2bN2ffvn0kJiYSHBzMypUrGTVq1Dm/rpNhGNC4ueNPWWvcHGqHYK5cCkUkMJxMey72t2eCtw+WO0ZgWCwYPfphvhkNO7dAi3ZlH5tUOE0hEREpY86+B5m5NWj41DTGrH+WjM3/8V3P21j8zHqNWa0CThmHeuL+kjcSmd91DAsuHkaIdwrf1n+Cjh+9xEV3twVUbSEiIie99dZbJdpv7ty553wsDw8P7r33XiZPnszYsWPp3r07DRs2POfXrQiGxYJx2TXwz1+YO7YUu5+5dAns2IIx+AGMWo7qEqNjN/DwwNywpqLClXKmCgwRkXKQ/0LVZruGtakdeKXzk1wX/xTv7r6Z6fb7GfNItgsjlNIqXG3hvB0e3oC6Pkm82H4GAxt+QUaOP7/UGcq9793Nzvcd5bpKXIiISGGeniW7FCvpfmfSpUsXunTpUiavVdGMS6/GXP419nk2LNZJGKH1CjxuJuxxLNns0BXj4j4nn+fnD+FNMP/bWsERS3lRAkNEpJzkv9hdsc2TJhFvsTPmJe76/hPIXM3bU55myHj3aawkp+dMWjirLcLDG+DvcYRhzd5jaNP38LTk4Bl5Db0fH83GXUd4KEQJKhERKd6sWbOKbKRZ2MMPP1wB0bg3w78GlqGPYp/xLPanH8bofLFjSUiNQDLSD2Ff/H/g7YvlzodO+Z4azVphrlqOabdXWB8MKT86gyIi5cxqdVz0Hje9aDjmSe74YxYHd6Zzy/bhLH3yO6Kn1XB1iHIa+Zf8hIc3wGYLxMPI4Y5Gn/BznxsZ03IuNS7uSr+fP8Ey+AHuGekY1aaqCxEROZ2wsDDq1atHvXr18Pf3Z/Xq1djtdoKDg7Hb7axevRp/f39Xh+k2jOZtsEyMwejWC3PTOswP5mC+8RKZH86FRs2wjJ+GERRy6hObtoKjWXAgvuKDljKnCgwRkXJWsLlnOuHh3an3Sgw/3DmXfh6z8d2yEjNxGEbd+i6MUgrL3+fiZINOk8vr/szjbWbRMmAXf6ScT9gzj2M0a81NGWrQKSIiJXfLLbfk3Z48eTKPP/44bdu2zdu2ZcsWPv30U1eE5raMOmEYQ0Zh2u1w+BBkphHSsg0pWceKf05EE0yAhL1Qv3L0/ZDiqQJDRKSC5F9+ENH2PO5ZE4P1r2doE7iNYxNGY1/2laoxXCx/tUX+Phfx8Ql0rLWJPWOGMK9rFAYmlofGs7K7DaNZa0AVFyIicva2bt1Ky5YtC2xr0aIFW7eqd0NRDIsFIygEI6IplhpnaI5eLxxwjFiVyk8JDBGRChQVlY7V6vgDBp/EX8vlvyxgRWJnzP97nW4rHsNMOuDqMKud4qaKhIc3oJFfHIuumcWSS+4mc0cCxu3D+PqCNzHOv5iocRkui1lERKqOpk2b8uGHH5Kd7eiflJ2dzUcffUSTJk1cG1gVYPj4QnAd2LfX1aFIGdASEhGRCpa/uWd8fALh4Q24bNHjmL/+QMd587E/M4ofaw/j8kl9StTcS86ec7JI4akiALW9UhnZ4i3ubrwQw8OD34PvpPsz12D4+jO2T5YrwxYRkSpmxIgRzJw5k7vvvpuAgAAyMjJo3rw5o0aNcnVoVUNYBOZ+9cCoCpTAEBFxEUcVhkNERDgwhHDfK3m54yT6HYvhvzG/EFt/HEMfVwOv8nKyt8XJxEWAZwb3NfmQB5q+T03vLD7ccx23f9SfHrWLaAwmIiJSBurWrcvzzz9PUlIShw4dIigoiNBQTSorK0b9CMxff8A0TX04VMlpCYmIiIs4P/G3WtOJj09w/Dlan96fPcn4jY/TOHcjA7fch/3n7xzNqqRMOJeHFF424ms5ytCm7/Hn1dcT1ep1ViZ3w/L0DA5cPgZDyQsREakAoaGhtGjRIm8SiV2//8tGWDgcOwqHkl0diZwjVWCIiLiYM5GR1+AzIhy4mZ8Odufljs/R473ZJHy8lHDr/RhNW57mleR08i8XyV954W3JZnDDxTzeaR4BOcnQpjOWG+5gy2dduCZcU0VERKT8paSkMG/ePP755x8yMzMLPLZgwQIXRVV1GPUbOiaR7I+DYFW2VGaqwBARcRMFG3zC3qxwbv19DmP/egaPw4nkThmH/Z1ZmGmprg20Eik8VcQpPj6BuD17GRjxOdtv78/z571EQNN6fNxoOh5jnsVo2lKJCxERqTBvvPEGnp6ePPXUU/j6+vLiiy/StWtXHnjgAVeHVjWERQBg7tMkkspOCQwRETcSFZVeYHSniYWZf3Shz0+fYrniBnJ+XYp9wnDssV9g5ua6OFr3dbqpIgZ2hnX9m213jGZax0kQUJPPGr6E5ZEXGDyxmctiFhGR6mvr1q0MHz6cJk2aYBgGTZo0Yfjw4SxZssTVoVUNNWuDXw1HBYZUakpgiIi4Ias1vcBFd0ZOAA3HTODynz5it9EWc8Gb2J8bjbllg4sjdS+FExfg+P7ZbIF4Gce5OXwJ3/W6ldmdn6R5a4MvwydheTKaW55qo6ZeIiLiMhaLBQ8PDwBq1KhBWloaPj4+pKSkuDiyqsEwDAgLx1QCo9JTDwwRETeUf/lCVFQ64eENToxcbUrT6RO594JtvBnyEvboCRgXXIJxy70YIXVcGLF7KGqqSC2vw9zR6DOGNF5APd8ktqQ3x7g/CqNbL/pblMcXERHXa9GiBevWrePCCy+kU6dOxMTE4O3tTfPmzV0dWpVhhEVg/rPe1WHIOVICQ0TEjUVFFazEAGeTz3BmhbSnq/ER3Tf8H+bfqzGuHIAReT2Gf4ALI654zuachasvGvvHcW+T/+OOpl/gZR7l54MXUf+xh/n2296cd1GGK0MWEREpYOTIkZimCcCQIUP48ssvycrK4pprrnFxZFVI/Qj4bSlm1hEMP42or6yUwBARcXP5qzHyVxi8PD0UeJinR17JfbVnYX75EeYPn2NcepUjkVHFR38WN1Xkgtp/8UCz97k6bDnH7R54X9wb44obWLugI33bpxPVXskLERFxH3a7nfnz5/Pggw8C4O3tzU033eTiqKoeIyzixCSSeNBUt0pLtbMiIpVA4eae+b8OfbwG0zMnY3lqBkbHbpjff479iQewv/sK5v54l8VcXorqcxG3ew9xX3zCZ93vZVGP+7gkZA2Wq2/inZYfYrl3DEZEU00VERERt2SxWNiwYYN6MZW3vEkke10ciJwLVWCIiFQihZt75v8KHYGOWCdvw/x+EeavsZi//gBdumO56iaMJpX30wZntQWcTFxYyOWmDglMaf82Sff9SLD3Yer6hGMMHsr7a/szakAOw1wZtIiISAldc801LFy4kIEDB+LpqUu0clGnHlgscCDB1ZHIOdBPh4hIJVJ8c88GefejosIwbh+Oed1gzB+XYC77GvufK6FtJyxX3wxtOlaaT3nyLxOJikoneloA59faSMA33/H7ZT9QzzeJIzm+7AnuQehdPVj0Qx+s/Y4wql+Oq0MXEREpsW+//ZbU1FS++uoratasWeCxOXPmuCiqqsXw9ILQenCg6lWnVidKYIiIVEJFNfd0fnVuj4oC48Y7Ma+6CfPnbzF/+By7bSI0boHRrRdGx64QFuHWyQybLRCrNY02gduYedl3DKj/PWMuSeBorjfLDl6CvUsvrPMvZ/ueQwBYOx1xccQiIiKlN3LkyHJ77d9++42PP/6Y+Ph4pkyZUr0nm9QLx1QCo1JTAkNEpJIqrrln/ttRUekYfv4YVw7AvOxazN+WYS77CvOT+ZifzIeQuhgdumJ0uABad8Tw8anQv0NRoqMDsT4Yz2fRcUS1/Jx/b13K973+I8fuwS9JFzF921CmL2/Ngy1bEv9lAttqqtpCREQqt3bt2pXbazds2JBx48b9f3v3Hh1Vdfd//HMmkwsBcp1wSSAgArV4AZSItfCgEK1Vq9bVapBe1D6l3MQa7Q9/fUpvkRJcIj5CAC3UIrbeKhTtQ6sNiNhSlUD5cYmKQW5KuCQhkBBCSGb//siTGEJCEjLMPsm8X2tlZWbOmX0+M3tlVs539t5Hzz777AU7Rkfh9EyR+XirjN8vh0upd0gUMACgA2u4LkTdVJKGU0oarh3hhEfI+Y+vSf/xNZniIzLbN8lsy5PZsEZm3WopPEL60uVyLr+qtqiR1Csor8GcPi3t/1Rrlu7T2Iu26vZNn8r/0H7dIck/0NEHJcP13Pa7lXrHNZq61KPvpyTrv6MPKDOz7Iz3AACAjmTNmjUaN25ci/utXbtWY8eOPe/j9OnT57yf2+n06S9VVUmF+6WUfrbT4DxQwACATuDci3vWanii7yQmyRlzkzTmJpnTVdLOHbXFjG15Mi9uknnx2drpJYOGqDylr/zhUXLiE6XYBCkuQeoW06ZvLozfL1WelE6ekCpOyHy+V9q9U2b3TlXv2S2vOa3rJZlTCfq47AoN+O71ci4arC/fOFo79x3TXSnJ+nzGgfrX2vj1AADQ0Tz//PMaO3asjDHn3G/58uXtKmDgC87gS2UkmZ3b5VDA6JAoYABAJ9C6xT2bPuF3wiOkS4fLuXS4lPFDmUMHvihmbHlfJ959S5J0xr9XYV4pNr62mBGXICc2oXZl74pymZMVUkVtoUIn634qpMb/oEVESv0HaklBhvqMvlhZL4xQYWVPSY70nw13PFZftGj8WgEA6KgqKyuVkZHR4n7h4eEt7pOVlaXS0tKzHs/IyFBaWlqrM+Xm5io3N1eSlJ2dLZ/P1+R+Xq+32W3B1pYsJjFRRb6eCt/9seK+/X3reS40N2WRApOHAgYAdCKtW9zz3AUAp2eynJ63Sem3SZISY2NVtLtAOlosHSuRKS2R/vfHlBZLhZ/JfLi19snRXaUu0bW/E5PkdOlfe/t/H3/r3UR97Y4w3TBhqP6+o4uefCpOT37cXfr4zAyZmWVnvBaKFgCAzmbBggWt2q81i23PnDmzvXEkSenp6UpPT6+/X1RU1OR+Pp+v2W3B1tYs5rKrdOqfuTqyd4+crt2s57mQ3JRFaj5PcnJyE3s3jQIGAHQyrV3cs7Wc8HA5CUlSQlLt/TbmabgOxw/uS9bnWQf0YVmy+qSevW9m5heXTG1rTgAAOpKkpCTbEUKSM/pGmXWrZd7+Hzm33t3kPub/bZT511qpa3c537hbTlxikFOiOSy9CgCd0MMPl9Wf/H/++YEzfjcc2RAMdYWTxiNDGmqYreF0EQAA0D4ffPCBJk2apJ07dyo7O1uzZs2yHckqJ3WAdOW1Mv/zsvwfrK9fg8QYI7Nvl2rmZ8m/IEumIF/mn3+Xf+FsmZoay6lRhxEYANCJtbS4Z+MrlQRSw3abKlrUTROp28binAAABN7VV1+tq6++2nYMV/F8d4r8TxfJ/PYJmRcWSQk+qeyYdLxUiuwi51v3yRl3q8z762V+/99SQb70pcttx4YoYABAp9bS4p6SzpiyEQh1BZMnn+x+xrSVOo2PT+ECAAAEk9MtRp7/ky2T9w9p14cypSVy+g2UBn5ZzrBr5HSPqd3xyq/ILF8gs32zHAoYrsAUEgAIAc0t7tlwZER7ppU0fG7DgkjD6St1tyVxVREAAGCV4/XKc8118kyYrLCp/yXPfQ/KM/rGL4oXkpwu0dLFX5bJ/7fFpGiIERgAECIaLozZeEpH4/utLSrUTROpK1qc6wooDde3oGgBAIB0/PhxrV+/Xps3b9bevXtVUVGh6Oho9evXT8OGDdN1112nmJiYlhvCBeMM/LLMmytkTlfVXnoeVlHAAIAQ0rBwUDciovG0kobTO5rTuHBR105jjQsWFC4AAKj1xz/+Ue+++66GDx+usWPHKiUlRV26dNHJkyf1+eefKz8/XzNmzNCoUaM0YcIE23FDlpN6ce0inp/tlS4aZDtOyKOAAQAhqK6wcK4RE1LzBYeGa1s0d1WR1hRCAAAIVfHx8Xr66acVHh5+1raLLrpIo0aNUlVVldauXWshHeqlDpAkmX275FDAsI41MAAgBDUcEZGZefalS+sW4Gy4tkXd7YaLdDaUmVnW7DoXAADgTF//+tfrixelpaVN7lNRUaGbbropiKlwFl9PqUtX6bPdtpNALilg/PWvf9WDDz6ozMxMvfDCC7bjAEBIefjhsiYX3azblp5eO1jvySe7KyUlucnCRd2+Td0HAADn9uCDDzb5+EMPPRTkJGjMcRypZ7LM4ULbUSAXTCHZvn278vLy9MQTTyg8PFzHjh2zHQkAQlJm5rkX4ZSaXzejIQoXAAC0jTHmrMcqKirk8bji++aQ5/ToLfPpx7ZjQC4oYLz11lu6/fbb64dPxcbGWk4EAKGpYeGhbjHPzMyy+ukk0tnrXTDaAgCA8zd58mRJUlVVVf3tOuXl5frqV79qIxYa69Fb2vgPmerTcrxnr1mC4LFewCgsLNRHH32kl156SeHh4frud7+rgQMHNrlvbm6ucnNzJUnZ2dny+XzBjHoGr9dr9fhoGX3UMdBP7jN7tpSe3lXS2etcjB7tV25utbKywuTz+TR7tiRFBj8kzsDfkfvRRx0D/eR+na2PHnjgARljNHv2bD3wwANnbIuLi1Ny8tkLZcOCHsmS8UtFh6RefWynCWlBKWBkZWU1uTBNRkaG/H6/ysvLNWvWLO3atUvz5s3TggULaucaNZKenq709PT6+0VFRRcy9jn5fD6rx0fL6KOOgX5yp5de+uJSqQ2ni7z00kEVFUmTJ0t0m3vwd+R+9FHHQD+5n80+uhDFhCFDhkiSli5dqshIvhBwKyepl4wkHTlIAcOyoBQwZs6c2ey2t956SyNHjpTjOBo4cKA8Ho/KysoUExMTjGgAgGY0nhbCVUUAAAic1atX64YbblB4eHizxYvTp0/r73//u26++eYgp8MZEntIkkzxEZ39NTuCyfoUkrS0NG3fvl2XXnqpDhw4oOrqanXv3r3lJwIAgmL0aL8k1rkAACCQSktLNX36dA0fPlxDhgxRcnKyoqKiVFlZqQMHDig/P1///ve/NWbMGNtRERsnhYVJJUdsJwl51gsYY8eO1cKFC/Xwww/L6/Vq6tSpTU4fAQDYkZtbzXQRAAAC7J577tGtt96qdevWae3atdq3b59OnDihbt26KTU1VcOHD9f48eP5ctcFHE+YFJdIAcMFrBcwvF6vpk+fbjsGAAAAAARVTEyMbrvtNt122222o6AliUkyFDCs48LCAAAAAACcg5OQJJUwJNU26yMwAAAAACCUVVRU6NVXX1V+fr7KyspkjKnftmjRIovJUC8hSTpaJOOvqZ1SAisYgQEAAAAAFi1ZskS7d+/Wt771LZWXl+v++++Xz+fTLbfcYjsa6iQkSX6/VHrUdpKQxggMAAAAALBo69atmjdvnrp37y6Px6O0tDRdfPHFmjNnjm699dZ2tb18+XJt2rRJXq9XPXv21JQpU9S1a9cAJQ8dTkKSjFS7kGeCz3ackMUIDAAAAACwyBij6OhoSVJUVJROnDihuLg4HTx4sN1tX3HFFZo7d66eeOIJ9e7dWytXrmx3myEpIUmSWMjTMkZgAAAAAIBF/fr1U35+vi6//HJdcsklWrp0qaKiotS7d+92tz106ND624MHD9Z7773X7jZDUt2oCwoYVjECAwAAAAAs+tGPfqSkpNpv+O+//35FREToxIkTmjZtWkCPs3btWg0bNiygbYYKp0u0FN2VAoZljMAAAAAAAIuOHz+uQYMGSZJiYmI0adIkSVJBQUGrnp+VlaXS0tKzHs/IyFBaWpokacWKFQoLC9Po0aObbSc3N1e5ubmSpOzsbPl8Ta/14PV6m90WbMHMUtyjtzzlxxV/juOF6nvTGoHIQwEDAAAAACx67LHHtGzZsrMenzVrlp577rkWnz9z5sxzbl+3bp02bdqkn//853Icp9n90tPTlZ6eXn+/qKioyf18Pl+z24ItmFlqYuKlws/PebxQfW9ao7k8ycnJrW6DKSQAAAAAYIHf75ff75cxRsaY+vt+v1+FhYUKCwtr9zG2bNmiVatWacaMGYqMjAxA6tDlJCQxhcQyRmAAAAAAgAXjx4+vv52RkXHGNo/Ho29+85vtPsbSpUtVXV2trKwsSdKgQYM0ceLEdrcbkhKSpIpymcoKOVHRttOEJAoYAAAAAGDBggULZIzRL3/5S/3qV7+SMUaO48hxHMXExCgiIqLdx5g/f34AkkJSgyuRFEnJqXazhCgKGAAAAABgQd2VRxYuXCipdkrJsWPHFB8fbzMWmuEkJslItdNIKGBYQQEDAAAAACw6ceKElixZovfee09er1fLly9XXl6eCgoKzppaAosSagtOpuSIml8KFRcSi3gCAAAAgEW//e1vFR0drYULF8rrrf2OefDgwdqwYYPlZDhDbILk8UjF7rmyR6hhBAYAAAAAWLRt2zY988wz9cULSYqJidGxY8cspkJjTliYFJfIlUgsYgQGAAAAAFgUHR2tsrKyMx4rKipiLQw3SkySoYBhDQUMAAAAALBo3Lhxmjt3rrZv3y5jjHbu3KmcnBzdcMMNtqOhESchiREYFjGFBAAAAAAsuv322xUeHq6lS5eqpqZGixYtUnp6um6++Wbb0dBYQpKU908Zf40cT5jtNCGHAgYAAAAAWOQ4jm655RbdcssttqOgJYk9pJpqqaRI8vW0nSbkUMAAAAAAAMsOHDigPXv2qLKy8ozHx44daykRmuIM+JKMJPNJvhwKGEFHAQMAAAAALFqxYoVee+019evXT5GRkWdso4DhMin9pG7dpY+2Sl+53naakEMBAwAAAAAsWr16tX7zm9+oX79+tqOgBY7HI+eSoTJbN8pUnZITEdnykxAwFDAAAAAAwKKIiAilpKTYjoFWcq67WSbvHzLr/irnxjvOux1z+IDMB+tl8v4pHS+Vc8UIOeN/JCcyKmBZOxsKGAAAAAAQZH6/v/723Xffrd/97nf69re/rdjY2DP283g8wY6Glgy+VLrsKpkVy+Q/US6lpErVp6XjpSo7fUr+wwdlKitrF/usqZZqamp/G/PFz9FiqbS4tr1BQ+T0vUhmw9vS6Wo5P3zY7utzMQoYAAAAABBk48ePP+uxNWvWnPXYyy+/HIw4aAPHceT54SPyL3taZvUrZ2yriIiUusdKUV2kMK/k9UphYZI3XKorRjmOnN59pT795Vz1VTkJPkmSPzZe5q0/y9x1v5zY+GC/rA6BAgYAAAAABNmCBQtsR0A7ONFdFTb5/8qUHZPKy2qLFDGx8qX0VXFx8fm1+ZVxMm+ulNm8Qc71XFK3KYxHAgAAAIAgS0pKqv/517/+dcb9up/333/fdky0wOkeK6d3Hzk9esuJipbjOOffVkqq1CNZZtumACbsXChgAAAAAIBFr732WpseR+flXHKF9MkOmZoa21FciSkkAAAAAGDB9u3bJdUu6Fl3u86hQ4fUpUsXG7Fg0yVXSOv/Ju0tkAZ8yXYa16GAAQAAAAAWLFq0SJJUVVVVf1uqXSQyLi5O999/f7uP8dJLLykvL0+O4yg2NlZTpkxRQkJCu9vFheFcfImMJLPnEzkUMM5CAQMAAAAALMjJyZFUu6DntGnTLsgxbrvtNmVkZEiSVq9erT/96U+aOHHiBTkWAiA+UeoWI+371HYSV2INDAAAAACw6EIVLyQpOjq6/vapU6fatcgkLjzHcaTUATL7KWA0hREYAAAAANCJvfjii1q/fr2io6P1i1/8wnYctMDpO0Am93WZ6mo5Xk7ZG+LdAAAAAIAOLCsrS6WlpWc9npGRobS0NI0fP17jx4/XypUr9be//U133XVXk+3k5uYqNzdXkpSdnS2fz9fkfl6vt9ltweamLFJg8py85FIdf3OF4qsr5e3V32qWQApEHgoYAAAAANCBzZw5s1X7jRo1StnZ2c0WMNLT05Wenl5/v6ioqMn9fD5fs9uCzU1ZpMDkMd3iJElH87fKiepmNUsgNZcnOTm51W2wBgYAAAAAdFKFhYX1t/Py8tp0sghLevWRJJnCzywHcR9GYAAAAABAJ/WHP/xBhYWFchxHPp+PK5B0AE5UFynBJxXutx3FdShgAAAAAEAn9cgjj9iOgPPRuy8jMJrAFBIAAAAAAFzE6d1XOviZjN9vO4qrUMAAAAAAAMBNeveRqk5JJUdsJ3EVppAAAAAAAOAiTq++MpJU+Jnk6xnQts2+T2W2b5JKS6Tq060I47Si1Rb2iYiQpj7aqnznQgEDAAAAAAA36d1XkmQOfibn8qsC1qz/Ly/JrPpj7Z0uXaWIyBaeYVpu1LRin6guLe/TChQwAAAAAABwk27dawsMRw4GrEmzdaPMqj/KGTlGzviJcrp2D1jbwUIBAwAAAAAAF3EcR0rqKROgAoYxRv7XX5R69JZz73Q53vCAtBtsLOIJAAAAAIDb+HpJRQEagfHpx9LeAjk33NFhixcSBQwAAAAAAFzHSeolFR0KyKVUzQfrJW+4nKv/IwDJ7KGAAQAAAACA2yT1kqqrpaPF7WrG1NTIbHxXuiJNTnTXAIWzgwIGAAAAAAAu4/S9qPbGnp3ta+ijrVLZMXlGduzRFxIFDAAAAAAA3Cd1gBQeIVPwUbuaMR+sr72iyeUjAhTMHgoYAAAAAAC4jOMNl/oPlPlkx3m3YapOyWzeIOfKr8gJjwhgOjsoYAAAAAAA4ELOZVdJewtkig6d1/PNlvelypNyRo4JcDI7KGAAAAAAAOBCdYUHs2HNeT3fvL26djHQL10eyFjWUMAAAAAAAMCFnMQe0rCRMm+tkik+0qbnVn20TSrIl3PdzXI8nePUv3O8CgAAAAAAOiHPt++XHMn/5M9ktrwvU3myxeeYygqV/fZJqXusnDE3BSFlcHhtBwAAAAAAAE1zevSW58FfyP/sE/LnzKp90OuVwiMlGclvpJhYKd4nJ8EnhYXJfLxd/pIj8kz5qZzIKKv5A4kCBgAAAAAALuYMHCLPrGekT3bI7N4pVZ6Uqk5JjlP7c7xUpqRIZucOqaZa6t1XcQ/8l8qS+9uOHlAUMAAAAAAAcDknPFwaMkzOkGGt2j/S51NZUdGFDRVkrIEBAAAAAJ3c66+/rrvuukvHjx+3HQU4bxQwAAAAAKATKyoq0rZt2+Tz+WxHAdqFAgYAAAAAdGLLli3ThAkT5DiO7ShAu7AGBgAAAAB0Unl5eUpISFD//v1b3Dc3N1e5ubmSpOzs7GZHbHi9XteM5nBTFsldedyURQpMHgoYAAAAANCBZWVlqbS09KzHMzIytHLlSv3sZz9rVTvp6elKT0+vv1/UzAKQPp+v2W3B5qYskrvyuCmL1Hye5OTkVrfhGGNMIEMBAAAAAOzbt2+ffv3rXysyMlKSVFxcrPj4eM2ePVtxcXF2wwHngTUwztOjjz5qOwJaQB91DPST+9FH7kcfuR991DHQT+5HH7VNamqqlixZopycHOXk5CgxMVFz5sxpd/HCTf3gpiySu/K4KYsUmDwUMAAAAAAAgOuxBgYAAAAAhICcnBzbEYB2YQTGeWq4uA3ciT7qGOgn96OP3I8+cj/6qGOgn9yPPnIHN/WDm7JI7srjpixSYPKwiCcAAAAAAHA9RmAAAAAAAADXo4ABAAAAAABcj0U822jLli167rnn5Pf7NW7cON1xxx22I6GRoqIi5eTkqLS0VI7jKD09XTfffLPtWGiC3+/Xo48+qoSEBNdd5gnSiRMntHjxYu3fv1+O42jy5MkaPHiw7Vho5C9/+YvWrl0rx3HUt29fTZkyRREREbZjhbSFCxdq8+bNio2N1dy5cyVJ5eXlmjdvno4cOaKkpCQ99NBD6tatm+WkoaupPlq+fLk2bdokr9ernj17asqUKeratavlpKGtqX6q8/rrr+uFF17QkiVLFBMTYylh6HHDudDUqVMVFRUlj8ejsLAwZWdnB+0ztq2f7ytXrtTatWvl8Xh03333adiwYRc8zyuvvKI1a9bU/12MHz9eV1555QXP09w5WMDfH4NWq6mpMdOmTTMHDx40p0+fNo888ojZv3+/7VhopKSkxOzatcsYY0xFRYWZPn06/eRSb7zxhnnqqafM7NmzbUdBE+bPn29yc3ONMcacPn3alJeXW06ExoqLi82UKVPMqVOnjDHGzJ0717z99tt2Q8Hs2LHD7Nq1y2RmZtY/tnz5crNy5UpjjDErV640y5cvt5QOxjTdR1u2bDHV1dXGmNr+oo/sa6qfjDHmyJEj5rHHHjOTJ082x44ds5Qu9LjlXGjKlCln9XuwPmPb8vm+f/9+88gjj5iqqipz6NAhM23aNFNTU3PB87z88stm1apVZ+17ofM0dw4W6PeHKSRtUFBQoF69eqlnz57yer269tprtXHjRtux0Eh8fLwGDBggSerSpYtSUlJUUlJiORUaKy4u1ubNmzVu3DjbUdCEiooKffjhhxo7dqwkyev18k2kS/n9flVVVammpkZVVVWKj4+3HSnkDRky5Kxv/jZu3KgxY8ZIksaMGcP/D5Y11UdDhw5VWFiYJGnw4MH87+ACTfWTJC1btkwTJkyQ4zgWUoUuN58LBeszti2f7xs3btS1116r8PBw9ejRQ7169VJBQcEFz9OcC52nuXOwQL8/TCFpg5KSEiUmJtbfT0xM1CeffGIxEVpy+PBh7d69WwMHDrQdBY38/ve/13e+8x2dPHnSdhQ04fDhw4qJidHChQu1d+9eDRgwQPfee6+ioqJsR0MDCQkJ+sY3vqHJkycrIiJCQ4cO1dChQ23HQhOOHTtWX1yKj4/X8ePHLSfCuaxdu1bXXnut7RhoQl5enhISEtS/f3/bUUKOm86FZs2aJUm64YYblJ6ebvUztrljl5SUaNCgQfX7JSQkBK0w+uabb2r9+vUaMGCAvve976lbt25BzdPwHCzQ7w8jMNrANHHFWSq/7lVZWam5c+fq3nvvVXR0tO04aGDTpk2KjY2tr9LCfWpqarR7927deOONevzxxxUZGak///nPtmOhkfLycm3cuFE5OTl65plnVFlZqfXr19uOBXRoK1asUFhYmEaPHm07Cho5deqUVqxYobvvvtt2lJDklnOhrKwszZkzRz/96U/15ptvKj8/P+gZWqOp9ysYbrzxRs2fP1+PP/644uPj9fzzzwc1T2vPwc43DwWMNkhMTFRxcXH9/eLiYobqulR1dbXmzp2r0aNHa+TIkbbjoJGPP/5YeXl5mjp1qp566ilt375dTz/9tO1YaCAxMVGJiYn1lfFrrrlGu3fvtpwKjW3btk09evRQTEyMvF6vRo4cqZ07d9qOhSbExsbq6NGjkqSjR4+y6KBLrVu3Tps2bdL06dP5ksqFDh06pMOHD+snP/mJpk6dquLiYs2YMUOlpaW2o4UEt5wLJSQkSKr9XE1LS1NBQYHVz9jmjt34/SopKanPfiHFxcXJ4/HI4/Fo3Lhx2rVrV9DyNHUOFuj3hwJGG1x88cUqLCzU4cOHVV1drQ0bNmjEiBG2Y6ERY4wWL16slJQU3XrrrbbjoAn33HOPFi9erJycHP34xz/WZZddpunTp9uOhQbi4uKUmJioAwcOSKo9Ue7Tp4/lVGjM5/Ppk08+0alTp2SM0bZt25SSkmI7FpowYsQIvfPOO5Kkd955R2lpaZYTobEtW7Zo1apVmjFjhiIjI23HQRNSU1O1ZMkS5eTkKCcnR4mJiZozZ47i4uJsRwsJbjgXqqysrJ9+XFlZqa1btyo1NdXqZ2xzxx4xYoQ2bNig06dP6/DhwyosLAzKtPa6YoEkffDBB+rbt29Q8jR3Dhbo98cxtsa2dFCbN2/WsmXL5Pf7df311+vOO++0HQmNfPTRR/r5z3+u1NTU+m9PGl4+CO6yY8cOvfHGG1xG1YX27NmjxYsXq7q6Wj169NCUKVO47KMLvfLKK9qwYYPCwsLUv39/TZo0SeHh4bZjhbSnnnpK+fn5KisrU2xsrO666y6lpaVp3rx5Kioqks/nU2ZmJn9PFjXVRytXrlR1dXV9vwwaNEgTJ060nDS0NdVPdYtLS7WX05w9ezYjmoLI9rnQoUOH9MQTT0iqne46atQo3XnnnSorKwvKZ2xbP99XrFiht99+Wx6PR/fee6+GDx9+wfPs2LFDe/bskeM4SkpK0sSJE+tHylzIPM2dgw0aNCig7w8FDAAAAAAA4HpMIQEAAAAAAK5HAQMAAAAAALgeBQwAAAAAAOB6FDAAAAAAAIDrUcAAAAAAAACuRwEDAAAAAAC4HgUMAAAAAADgehQwAAAAAACA61HAAAB0egcPHtR9992nTz/9VJJUUlKiH/zgB9qxY4flZAAAAGgtChgAgE6vV69emjBhgubPn69Tp05p0aJFGjNmjC699FLb0QAAANBKjjHG2A4BAEAwzJkzR4cPH5bjOJo9e7bCw8NtRwIAAEArMQIDABAyxo0bp/379+umm26ieAEAANDBUMAAAISEyspKLVu2TGPHjtWrr76q8vJy25EAAADQBhQwAAAh4bnnntNFF12kSZMm6corr9Szzz5rOxIAAADagAIGAKDT27hxo7Zs2aKJEydKkr7//e9r9+7devfddy0nAwAAQGuxiCcAAAAAAHA9RmAAAAAAAADXo4ABAAAAAABcjwIGAAAAAABwPQoYAAAAAADA9ShgAAAAAAAA16OAAQAAAAAAXI8CBgAAAAAAcD0KGAAAAAAAwPX+P0C+opxFXk6JAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<Figure size 1080x720 with 5 Axes>" - ] + "text/plain": "<Figure size 1500x1000 with 5 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8feZTBKSQBZIQhJCIIEkrGFREXFBca3SWmzVqtXi0tqCVrpY9WetS6uVr1W01rba2uJaURSrooK4KwVUZFEkYd+zkQ0Sss75/XGTSYYsBMhkkvB6Ph48Zubec+89J2FY3vPJ5xprrRUAAAAAAAAAAGjGFegJAAAAAAAAAADQVRGiAwAAAAAAAADQCkJ0AAAAAAAAAABaQYgOAAAAAAAAAEArCNEBAAAAAAAAAGgFIToAAAAAAAAAAK0gRAcAAAAAAAAAoBWE6AAAAAAAAAAAtIIQHQAAAAAAAACAVhCiAwAAAAAAAADQCnegJxAoxcXFqq2tDfQ0jkpcXJwKCgoCPQ2gx+O9BnQO3mtA5+C9BnQO3ms4lrjdbsXExAR6Gt1ae3KqnvLnCuvoenrKWtpax9H+OXXMhui1tbWqqakJ9DSOmDFGkrMOa22AZwP0XLzXgM7Bew3oHLzXgM7Bew3A4TpUTtVT/lxhHV1PT1mLv9dBOxcAAAAAAAAAAFpBiA4AAAAAAAAAQCuO2XYuAAAAAAAA6PnWrVun1157TVu2bFFxcbF+/etfa8KECYc85qmnntLOnTsVExOj73znOzrnnHN8xixbtkzz5s1TXl6e+vfvr8suu+yQ5wXQPVGJDgAAAAAAgB6rqqpKgwcP1jXXXNOu8fn5+frjH/+o4cOHa/bs2Zo2bZr+/e9/a9myZd4xOTk5evjhh3XaaafpgQce0GmnnaY5c+Zow4YN/loGgACiEh0AAAAAAAA91rhx4zRu3Lh2j1+8eLFiY2M1ffp0SVJycrI2bdqk119/XRMnTpQkLVy4UFlZWZo2bZokadq0aVq3bp0WLlyoWbNmdfQSAAQYIToAAAAAAABQb8OGDcrKyvLZNnbsWL3//vuqra2V2+1WTk6OLrjgAp8xY8aM0ZtvvtnmuWtqalRTU+N9bYxRWFiY93mrdmxR3v/dotqyMknW2RYSqqDLfiKTPrL9iwuwhjW2udZuoKesQ+o5a/H3OgjRAQAAAAAAgHolJSWKiory2RYVFaW6ujrt27dPMTExKikpUXR0tM+Y6OholZSUtHnuBQsWaP78+d7Xqampmj17tuLi4to8rvSdBSrLWddse69Vy9T3tLPaXlAXlJCQEOgpdIiesg6p56zFX+sgRAcAAAAAAACaOLia1Vrb4vaDxxyqCnbatGmaOnVqs+sUFBSotra21eM8pSXO+BNOleuM8+X5/FPZ995QRXGRqvbsafOaXYkxRgkJCcrNzfV+TbujnrIOqees5VDrcLvdh/ywqi2E6AAAAAAAAEC9lirKy8rKFBQUpN69e7c6prS0tFkF+8GCg4MVHBzc4r62AkxbV+c8ie0vpY+U9ux0tldVdsvg01rbLed9sJ6yDqnnrMVf63B1+BkBAAAAAACAbio9PV1r1qzx2bZ69WqlpaXJ7XbqUTMyMrR27VqfMWvWrFFGRoZ/JtUQogcFOY+hvZzH6ir/XA+AD0J0AAAAAAAA9FiVlZXaunWrtm7dKknKz8/X1q1bVVhYKEl6/vnn9Ze//MU7/pxzzlFhYaGeeuop7dy5U++9957ee+89ffvb3/aOOf/887V69Wq9+uqr2rVrl1599VWtXbu22c1GO4zHCdGNywnRTUios72q0j/XA+CDdi4AAAAAAADosTZt2qS7777b+/rpp5+WJE2ePFkzZ85UcXGxN1CXpPj4eN1222166qmntGjRIsXExOjqq6/WxIkTvWMyMzM1a9YsvfDCC5o3b54SEhI0a9Yspaen+2cRDZXorvp62FBCdKAzEaIDAAAAAACgxxo5cqRefPHFVvfPnDmz2bYRI0Zo9uzZbZ534sSJPsG6Xx3cziWEdi5AZ6KdCwAAAAAAANCVeRoq0Q/qiU4lOtApCNEBAAAAAACArszjcR69NxZtaOdCJTrQGQjRAQAAAAAAgK6s7qBK9CbtXKy1gZkTcAwhRAcAAAAAAAC6Ms9BPdEb2rlYj1RbE5g5AccQQnQAAAAAAACgK2t2Y9HQxn30RQf8jhAdAAAAAAAA6MoOaudigoIkt9vZRl90wO8I0QEAAAAAAICuzNvOpUmU5+2LTiU64G+E6AAAAAAAAEAXZg++sajU2Beddi6A3xGiAwAAAAAAAF2Zp6UQvb4vOu1cAL8jRAcAAAAAAAC6Mo/HeQxqEqLTzgXoNIToAAAAAAAAQFfWYjuX+kr0airRAX8jRAcAAAAAAAC6Mu+NRZv3RLf0RAf8jhAdAAAAAAAA6MrqWgjRQ+iJDnQWQnQAAAAAAACgK6sP0U2Tdi6GnuhApyFEBwAAAAAAALqyFtu5NFSiE6ID/kaIDgAAAAAAAHRl3huLNony6nui084F8D9CdAAAAAAAAKAra6kSnXYuQKchRAcAAAAAAAC6sjqP8+iinQsQCIToAAAAAAAAQFfWUInuE6I7lei2mnYugL+5Az0BAAAAAAAAwN8WLVqk1157TSUlJUpOTtb06dM1fPjwFsc+9thj+vDDD5ttT05O1kMPPSRJ+uCDD/TXv/612Zhnn31WISEhHTv5ttq50BMd8DtCdAAAAAAAAPRoS5cu1dy5c3XdddcpMzNTS5Ys0X333ac5c+YoNja22firr75aV1xxhfd1XV2dbr75Zk2cONFnXFhYmB555BGfbR0eoEtSXa3z6BOi17dzoSc64He0cwEAAAAAAECP9sYbb2jKlCk688wzvVXosbGxWrx4cYvjw8PDFR0d7f21adMmlZeX64wzzvAZZ4zxGRcdHe2fBbTQE914e6JTiQ74G5XoAAAAAAAA6LFqa2u1efNmffe73/XZnpWVpezs7Had47333tPo0aMVFxfns72yslIzZsyQx+PR4MGDdemllyo1NbXV89TU1Kimpsb72hijsLAw7/NW1bdzMW63VD/OhjrHqaqy7WO7kIZ5dpf5tqanrEPqOWvx9zoI0QEAAAAAANBjlZWVyePxKCoqymd7VFSUSkpKDnl8cXGxVq1apZ///Oc+25OSkjRjxgylpKTowIEDevPNN3XHHXfogQceUGJiYovnWrBggebPn+99nZqaqtmzZzcL55uyHo92WitJik9IVFBUtCSpal+R8iUF1dW0er2uKiEhIdBT6BA9ZR1Sz1mLv9ZBiA4AAAAAAIAer6UK1fZUrX7wwQeKiIjQhAkTfLZnZGQoIyPD+zozM1O33HKL3nrrLV1zzTUtnmvatGmaOnVqs+sXFBSotra2xWNsbWPlev7eQqnigLN9335JUl1Fhfbs2XPIdXQFxhglJCQoNzdXtv6Dge6op6xD6jlrOdQ63G53mx9WHQohOgAAAAAAAHqsyMhIuVyuZlXnpaWlzarTD2at1fvvv69TTz1VbnfbMZrL5dKQIUOUm5vb6pjg4GAFBwe3eq0Wt9fWNT43Lql+nPXeWLSq24Wf1tpuN+eW9JR1SD1nLf5aBzcWBQAAAAAAQI/ldruVlpamNWvW+Gxfs2aNMjMz2zx23bp1ys3N1ZQpUw55HWuttm3b1vE3F/U0hugKaryxqEJ6OY811bJNxwDocFSiAwAAAAAAoEebOnWqHn30UaWlpSkjI0NLlixRYWGhzj77bEnS888/r6KiIt1www0+x7333ntKT09XSkpKs3O+9NJLSk9PV2Jiorcn+tatW3Xttdd27OTrmrR58QnRQxufV1dJvcI79roAvAjRAQAAAAAA0KNNmjRJ+/bt08svv6zi4mINHDhQt912m7dHcnFxsQoLC32Oqaio0PLlyzV9+vQWz1leXq4nnnhCJSUlCg8PV2pqqu6++24NHTq0YyfftMrcNGkqERIiGeO0d6kiRAf8iRAdAAAAAAAAPd65556rc889t8V9M2fObLYtPDxczz77bKvnmz59eqsBe4eq8ziPQUEyxnj7PRtjnGr0qkrnFwC/oSc6AAAAAAAA0FXVV6KboBZqYb03FyVEB/yJEB0AAAAAAADoqurq27k07YfeILT+5qJVVZ03H+AYRIgOAAAAAAAAdFUNPdFdbYXoVKID/kSIDgAAAAAAAHRV9T3RTUuV6N52LlSiA/5EiA4AAAAAAAB0VZ5Dt3OxVKIDfkWIDgAAAAAAAHRVdbWSJONu68aiVKID/kSIDgAAAAAAAHRVDTcWdTUP0Q090YFOQYgOAAAAAAAAdFWedvREJ0QH/IoQHQAAAAAAAOiq2tETnXYugH8RogMAAAAAAABdVX07lxYr0UOpRAc6AyE6AAAAAAAA0FW1VYkeQiU60BkI0QEAAAAAAICuqq6NnujeG4sSogP+RIgOAAAAAAAAdFV1tc6jy918X307F1tNOxfAn1p49wEAAAAAAABHZ//+/Ud0XHh4uFwu6j696tu5GHcLMV4IPdGBzkCIDgAAAAAAgA537bXXHvYxxhjdd999SktL88OMuidb13pPdBPSS1aiJzrgZ4ToAAAAAAAA8IszzjhD/fr1a9dYj8ejV155xc8z6oY87emJTiU64E+E6AAAAAAAAPCLs846S0OHDm3XWEL0VtS3c5GrpRCddi5AZ6DBFAAAAAAAADrcj370I8XFxbV7vMvl0o9+9CPFxsb6cVbdUBvtXBRSX4lOOxfAr6hEBwAAAAAAQIc7//zzO+WY9lq0aJFee+01lZSUKDk5WdOnT9fw4cNbHPv111/r7rvvbrZ9zpw5GjBggPf1smXLNG/ePOXl5al///667LLLNGHChI6deMONRdtq50KIDvgVIToAAAAAAAACorq6WiEhIX6/ztKlSzV37lxdd911yszM1JIlS3Tfffdpzpw5bVa+P/zwwwoPD/e+joyM9D7PycnRww8/rEsvvVQTJkzQihUrNGfOHN1zzz1KT0/vuMl7K9FbiPGatHOx1soY03HXBeBFOxcAAAAAAAD41dKlS7Vo0SLv69zcXP3iF7/QlVdeqd/97nfav3+/X6//xhtvaMqUKTrzzDO9VeixsbFavHhxm8dFRUUpOjra+8vlaozSFi5cqKysLE2bNk0DBgzQtGnTNGrUKC1cuLBjJ1/XRiV6SH2I7vFItbUde10AXoToAAAAAAAA8KvXX39dVVWNLUeeeeYZlZeX6/zzz9euXbu0YMECv127trZWmzdv1pgxY3y2Z2VlKTs7u81jf/Ob3+gnP/mJ7rnnHn311Vc++3JycpSVleWzbcyYMcrJyemYiTfwtFGJ3tATXZKqubko4C+0cwEAAAAAAIBf5eXlaeDAgZKcFi6rV6/Wj3/8Y02ePFlJSUl6/fXXdeWVV/rl2mVlZfJ4PIqKivLZHhUVpZKSkhaPiYmJ0U9+8hOlpaWptrZWH330kX7/+9/rzjvv1IgRIyRJJSUlio6O9jkuOjq61XNKUk1NjWpqaryvjTEKCwvzPm+J8Xhk5VSiHzzGBAfLE+SW6mplqqtkeke2eI6uomH+3b3tTE9Zh9Rz1uLvdRCiAwAAAAAAwK+qqqoUWt+/e+PGjaqpqdG4ceMkScnJySoqKvL7HFoK11oL3JKSkpSUlOR9nZGRocLCQr3++uveEL0lh+pLvmDBAs2fP9/7OjU1VbNnz1ZcXFyrx5SGh6tMkoKClJCQ0Gz/zl5hsuX7FBcZqeDExFbP05W0tI7uqKesQ+o5a/HXOgjRAQAAAAAA4FcxMTHaunWrRowYoVWrVikpKcl7k87y8nJvwO4PkZGRcrlczSrES0tLm1WntyUjI0Mff/yx93VLVeeHOue0adM0depU7+uGwL2goEC1rfQ0ryt1rmGCgpSbmytrrc9+GxIilUsFO3fIuP33dewIxhglJCS0uI7upKesQ+o5aznUOtxud5sfVh0KIToAAAAAAAD8asKECXrhhRe0bt06rVq1ShdeeKF337Zt29S/f3+/XdvtdistLU1r1qzRhAkTvNvXrFmjE044od3n2bJli0/7loyMDK1du9YnFF+zZo0yMjJaPUdwcLCCg4Nb3NdqgFnX2BPdWtt8XH1fdFt1QOomIWiL6+iGeso6pJ6zFn+tgxuLAgAAAAAAwK9+8IMf6JRTTlFubq5OOeUUnxB95cqVGj16tF+vP3XqVL377rt67733tHPnTs2dO1eFhYU6++yzJUnPP/+8/vKXv3jHL1y4UCtWrNCePXu0Y8cOPf/881q+fLnOO+8875jzzz9fq1ev1quvvqpdu3bp1Vdf1dq1a3XBBRd07ORjYqW0TLnjW2nV0lDFX13V8n4AR41KdAAAAAAAAPhVSEiIfvKTn7S479577/X79SdNmqR9+/bp5ZdfVnFxsQYOHKjbbrvN296huLhYhYWF3vG1tbV65plnVFRUpJCQEA0cOFC33nqrxo8f7x2TmZmpWbNm6YUXXtC8efOUkJCgWbNmKT09vUPn7jrjfJkpF6hPYqL279nTfEB9JbqqCNEBfyFEBwAAAAAAQKcrLCzUzp07NWTIEPXp08fv1zv33HN17rnntrhv5syZPq8vvPBCn2r51kycOFETJ07skPkdsRCnEt1WVar1W5oCOBqE6AAAAAAAAPCrF154QZWVlZo+fbokp3f47NmzVVtbq/DwcN1zzz0aOHBgYCfZXXnbuVQGdh5AD0ZPdAAAAAAAAPjV8uXLlZyc7H09b948DRo0SDfffLPi4+P18ssvB3B23ZsJpZ0L4G+E6AAAAAAAAPCroqIiJSQkSJL27dunjRs36pJLLtHxxx+vCy+8UNnZ2QGeYTfm7YlOJTrgL4ToAAAAAAAA8Ctrray1kqTs7Gy5XC6NGDFCkhQTE6OysrJATq97o50L4HeE6AAAAAAAAPCr/v3764svvpAkffrppxo6dKhCQkIkScXFxerdu3cgp9e9NbRzqaadC+Av3FgUAAAAAAAAfnX22WfrySef1EcffaTy8nL97Gc/8+7Lzs726ZeOwxRCT3TA3wjRAQAAAAAA4FfnnHOOIiIilJ2draFDh+q0007z7quurtbkyZMDOLtuLqS+nQs90QG/IUQHAAAAAABAh9u6dasGDx7sfX3yySfr5JNPbjbu+uuv78RZ9UD1PdEt7VwAvyFEBwAAAAAAQIe75ZZbFB8frxNPPFETJ07U0KFDAz2lnqmhJzqV6IDfEKIDAAAAAACgw/3f//2fli9fruXLl+v1119X3759vYF6ZmamjDGBnmKPYEJ6yUqE6IAfEaIDAAAAAACgww0aNEiDBg3SJZdcol27dnkD9bfeektRUVE64YQTNHHiRI0cOVIulyvQ0+2+6tu5iHYugN8QogMAAAAAAMCvBgwYoIsuukgXXXSR8vPz9b///U8rVqzQkiVL1Lt3bx133HGaOHGixo8fH+ipdj+0cwH8rluF6C+++KLmz5/vsy0qKkr/+Mc/AjQjAAAAAAAAHI74+HhdeOGFuvDCC1VYWKjly5drxYoVeuCBB/Sf//wn0NPrfkLqQ3Qq0QG/6VYhuiQNHDhQd9xxh/c1P+4DAAAAAADQPcXGxuqCCy7QBRdcoJKSkkBPp3vytnOhEh3wl24XortcLkVHRwd6GgAAAAAAADhMO3bsUEFBgWpqany2G2M0YcKEAM2qmwtpCNGrZT0eGQpOgQ7X7UL03NxcXX/99XK73UpPT9dll12m/v37tzq+pqbG5w9mY4zCwsK8z7urhrl35zUA3QHvNaBz8F4DOgfvNaBz8F4DmsvNzdVDDz2kbdu2tTpm3rx5nTijHqShJ7rktHTpFRa4uQA9VLcK0dPT0zVz5kwlJSWppKREr7zyin7729/qoYceUp8+fVo8ZsGCBT591FNTUzV79mzFxcV11rT9KiEhIdBTAI4JvNeAzsF7DegcvNeAzsF7DWj0xBNPqKSkRD/60Y+UnJwst7tbRVJdW3BI4/PqSkJ0wA+61Z9Y48aN8z5PSUlRRkaGbrzxRn344YeaOnVqi8dMmzbNZ19DJUBBQYFqa2v9O2E/MsYoISFBubm5stYGejpAj8V7DegcvNeAzsF7DegcvNdwrHG73YcsVty4caOuv/56nXzyyZ00q2OHcbmcli7VVVIVNxcF/KFbhegH69Wrl1JSUrRnz55WxwQHBys4OLjFfT3hHzPW2h6xDqCr470GdA7ea0Dn4L0GdA7ea0CjyMhIhYeHB3oaPVdor/oQnZuLAv7QrUP0mpoa7dq1S8OHDw/0VAAAAAAAANCKc845R++++65Pl4HOtmjRIr322msqKSlRcnKypk+f3mqmtHz5ci1evFhbt25VbW2tkpOTdfHFF2vs2LHeMR988IH++te/Njv22WefVUhISLPtfuW9uSiV6IA/dKsQ/emnn9bxxx+v2NhYlZaW6uWXX9aBAwc0efLkQE8NAAAAAAAArfjOd76jp59+WrfccovGjRun3r17NxvTWqvejrB06VLNnTtX1113nTIzM7VkyRLdd999mjNnjmJjY5uN/+abb5SVlaXLLrtMERERev/99zV79mzdd999Sk1N9Y4LCwvTI4884nNspwfoUuPNRalEbzfPK0/LbvpGrll3ywQH4HuGbqVbhehFRUV65JFHVFZWpsjISKWnp+vee+/tMTcJBQAAAAAA6Ik2bNigDz/8UPv379fWrVtbHOPPEP2NN97QlClTdOaZZ0qSpk+frtWrV2vx4sW6/PLLm42fPn26z+vLL79cn3/+ub744gufEN0Yo+joaL/Nu92oRD9s9q35zuNnH8tMOjPAs0FX161C9FmzZgV6CgAAAAAAADhM//rXv9SnTx/97Gc/04ABA+R2d14kVVtbq82bN+u73/2uz/asrCxlZ2e36xwej0cHDhxoVkFfWVmpGTNmyOPxaPDgwbr00kt9QvZOU1+JbqsqZTr/6t3bvrJAzwDdQLcK0QEAAAAAAND97NixQ7NmzdLxxx/f6dcuKyuTx+NRVFSUz/aoqCiVlJS06xxvvPGGqqqqdNJJJ3m3JSUlacaMGUpJSdGBAwf05ptv6o477tADDzygxMTEFs9TU1Ojmpoa72tjjMLCwrzPW9Owr7UxJjRUVpKprmrzPIF2qHUERGXFYc+nS67jCPWUtfh7HYToAAAAAAAA8KvY2FhZawM6h5bCtfYEbp988oleeukl3XzzzT5BfEZGhjIyMryvMzMzdcstt+itt97SNddc0+K5FixYoPnz53tfp6amavbs2e1uVZyQkNDi9sKoGB2QFNkrVH1aCfC7ktbWcbC6faUyriC5Ipr30D9aO+ofI1xGMUf4NWvvOrqDnrIWf62DEB0AAAAAAAB+9d3vflevv/66xowZ0+k33oyMjJTL5WpWdV5aWtqsOv1gS5cu1d///nf98pe/VFZWVptjXS6XhgwZotzc3FbHTJs2zaf3e0OIX1BQoNra2laPM8YoISFBubm5LX4YUedxtpUV5Gv/nj1tzjOQDrWOpmxNjep+dpEkKeiJV2VcQX6ZU3lhvioP82t2OOs4UtZT57c1N9UZa+kMh1qH2+0+qvtqEqIDAAAAAADArzZv3qyioiLdeOONGjlyZLPe4sYYXX311X65ttvtVlpamtasWaMJEyZ4t69Zs0YnnHBCq8d98skn+tvf/qabbrpJ48ePP+R1rLXatm2bBg4c2OqY4OBgBQcHt3p8e67R4rj6G4vayspuEYS2uo6mY/aV+j6PjOm463vqGp9XVBzx16w96zgSnk/flX3+73LNvF1mxNgOP39L/LWWzuavdRCiAwAAAAAAwK8WLVrkff7pp5+2OMZfIbokTZ06VY8++qjS0tKUkZGhJUuWqLCwUGeffbYk6fnnn1dRUZFuuOEGSU6A/thjj2n69OnKyMjwVrGHhIQoPDxckvTSSy8pPT1diYmJ3p7oW7du1bXXXuu3dbSq/saiqq7y62WstdKXy6TkwTLxfm4b4/E0Pi8t6dAQXU2r/g+Ud9x5O4id+4gkyfPIXQp6/NXATgaSCNEBAAAAAADgZ/PmzQvo9SdNmqR9+/bp5ZdfVnFxsQYOHKjbbrvN296huLhYhYWF3vFLlixRXV2dnnzyST355JPe7ZMnT9bMmTMlSeXl5XriiSdUUlKi8PBwpaam6u6779bQoUM7d3GSFOpUoqu60r/X+fpLef72R0lS0D9e8++1aqobn5cWSwNTO+7cdY2V6Ko80HHn7WhNP0hAQBGiAwAAAAAAoMc799xzde6557a4ryEYb3DXXXcd8nzTp0/X9OnTO2BmHaC+nYuq/Bui220b/Xp+H7U1jdctLdahbwF7OOfu2pXo6HpcgZ4AAAAAAAAAgKMQ4rRzsVX+beeiiD7ep7ZpNbc/NAnRVVrUseeuaxKi79/XsedGj0SIDgAAAAAAgA7361//Wtu3b2/3eI/Ho1//+tfauXOnH2fVQ3l7ovu5nUuvsMbnZSX+vVbTEL2jr9U0RK/Y7/8PBA5X068zugRCdAAAAAAAAHS4HTt2qLq6+tADj/IYSCa0c9q5+PQS7+jq8IPVNAnRS/xYiS5J5V2sGj08wvvUWhvAiaABPdEBAAAAAADgFw888ICCg4MDPY2er76di/zdzsWnxUpJp13LlhZ38LkPCtH3lUmR0R17jaMRFiGp/ka3Fft92uggMAjRAQAAAAAA0OEmT558RMdFRkZ28EyOAYdo52Lzd0v9+ssEBR3ddXyC7aKOvdnnwZpWopd1cIh+cPuW0r3SgJSOvcbRaFp9XlZCiN4FEKIDAAAAAACgw82YMSPQUzh2NLRzqW5eiW6/+FSev8+WOe5kmZ/ecnTX8alE7+Bg+yDWn9c6qBLd7i3w7wcCh+vgfvCJAwM2FTjoiQ4AAAAAAAB0ZyENPdGbh+ieRQskOWH6UWtaHd6ZPdGrKmXL93fcuQ/uiV5U0HHn7ghN1m79fQNXtAshOgAAAAAAANCdhbTRzqXJTSqPmj/7lLdxLUlS/u6OO/fBIfreLhaiH1yJjoAjRAcAAAAAAAC6s4ae6HV1vm1QJJnw3h13nU5s53JwiG7zdnXcuQ8K0W2Xq0SvbnxemBe4ecCLEB0AAAAAAADozhp6okvNW7qEhXuf2oNvqHm4mvYSL8g9unMd8loHVaLn7enAc3fxdi5NK/737AjgRNCAEB0AAAAAAADoxow7WAoKcl5UHdTSpVdY4/PysqO7UNM+5fvLZPcf5fnavFa17+sObedS/2FCTKzzWFQo6/F03PmPgvV4fEN+QvQugRAdAAAAAAAA6O5a64veNBwuKz26axxcHZ7bgS1WDlZTHyT3dYJum9dxIbptCKn7xUsul9Pepav0Hm9209NC2QMVgZkLvAjRAQAAAAAA0Cl2796tr776SitXrtTGjRtVUUE42GEaWrpUH9TOpSNvUunPPuWtXWvAYOcxf7estR1z7oagOiTECdIlaesG2coDHXP+o9G0Aj+ij/OYuzMwc4GXO9ATAAAAAAAAQM+Vk5Ojd955R6tWrVJZmW/7D5fLpcGDB+vUU0/V6aefrvDw8FbOgkNqqEQ/uCd6k9Ygdl+pzFFcwnvTUmMka/1biV5/LZM4UHbdl9KBCqd3eUPofTQaQvQgt8zwMbIFufI8dq8U2kuuP/xNJrrf0V/jSDX9oCJ5sJS9Vnb3DpnUjIBNCYToAAAAAAAA8IOtW7dq7ty5+uabbzRgwACdeOKJSktLU2RkpEJCQrR//37l5eVpw4YN+s9//qN58+Zp2rRpmjp1qtxuIqvDFlJfiX5wT/Smoey+kqO7RkNP9OTB0o4tsn5t51JfkR0W5lSjb98kbd3Q8SH62BNlP1rkvK6qlF2/Vmbi6Ud/jSPV0MbGHSwzYJBs9lpp55bAzQeSCNEBAAAAAADgB//v//0/nXLKKbrqqquUlpbW5tjKykotXbpU//3vf1VXV6fvfe97nTTLHsTbzuXgEL1Jj+0OaudikgfL7tji35teNoT/7mCZwemy2zfJ8/fZ0pgJcs34fzKuo+hSXf81MUFB0rAs3307tx75eTtCw4cHwSHS4HRJkt2SI1tUKMX0kzFH87MEOFL0RAcAAAAAAECHe/DBBzVjxoxDBuiS1KtXL02ZMkVz5szRqaee2gmz64FCnXYu9qB2LtanJ3oH3Vg0LdN5zNslW1F+dOds9Vr14X9wiDR4aOP21Suk/D1Hd+66OufR7ZYJDpG57leNX79AV317Pzxwy6Q6Ibo2rZfnlmtkl38QsGkd6wjRAQAAAAAA0OESExMP+xiXy6X4+A5o13Es8vZEb72di93v25P+sDVUcEf387ZV8Tx8p+zqFUd33hbYmiaV6A1hcsO+HZuP7uS1je1cJMl14mS5fnGPsy3glej16w4OkeKTpCYV9/b1FwI0KRCiAwAAAAAAwK9uuOEGbd26tcV927dv1w033NC5E+qBTHvauVTsP7qL1Pi2WJEkbcmR5y9/kLX26M59sNpq77WUmCKlDPHusk88IM/Tfznyazb0RG/aez95sHPD1NJi2bLiIztvR2jaxsblkoJDG/fl71HdPTfJbs4OzNyOYYToAAAAAAAA8KuCggLVNg1zm6ipqVFBQYHf57Bo0SLNnDlTV1xxhW655RZ98803bY5ft26dbrnlFl1xxRW64YYbtHjx4mZjli1bpl/84he6/PLL9Ytf/EIrVnR8RXa7hTZUovu2c/G5sejRtl5pCJ+Dg6WBqT677MtzZXO+PrrzN1XTpK1JUJCC7pgjc+WMxut9vFjK231k5/beWDTIu8mE9pL6D3DO/crT8sx7Urah7Utn8vZED3bmdcVPfffv2OJ8gLB+TbP52Y3fqO7W62TXfCZbU93xH2wcwwjRAQAAAAAAEDB5eXkKCwvz6zWWLl2quXPn6qKLLtLs2bM1fPhw3XfffSosLGxxfH5+vv74xz9q+PDhmj17tqZNm6Z///vfWrZsmXdMTk6OHn74YZ122ml64IEHdNppp2nOnDnasGGDX9fSqoZ2LtUHheg1TUL0A0cZojetkh4xzmeXXbRAngduc8JbTweEzw03MQ0O8W4ygw5q67Jt45Gdu863nYv3/OkjnPN++q7skv/Kc+u1qrvrRtn1a+RZ+q5s+T7ZnVtka2pUV7xXtqpSNn+PbG2N7L6jbJXToMnXWJJcJ50h1xP/9R2za5s8D/5W9u2XZTdne8N0z78flvbmy/Po7+WZ8X3Zd1+T58O35Xn5KdmC3I6Z3zHKfeghAAAAAAAAwOH54IMP9OGHH3pf//Of/2wWlldXV2vbtm0aMWKEX+fyxhtvaMqUKTrzzDMlSdOnT9fq1au1ePFiXX755c3GL168WLGxsZo+fbokKTk5WZs2bdLrr7+uiRMnSpIWLlyorKwsTZs2TZI0bdo0rVu3TgsXLtSsWbP8up4WhdS3/Ti4J3pd03YuRxmiN23nMmiIXL+4W54lr0trP/cO8cz4vjRmgoJu+G2rp7G1taqb8zuZvrFyXfOLlgfVNql6b5CUIkX1lUqLnPP880HVLf9Qrhtul3EFtXCSVtS2HKIrfaT0cZOfOCgpkkqK5HnQWYuVnJYvsf21u7jQ6QufnyslDJDyd0sjxkmb1ss14zbnaz32RBlj2j8vybcnej1jjDRkmLRpvc9Q++qzsq8+K3P6t2Srq5vdcNXOe7LxRWmRTGtfaxwSIToAAAAAAAA6XHV1tcrKGqtzy8vLVdO0KlpScHCwJk2apEsuucRv86itrdXmzZv13e9+12d7VlaWsrNb7i29YcMGZWVl+WwbO3as3n//fdXW1srtdisnJ0cXXHCBz5gxY8bozTffbHUuNTU1Pl8DY4z3g4W2wtaGfW2O6dVLVpJ9f6E8xkghoXJNPs+3nUvlAcnjkQk6jMC5KW91eLCMMTIjx0uF+fI0CdElSatXyPPCP2TSR8p1/MnN17Frm5S91gmlz/y2NGho87V525qENB4XEiJzxxzZT5fIs+AZZ//az2V2bpUZNLT962hog+J2+1zXlTlKh6yht1ZqqOpuaCezZ4d3LpLk+dPtznxPOVvW45Hr0uucazW03Gnr9HW+X+MGQVffJM+b82WXvtv8mA/eOvR5d25r8fdPe35vtZfdv0926buyZSXO17gjfiKhnYIuvU5Sx6yjJYToAAAAAAAA6HDnnHOOzjnnHEnSzJkz9atf/UqDBw/u9HmUlZXJ4/EoKirKZ3tUVJRKSkpaPKakpKTF8XV1ddq3b59iYmJUUlKi6OhonzHR0dGtnlOSFixYoPnz53tfp6amavbs2YqLi2vXWhISElrdV33aWcp/62XZA+Wy770hSQqtPqAqa32C4f5RfRTUJ6rlkxzCzro6WUlxSQMUnJgoSao770LlvTVfdYV5PmPtu6/Lvvu6kl5bJnNQxXe0rVVDI526P/xSoaOPU9x9f3NupFlvj6xqJcUmJCi0/lqSpMRE1YT3Um5DiC6p7ve/UHBquvo/NFcmpMmNOFtRFBqickl9omMUddC5dwQFNYbsR8l+8o4zv6XvSq4gxc9+QqEjxrR5zP6ICBVLCo3orbiD5qZxJ6jgzp+r8vOlhz0Xk7dLCfHxrX6A0tbvrfaoyv5KBXfcKFu+76jOc6QSbrzNeTzKdbSGEB0AAAAAAAB+9dhjjwV6Cm1W4bZnfMNNGts6xlrb5v5p06Zp6tSpza7R1o1XG8YlJCQoNze39ZtF9o6R6w9/k/3f+7JbcmS/+FQHdu2QPai9S96WzTJxRxY02hqn33pBcbGMaYwVzf3/lOuzj+V5/P+aHbPzhsvlOuUcuaZc4F1H0WbfvvFVa7/Q7g8WyzW8MWCurTwgSdpbWiaz56A2Je5QqX+Sz41Fa7Zs0O5P3vc5R2vq9jlB7/4DB1Rx0LmD7nhYNnenPO++IW3owBuleuqUf/O1MqPGy3XVjTJ9Y1seVn+T3SqPR3sOmpsk2R/8RCYuSfaLT5u1b/FKy5Q2N/kpi5AQ2eoq7Vm7SqZ/ks/Qdv3eOgRbVKi6e26SyvdJSSnOTygEBUkul9P+phPk5hcoccCAVtfhdrvb/WFVSwjRAQAAAAAA0OEKCwsVG9tyUNiWoqIi9e3bt8PmERkZKZfL1axCvLS0tFm1eYOWKsrLysoUFBSk3r17tzqmrXNKTvua4KY9vptoT4BprW17XGS0zLnTpG9Wy37xqey+Ut92LpJTKRzb/5DXanF+9UG/DXI7bU2aGnuizKnnyG7fLDW94ef2zfI8/3fppDNkjJGnqlJ2rxMUKzTM6dleWyP7wVuyw5q00Klve9PitYxLrjsekb76Qp6/3+/d7Hnwt/KMmSDXT2+VcbcRe9Y2nDuo+ddzwCCZAYPkyhgtlRXLfrVSds1nkscjbck+6ip1+9VK1d11o5SUItfVP5eJ9w21bW19Gxt3cMvf66i+cl10leyp58i+/oLs5mwpb1fj/qAgBd32gHMz1L/8QeaKn8kueU3avkl21zYpPrH5OdWO31ttqPvP49L+MiklTa6b/yjTy783Cm5RfVh/NOtoCyE6AAAAAAAAOtxNN92ks846S9/61rcO2WKhtrZWn332mV555RWdeOKJ+v73v99h83C73UpLS9OaNWs0YcIE7/Y1a9bohBNOaPGY9PR0ffHFFz7bVq9erbS0NLnrw9mMjAytXbvWp7J8zZo1ysjI6LC5H7E+kc7jvlKppuEGnSFOn/Ejvblo00p5d/MPAow7WOaqG2RLi+X53UypYr/PfvvZx/K88pTyEwdKkTHOMd+5TGb4GHnuuUl21TLZsmKZ+n3e8L+Fa0mSCQ2VHTG2+Y7VK6TstdLIca2vpSEIP/jGok3P3ydS6hMpM2CQdO40p6J//z4pyCXl7lLCmOOU++Vn0oBB0s6t0oAUaetGSVae/30glZVIG9e1fPKK/dLGdfI8/7iCZt0tW1vbGPp7byza8rq984tLkLlmlmxZseyiBVJyquxL/5Lrqhuc/cOyFPSXFyVJnnVfytaH6GbcxDbPe7jsui+lL5dJLpdcV88KTIDeCQjRAQAAAAAA0OF++9vf6qmnntLbb7+toUOHauTIkUpNTVVUVJSCg4O1f/9+5eXlKScnR6tXr1ZlZaXOP/98n1C6o0ydOlWPPvqo0tLSlJGRoSVLlqiwsFBnn322JOn5559XUVGRbrjBCSDPOeccLVq0SE899ZTOPPNM5eTk6L333tNNN93kPef555+vO++8U6+++qpOOOEEffbZZ1q7dq3uueeeDp//YesT7TzuL2tsp9EnSioqOOwQ3ZaVyDPnTpmmVeJtBLwmKkauP82V9uyU5/ezGs8z759SVaVqNjQGy6ZfnMzAVG/7EfvpuzLfqv8AxRsmh7R+rbBwuX56i+yOLbILX2y81pf/k2kjRLcNAX0bIXqza4X2kupvDGpiYhXUL06ukeOcqueo+uB/bD/ntGMnOhX/O7bI7t4uu/hVp7VJww1JG6xfI89/n5N962W5fvwrmeNOblx3Kx8eNJtXZIzMxdc4L046o+VBKUOkZR/Ivv2y7LAsmaHD273utlhr5XnF6U1vzrhAJnlwh5y3KyJEBwAAAAAAQIcbPny47r//fn355Zd655139NZbb6m6urrZuPj4eJ177rk6++yzFRMT45e5TJo0Sfv27dPLL7+s4uJiDRw4ULfddpu3R3JxcbEKCwu94+Pj43Xbbbfpqaee0qJFixQTE6Orr75aEyc2VvFmZmZq1qxZeuGFFzRv3jwlJCRo1qxZSk9P98saDkvv+kp0axtboURGS0UFshX7dThdqu3nn0g7t8ju3NK48RDhswkOcVp7/PL3sru2eQP0Zvo6X39z2nmym7Odli5nXOCE1Q1Bd/AhrnXcydL4SbK5O6UvnBtu2lXLZS+4VKqpkolPkt1f5nyg0H+A04feW4ne8k02O4KJ6CMNy3I+fJgyVbakSDZ7rez7C6VN651BdXWyb8yTJHme/otcacOkhnYubXx4cNhzOfUc2foKfc87ryqog0J0ffWF07ontJfM+Rd3zDm7KEJ0AAAAAAAA+M24ceM0btw41dbWauvWrSouLlZ1dbX69Omj5OTkDu1/3pZzzz1X5557bov7Zs6c2WzbiBEjNHv27DbPOXHiRJ9gvaswQUFSRB/nRo8NIqOdxwOHrkS3RQXyPHiHzPiTpOJC351BbhmXq33zGD5GSh8hu+gVqaSo+YCGEP34U2RffdYJ+Z95TObKJt+PdlRkG2MU9NNbZWtr5PnlVVJpsTy/uVoKCpLrht/K859/SPm7pcHpcs26q7E1TTurvTuCie4rc+Jk2aEjZNeskKqrZOfPbRxQUS7PU3+WSRzY4XMzvcLkOv/78mSvlXZv77Dzet5/0zn/aefKNPz+6qEI0QEAAAAAAOB3brdbQ4cODfQ0jh19onxCdNMnSlZqVzsXu/xDKX+37NsvN9/Z1g07W2DcwU6l+WvPS5J6T71Y+994qXGOcvqbu677lTwP/lZ2xUey36xuPMFhVGQbd7DMhFNlP3zb2VBXJ88jdzcO2LpBnqcfc25mKvm1Er3VOfaLkznjAtmqysYQPba/VFosff2l7NdfOtsO0RP9sCWlOI/5e2RramSO8vy2INepRJdkJn/raGfX5bXvYyMAAAAAAAAA3UfDzUUbRDqBdVshuvXUybP4Vdl3/tv6eVtqy3II5qzvSOkjZM64QNHX/VJm8rdkLr3Wp6LdZI6Sa8ZtTgX9vlJnY1TMYVdkm1PObnlHxignNF+51LnxqNR4M88AMKG9ZKb/XOoXL9dPb5W57CeN/eslqaNv0BnVVwqLkDweKW/XUZ/OLv/AaRU0fIxM/6Sjn18XRyU6AAAAAAAA/G7Pnj165513tGvXrma90Y0x+t3vfhegmfVQDTcXlZybWkbUh+pttHOxXyyVfelfjRviEpybYQ4a6vS+PkImLFxBv7lfxhiZ4GAFXTnDuSHnwePGnijXfU/Irlou1VbLjDre6WF+OAYNlZlwmmxRoVw/ukGe2bdKlRVy/egG2ZyvZZ96tHHsYdxY1B9cJ58lnXyWJMkMGiLbP0n243ek4GCZE0/v0GsZY6SkgdKm9bK7tx/VTUCttc5PK0gyE0/vmAl2cYToAAAAAAAA8Kvt27fr9ttvV9++fZWbm6tBgwZp3759KioqUr9+/dS/f/9AT7HHMZH17Vskp5o7PEKSZFuoRLfWSl+t9N6Ys4HrnsdkP3lHZugIef7yB2lvvp9nLZnwCJlJU478eGNkfvxr72vX7x6RKitk4pNk4pNUt/RdacM6Z2eAQ/SDmYxRMhmj/Hf+pBTZTeulPTuO7kQ7tki5u6TgEJlxJ3XM5Lo42rkAAAAAAADAr/7zn/9ozJgxeuihhyRJP/3pT/W3v/1Nt9xyi2pqavSDH/wgwDPsgXpHNT53B8vUh+gttnP5ZpU8f75b9otPvZvMD2fIuIPlOv18p2o5PtG/8/UTE9Ov8WadkkxyauPOAPRED6iBztrt6hUt/iRAe9mvVzpPRoyVCQvviJl1eYToAAAAAAAA8KstW7bo9NNP97bmaAjwxo8fr29/+9t6/vnnAzm9nikyuvG52+30w5ZabOdis7/yee26/59yTT7PZ5sZOryjZxgYTduYHGa/9e7OnHCqFBLqVJKvW3XE57Hr63vKDx/TQTPr+gjRAQAAAAAA4Ffl5eXq3bu3XC6XgoKCVF7eGOSmpaVpy5YtAZxdz2Ri+ja+cAdLEb2d5y1Voh9cldw3rvn5vvV9mZOmyPXTWzpwlp3PDDx2K9FN70iZU8+RJNml7x3ROWxtjbTRaYdjMkd32Ny6OkJ0AAAAAAAA+FXfvn1VVlYmSUpISNC6deu8+7Zv365evXoFamo9V0xs43N3cGMlekshemmx96k568IWb+ZpgkPkumaWzHEnd/RMO1dSSuPzygOBm0eAmGFZkiS7Z/uRnWDrBqm6Suod6fu17OG6Vvd8AAAAAAAA9DiZmZnKycnRhAkTdMopp+ill15SSUmJ3G63PvjgA5166qmBnmLPE9Ov8bkx3huLquqAbF2dTJMqbFvmhOjmhzNkTju3M2fZ6UxoLyl9hLRruzR4aKCn0/kSkp3HvN2yHo/P74P2aGjlosxRMq5jpz6bEB0AAAAAAAB+ddFFF6m42Alqv/vd76qkpESffPKJjDE66aSTdOWVVwZ4hj1Q0xuLlu9rrESXnL7ovSMbX9dXopu+cS1Wofc0rl/fJ9XUyISGBnoqnS+2v9PGprpKKt4rxcYf1uE2u74femaWP2bXZRGiAwAAAAAAwK8SEhKUkJAgSXK5XLrmmmt0zTXXBHhWPZtPlfD+MqfiODRMqjrgtHRpGqKXlTiPUdGdOcWAMS6XdCwG6JKM2y3FJUi5u6S8nYcVotuaGmnTeuc8w46dfugSPdEBAAAAAACAY0NDS5eK/d5N1lMnlZU6L6L6tnAQepz6li42d9fhHbclW6qplqJiGtvCHCMI0QEAAAAAAIBjQXgLNxfdVyZZj2RcUp/Ilo9Dj2L6D3Ce5O48rOPslhznyZDhx0Tbn6YI0QEAAAAAAICeKDzC93VDX/QDTUL0+vYc6hMp4zq8m0yim0pwQvTDrkTftkmSZI7BG7ISogMAAAAAAAA9kBk53nkSVH9bxPpQ3dZXotucr+X52x+dfX2iDj4cPZRpaMWSd3ghut26wTl+0LEXonNjUQAAAAAAAKAHMlf8TIqKkTlpivM6PEJW8rZzsds2No5NSgnADBEQ9ZXoKiqUraps1yG2fL9UkOu8GDTETxPruqhEBwAAAAAAAHogE9Fbrkuvk0lJczaEHdQTvbjQeUzNkLlyZudPEAFhekdKvev737e3Gn2708pFcQkyEX38M7EujBAdAAAAAAAAOBY09Eg/sN95LHJCdDPhVJmw8ABNCgHR0Bd9T/tuLmp3bHGeDEzz14y6NEJ0AAAAAAAA4FgQ7luJbkv2SpJMTFygZoQAMf0P8+aiu7c5xw0Y5K8pdWn0RAcAAAAAAECPtX//fv373//W559/Lkk6/vjjdc011ygiIqLF8bW1tXrhhRf05ZdfKj8/X+Hh4Ro9erQuv/xy9e3b1zvurrvu0rp163yOnTRpkmbNmuW3tRy1+hYetqjAeV1fia6YfgGaEAIm8fBuLmp3EqIDAAAAAAAAPdKf//xn7d27V7fffrsk6fHHH9ejjz6qW2+9tcXx1dXV2rJli773ve9p8ODB2r9/v5566in93//9n+6//36fsWeeeaYuvfRS7+uQkBD/LaQDmKHDnRuLbs6RPVAhlRY5O/rGBnJaCADTf4Cs2tfOxXo80p7tzotjNESnnQsAAAAAAAB6pJ07d2rVqlX66U9/qoyMDGVkZOj666/XypUrtXv37haPCQ8P1x133KFJkyYpKSlJGRkZuvrqq7V582YVFhb6jA0NDVV0dLT3V3h4F+8rHpco9YuX6mplP/9E8nikoCApMjrQM0Nnq++JrrxdTkjelsJcqbpaCg6R4hP8P7cuiEp0AAAAAAAA9Eg5OTkKDw9Xenq6d1tGRobCw8OVnZ2tpKSkdp2noqJCxphmIfnHH3+sjz/+WFFRURo7dqwuvvhihYWFtXqempoa1dTUeF8bY7zjjTGtHtewr60x7WGMkR0xVvbjxbIfLXI2RvWVK6hzIsKOWkeg9Yh1xCU6H6BUV6lub36ba7G766vQE5M77ffK4fL396RrrhoAAAAAAAA4SiUlJYqKimq2PSoqSiUlJe06R3V1tZ5//nmdfPLJPiH6Kaecovj4eEVHR2vHjh16/vnntW3bNt1xxx2tnmvBggWaP3++93Vqaqpmz56tuLj23dgzIeHoq4APnH6uCj9eLG3dIEkK6Z+o/omJR33ew9ER6+gKuvs69iQmq3bnNtXu3KqEcRNbHVf2SZlKJYWnZapfJ/9eOVz++p4QogMAAAAAAKBbefHFF33C6Jb88Y9/bHWftbZdFau1tbV6+OGHZa3Vdddd57PvrLPO8j5PSUlRYmKibr31Vm3evFlpaWktnm/atGmaOnWq93XDHAoKClRbW9vqPIwxSkhIUG5urqy1h5x3W2xKusyJk2WXfygZo9qTztSePXuO6pzt1ZHrCKSeso662ARp5zbV7NymksTBra6lbsN6SVJlVEyn/V45XIf6nrjd7nZ/WNUSQnQAAAAAAAB0K+edd55OPvnkNsfExcVp27ZtKi0tbbavrKysxQr1pmprazVnzhwVFBTod7/73SH7naempiooKEi5ubmthujBwcEKDg5ucV97wlhrbYeEtuaqG6Qhw2XSMmQGDe30ILij1hFo3X4d/Z2+6LU7t8ke3/pabN4u57H/gC6/Xn99TwjRAQAAAAAA0K1ERkYqMjLykOMyMjJUUVGhjRs3aujQoZKkDRs2qKKiQpmZma0e1xCg5+bm6s4771SfPn0Oea0dO3aorq5O0dHR7V5HoJiQUJkzzg/0NBBoicmSpJodW9sel+fchNf0b989BHoiV6AnAAAAAAAAAPhDcnKyxo4dq8cff1w5OTnKycnR448/rvHjx/vcVHTWrFlasWKFJKmurk4PPfSQNm/erBtvvFEej0clJSUqKSnxtlzJzc3V/PnztWnTJuXn52vlypWaM2eOUlNTNWzYsICsFThcJsEJ0Wt3bm11jC3fL+2r/2mO+GM3RKcSHQAAAAAAAD3Wz3/+c/3rX//SvffeK0k67rjjdO211/qM2b17tyoqKiRJe/fu1eeffy5J+s1vfuMz7s4779TIkSPldru1du1avfnmm6qsrFS/fv00fvx4XXzxxXK5qFlFN1FfiV63N19BByqkXmHNx9S3clF0P5mW9h8jCNEBAAAAAADQY/Xu3Vs///nP2xzz4osvep/Hx8f7vG5JbGys7r777g6ZHxAoJry3FBUjlRZLuTulwenNxth8p5WLjuFWLhLtXAAAAAAAAADgmNTQ0sXu2dnygMI8Z1xs/86aUpdEiA4AAAAAAAAAx6LEhhB9R8v7C/Odx9j4TppQ10SIDgAAAAAAAADHIJM40HmSu6vF/XZvQ4hOJToAAAAAAAAA4FhTH47bvXkt729o59KPEB0AAAAAAAAAcIwx/erbtOwtaLbP1tVJxYXOi360cwEAAAAAAAAAHGsawvHyfbKVB3z3lRRJdXVSkFuK7tv5c+tCCNEBAAAAAAAA4BhkwsJlIvo4Lw6uRq9v5aJ+cTKuYztGPrZXDwAAAAAAAADHMHd8ovOkKN9nu7dP+jHeykUiRAcAAAAAAACAY1ZQfIIkye71DdFV6Lw2scf2TUUlQnQAAAAAAAAAOGa5+yc5TwoPDtGpRG9AiA4AAAAAAAAAxyh3fSW6inx7onsr06lEJ0QHAAAAAAAAgGNVUH1Ibkv2+u6oD9ENleiE6AAAAAAAAABwrArqG+c8KSnybrO1tVJRofOCSnRCdAAAAAAAAAA4VgX1jXWelBbJWus8Ly6UrEdyB0uR0QGbW1dBiA4AAAAAAAAAxyhXQ4heXS0dKHeeN/RD7xcv4yJC5isAAAAAAAAAAMcoV2gvKTzCeVFaLEmye+tvMtovLkCz6loI0QEAAAAAAADgWBbd13ls6Ite7PRDNzGxAZpQ10KIDgAAAAAAAADHMBPVT5JkvSH6XueREF0SIToAAAAAAAAAHNsOqkS3JQ0het8ATahrcQd6AgAAAAAAAIC/7N+/X//+97/1+eefS5KOP/54XXPNNYqIiGj1mMcee0wffvihz7b09HTde++93tc1NTV65pln9Omnn6q6ulqjRo3Sddddp379+vlnIYA/NYTopbRzaQkhOgAAAAAAAHqsP//5z9q7d69uv/12SdLjjz+uRx99VLfeemubx40dO1YzZszwvna7fWO0uXPn6osvvtBNN92kPn366Omnn9b999+v2bNny+Wi+QO6FxPdV1ZNKtAb2rpE86GQRDsXAAAAAAAA9FA7d+7UqlWr9NOf/lQZGRnKyMjQ9ddfr5UrV2r37t1tHut2uxUdHe391bt3b+++iooKvffee7rqqquUlZWl1NRU3Xjjjdq+fbvWrFnj72UBHa9vnPNYmC+bv0faV+q8jiFEl6hEBwAAAAAAQA+Vk5Oj8PBwpaene7dlZGQoPDxc2dnZSkpKavXYdevW6brrrlNERISGDx+uyy67TFFRUZKkzZs3q66uTllZWd7xffv2VUpKinJycjR27NgWz1lTU6Oamhrva2OMwsLCvM9b07CvrTHdAevoehrW4IpPlEeStm2U5/brnZ3uYJnekd1inf7+nhCiAwAAAAAAoEcqKSnxBt9NRUVFqaSkpNXjxo0bp5NOOkmxsbHKz8/XvHnzdM899+j+++9XcHCwSkpK5Ha7farT23PeBQsWaP78+d7Xqampmj17tuLi4tq1noSEhHaN6+pYR9fTf9RY7Tp4Y21Nmx80dUX++p4QogMAAAAAAKBbefHFF33C6Jb88Y9/bHWftbbNitVJkyZ5n6ekpGjIkCGaMWOGVq5cqRNPPLHN87Zl2rRpmjp1qvd1wxwKCgpUW1vb6nHGGCUkJCg3N/eQ1+jKWEfX07CW/JISKapv441FJSk4RHv27AnY3A7Hob4nbre73R9WtYQQHQAAAAAAAN3Keeedp5NPPrnNMXFxcdq2bZtKS0ub7SsrK2uxQr01MTExiouL8waK0dHRqq2t1f79+32q0cvKypSZmdnqeYKDgxUcHNzivvaEsdbabh/aSqyjK7LWSnH9G0P00DC5rr6p263PX98TQnQAAAAAAAB0K5GRkYqMjDzkuIyMDFVUVGjjxo0aOnSoJGnDhg2qqKhoM+w+2L59+7R3717FxMRIktLS0hQUFKQ1a9Z4q9aLi4u1fft2XXHFFUewIqALCO3lfer601yZXmEBnEzXQogOAAAAAACAHik5OVljx47V448/rh//+MeSpCeeeELjx4/36fU8a9YsXX755ZowYYIqKyv14osvauLEiYqOjlZBQYH+85//qE+fPpowYYIkKTw8XFOmTNEzzzyjPn36qHfv3nrmmWeUkpLic7NRoFupPOB9SoDuixAdAAAAAAAAPdbPf/5z/etf/9K9994rSTruuON07bXX+ozZvXu3KioqJEkul0s7duzQRx99pPLycsXExGjkyJGaNWuWwsIag8Uf/ehHCgoK0pw5c1RdXa1Ro0bplltukcvl6rzFAR3I9Z3L5ZnzO5lTzg70VLocY7tbY5sOUlBQoJqamkBP44gZY5SYmKg9e/Z0u95EQHfCew3oHLzXgM7Bew3oHLzXcKwJDg4+qhv24dA5VU/5c4V1dD0Hr8UW5EoxsTLu7lV7fajvydH+OdW9vhoAAAAAAAAAAL8wcQmBnkKX1K1/vmTBggW65JJLNHfu3EBPBQAAAAAAAADQA3XbEH3jxo1asmSJBg0aFOipAAAAAN3CV1+5dfrpziMAAACA9umWIXplZaUeffRRXX/99YqIiAj0dAAAAIBuITvbrQ8/dB6bystz6cEH+ygvr1v+9wAAAADwq275r+R//vOfGjdunLKysgI9FQAAAKDby88P0kMP9VF+flCgpwIAAAB0Od3u5zg//fRTbdmyRX/84x/bNb6mpsbn7sbGGIWFhXmfd1cNc+/OawC6A95rQOfgvQb4z1dfub2V5x99FOrzKEmZmbU+4xveh3l5Lj3zTLiuvLJC/ft7Omm2QM/A32sAAPQs3SpELyws1Ny5c3X77bcrJCSkXccsWLBA8+fP975OTU3V7NmzFRcX569pdqqEBO6YC3QG3mtA5+C9BnSsPXukH/9Y2rbNd/tLL4XrpZfCJUnjx0s/+5mzfceOODX8M7mgQHroIemKK/ooMbHxfI8/Ll1/vbzbALSOv9cAtJfb3b6Irr3jujrW0fX0lLW0to6jXZ+x1tqjOkMnWrFihf70pz/J5WrsQuPxeGSMkTFGzz//vM8+qfVK9IKCAtXW+lbddCfGGCUkJCg3N1fd6FsIdDu814DOwXsN8I81a9w677w4/eY3ZRo4sE4ffRSql14K18UXV2j/fqO33gpr9dgrrijXc89F6O23C5SVVetzvqbbJKrWgYPx9xqONW63u8cUKwJAS7rVRwyjR4/Wn/70J59tf/vb35SUlKQLL7ywWYAuScHBwQoODm7xfD3hHzPW2h6xDqCr470GdA7ea4B/TJlSpdGjncKSl14K12mnVenkk6t00037JUlr1wbr5pujdccdpYqPd0Lw/HyXd1+DvXsbW1M0fa/m5bn00EN9dM45lYqPr/P7eoDugr/XAHSUAwcO6K677tJdd93lbVPcHbGOrqenrMXf6+hWIXpYWJhSUlJ8toWGhqpPnz7NtgMAAADHorw8l/cGoQ0BeMPjjh2NNw7t39/TrGp882a3fv/7CJ9tN98c7X1+9tmVPueT1Gponpfn0rPPRuiHPyynOh0AgKNkrdWWLVu6/QdzrKPr6Slr8fc6ulWIDgAAAKB1eXkuzZgRo2XLQn22Nw3CBw1qfjPRBuefX6krr6yQ1FidfvbZlXrnnV6S5H1ser4rrijX2LE13mMa7N1rvNXpTUN0wnUAAAB0N90+RL/rrrsCPQUAAACgS8jPD9KyZaF69NFipafXeoPwBx4o8bZzycqKk1SrpkU68fF1+uUv92n48Jpmwfb06eX61a/2SZLP+VatCtZzz0XU/3LGHhyutzbHg8N1gnUAAAB0Zd0+RAcAAADgKz291huaS9Lo0TUaPbpGxhglJkp79viO79/f4w3KD9avn8fnXA3nO/PM5lXrh+qp3lrrl5aCdQAA0Cg4OFjf//73W73vX3fBOrqenrIWf6+DEB0AAADoxtrqgb5hw5H/c7+hOr214PtIeqq31frlYFSnAwDQKDg4WJdcckmgp3HUWEfX01PW4u91EKIDAAAA3VR7eqBPnFjVahDelpaq0w8VrLfUU709rV9aumEpPdUBAADQVRCiAwAAAN1Ue3qgx8fXdVjY3Frbl7Z6qrfW+qU9NyxtCT3VAQAA0NkI0QEAAIBurrUe6J2lrZ7qDfvbc8NSeqoDAACgKyJEBwAAALoRf/VA72iHav3S0g1LO7KnukSFOgAAADpG1/lXNgAAAIA2+bMHekc7VOuXlubYkT3V4+PraP0CAOgRFi1apNdee00lJSVKTk7W9OnTNXz48EBPq1Uvvvii5s+f77MtKipK//jHPyRJ1lq99NJLevfdd7V//36lp6fr2muv1cCBAwMxXR/r1q3Ta6+9pi1btqi4uFi//vWvNWHCBO/+9sy9pqZGzzzzjD799FNVV1dr1KhRuu6669SvX78us47HHntMH374oc8x6enpuvfee7vUOhYsWKAVK1Zo165dCgkJUUZGhn74wx8qKSnJO6azvieE6AAAAEA30dk90P2hrRuWdmRP9V/+cp/OOaey2fUJ1gEA3cnSpUs1d+5cXXfddcrMzNSSJUt03333ac6cOYqNjQ309Fo1cOBA3XHHHd7XLpfL+/y///2vFi5cqBkzZigxMVGvvPKK/vCHP+jhhx9WWFhYIKbrVVVVpcGDB+uMM87Qgw8+2Gx/e+Y+d+5cffHFF7rpppvUp08fPf3007r//vs1e/Zsn69DINchSWPHjtWMGTO8r91u35i4K6xj3bp1OvfcczVkyBDV1dXphRde0B/+8Ac99NBD6tXL+fdfZ31POmfFAAAAADpMQw/0huC84fno0c1D6O6gIVhvbe79+3t81ig5PdXffrtAb79doAceKJEkPfBAiZ57bq8efbRYxx1X5dPupuFXS61fGoL1hjY5AAB0FW+88YamTJmiM88801uFHhsbq8WLFwd6am1yuVyKjo72/oqMjJTkVA2/+eabmjZtmk488USlpKRo5syZqqqq0ieffBLgWUvjxo3TD37wA5144onN9rVn7hUVFXrvvfd01VVXKSsrS6mpqbrxxhu1fft2rVmzpkuso4Hb7fb5HvXu3du7r6us4/bbb9fpp5+ugQMHavDgwZoxY4YKCwu1efNmSZ37PaESHQAAAOjCuksP9I52JD3VR4+u0eLFvfTQQ318th+q9Qs91QEAXVFtba02b96s7373uz7bs7KylJ2dHZhJtVNubq6uv/56ud1upaen67LLLlP//v2Vn5+vkpISjRkzxjs2ODhYI0aMUHZ2ts4+++wAzrpt7Zn75s2bVVdXp6ysLO+Yvn37KiUlRTk5ORo7dmwAZt6ydevW6brrrlNERISGDx+uyy67TFFRUZLUZddRUeH8ZGJD4N+Z35Oe+69uAAAAoJvrTj3QO9qR9FSXpB/+sNzbxqW9rV/oqQ4A6IrKysrk8Xi8wWaDqKgolZSUBGZS7ZCenq6ZM2cqKSlJJSUleuWVV/Tb3/5WDz30kHfeLa2psLAwALNtv/bMvaSkRG6326equ2FMV/qejRs3TieddJJiY2OVn5+vefPm6Z577tH999+v4ODgLrkOa62eeuopDRs2TCkpKZI693tCiA4AAAB0UT2hB3pHa6unesPX4uCvx/Tp5d5j/NFTXSJcBwD4jzHNf2KqpW1dxbhx47zPU1JSlJGRoRtvvFEffvih0tPTJTWfv7W2U+d4NI5k7l1tfZMmTfI+T0lJ0ZAhQzRjxgytXLmyzRYwgVzHk08+qe3bt+uee+5ptq8zvieE6AAAAEAX19ADvUHT3uBovWq9QUutX1oK1h94oERJSXUqKnKpb9+6Zu1zpNZbv7QWrgMAcKQiIyPlcrmaVcuWlpY2q7ztynr16qWUlBTt2bNHJ5xwgiSnOjgmJsY7pqysrMuvKTo6WlLbc4+OjlZtba3279/vU/lcVlamzMzMTp3v4YiJiVFcXJz27Nkjqeut41//+pe++OIL3X333erXr593e2d+T7ixKAAAANCF5OW5fG6EKTXeGLMn90D3h7ZavzQE6wffoPWLL0J0440xuuKKWG9l+s03R+u88+J03nlxmjvX+c9X0+9RXl7L/63Ky3PpwQf7tLofAIC2uN1upaWlNbv54Zo1a7p0IHuwmpoa7dq1SzExMYqPj1d0dLTPmmpra7Vu3bouv6b2zD0tLU1BQUE+Y4qLi7V9+3ZlZGR0+pzba9++fdq7d683iO4q67DW6sknn9Ty5cv1u9/9TvHx8T77O/N7wr/CAQAAgC6ip/dAt7U1UkW5VLHf+2h9Xtc/rzwghYRKYRFSWJjUK1wKC5cJC/c+V9Pnob1kXM2D6kO1fmnJkfRUv+KKco0dW+M9psHevYae6gCAozJ16lQ9+uijSktLU0ZGhpYsWaLCwsIufQPOp59+Wscff7xiY2NVWlqql19+WQcOHNDkyZNljNH555+vBQsWKDExUQkJCVqwYIFCQ0N1yimnBHrqqqysVG5urvd1fn6+tm7dqt69eys2NvaQcw8PD9eUKVP0zDPPqE+fPurdu7eeeeYZpaSk+NzYMpDr6N27t1588UVNnDhR0dHRKigo0H/+8x/16dNHEyZM6FLrePLJJ/XJJ5/oN7/5jcLCwrw/lREeHq6QkJB2/X7qqLUY29Wa8nSSgoIC1dR03x+BNcYoMTFRe/bs6XJ9lYCehPca0Dl4rwGOtWuDdd55cX7rgd5R7zVbWSHl53rDb9skFFdFuXSgXLZ8v3SgXGp4rNgvVVcf8TXbZIzUqz5s7xXmDdlNS4F7rzCZ8N5STD8ptr/UJ0r5+UEtBtsN34/nnturfv083m0N35NVq4L13HMRrU7riivK9dxzEXr77QLv96/hnE23SYTrPQ1/r+FYExwcrLi4uEBPo8datGiRXnvtNRUXF2vgwIH60Y9+pBEjRgR6Wq16+OGH9c0336isrEyRkZFKT0/XD37wAyUnJ0tyqotfeuklLVmyROXl5Ro6dKiuvfZa780iA+nrr7/W3Xff3Wz75MmTNXPmzHbNvbq6Ws8++6w++eQTVVdXa9SoUbruuusUGxvbJdbx4x//WA888IC2bNmi8vJyxcTEaOTIkbr00kt95tgV1nHJJZe0uH3GjBk6/fTTJbXv91NHrIUQvZviH2VA5+C9BnQO3muA4+CAtbXA9UgdyXvNVlVJOzbLbtsobd0ou3WDlLdLOpr3aliEFN7wq7cUHiHT5Ll6hTmB+4EKqbJCOlAh2+R50+2qO8qq/JBQJ0yP7S9z0OO6vAE658LBrYbg8fF1ys8P8m6/+eZo3XFHqeLjnRA8P9+l3/8+yudDkL17ja64IrbZ97Sjv9cILP5ew7GGEB1AT0c7FwAAACCA8vJcPkFs08fO7oFua2qkXVtlt26Utm5wgvPd2yVPC5XRfaKk3pHeINyERUgREVJY7/rHCJmI3vWBee/GwDwsTMYV1DHztVaqqa4P1A84jxXlUuUBJ3RvIXi3Byqcqvi9BVJpkVRd5axx93Y1RJ0Nj8MkZU+NlHt+vOo+jZeJTVBMdZJOi81USHEvxQ/rq/79g33mtHmzW7//vW91etPWL2ef3dgqpkFrrWWoTgcAAOgaCNEBAACAAAlkD3RbVyft2S67ZYO0baMTnO/aKtXWNh8cFSMNTpcZNFRm8FBp0FCZyOjm4zqZMcapJA8JlSJjfPe143hbUyPtzZcK82QL86T6X7YwT9qbJ+3fpzBPmbS7TNq9UVZSoqRnJ0h6RvI8a6SovlJsfyW5E/XL9DR9KzNS1/8zXlUxyVq1KV43/yamQ3uqS4TrAAAAnY0QHQAAAAiQ/PwgLVsW6rce6A2sxyPl7ZbdtkHFBXtU+/UqacfmlnuU9+7jhOSD0mVSh0qD0qXovk5g3cOY4GApYYCUMKDF0N0eqHDCdG/Inu8TtquqUirZK5XsVbTWaVb6u9KyxuOH9IpU8oQMDR6VrN+fN1iV/QZrZe4Q/fLWRJ+e6s4v55iDw/WW5OcHtRiuAwAAwD8I0QEAAIAAS0+v9emDPXp0zVH1xbYej7R5veyq5U6l+fZNUuUBSdL+pgPDwqWUITKD070V5ort3yMD8yNhwsKl5FQpObVZyG6tlfaXtVzFXpArFebLXVmmk2M/l7I/l7Kd41JldNzkZPXbPlDfHjtIM05KU1W/wVq5I0W//k2/Zj3VJVq/AAAABBohOgAAANCJ/NUD3Vor7dwqu/xD2c8+looKfAeEhEqDhqj3iDGqiEtyAvP4RBmX64iveSwzxjh94ftEyaRmNNtvq6u096td+mzBHp2atl5hxVulXdtkykqUGrFD2rRD2rRU4fXj09yhypw0RDVrB2nhqmFavy9d6/cNlUTrFwAAgEAjRAcAAAA6iT96oNv8PbIrPpJd8ZG0Z0fjjl5hMmMnSsOynCrzhGS53G7FJCaqcs8eJ3SH35iQUMWOT9O3xqdJOtm7PX9TmT54Llfnjs5Wn9LNsju3SXu2y1VdpTHR66TqdTp+xFve8QVVfVWXMFgbK4ZowWfDteb1dM3/T6qkI2/9QrAOAABweAjRAQAAgE7SUT3Qbcle2c8/kV3+kbR1Q+MOd7CUdbxcEyZLo4+TCQlt/SQIiPghkbrkd5GSGqvXradOhd/ka+mLezQlM1vhJVukXdtk83MVF1okFRcpQSt1SpYz3iOXNu1PkVKGqrJ/hoqjMrWxKl1SRLtav9BTHQAA4PAQogMAAACd7Eh6oNvy/bIrl8ou/1DK+UpqqCQ3Lmn4GJkTT5MZO1EmPMKfU4cfGFeQ4kYm6sK7EyWN927/amWdfvPDUj3+u1UaoE2yO7dKu7bJtb9M6b23SkVbpaIlkqSTPEE64eShWvPUCM0tGanVpSN0/Lf7K2uc8/vk4NYvB6M6HQAAoHWE6AAAAIAfHU0PdFtVKbt6hdOq5auVUl1t484hw2QmnCZz/MkykTH+mTwCKm5AsM68dpBCzoiVq/8USU7v+2+W79e9Py3U76/9XH3LshWWl6PgAyUaHZWt0VHZuiJlgSTpwN5QffXyMP1u+Ah9MmekHisZoa0VA3X22VWS6KkOAADQXoToAAAAgJ8cSQ90W1sjfb1KdsWHsquWS9VVjQcmD3aC8xNOlYnt7+/pI8D69/foV7/a57PNGKN+qVEaf2WSIi4Zouj+Hllrtf5/JXrwxlzd++PPFVmUraCdGxSmAzqh72qd0He19/iS6kitKRmusRkj9M6fRupPJSOUVxVPT3UAAIA2EKIDAAAAftLeHujxcTWy2etkl38ou/J/UnmT4DS2v8yEyU54PiAlQCtBV3JwuG6MUW2feL2VO1I3nZyl/qNrZD0eKW+3dny8WYv/sUPfO261epdsUnRImU6LW67T4pZ7jz8Q2k95nkzFDBmj/A8H6evKNHl69aGnOgAAQD1CdAAAAMDPWuuBbqsqZd97Q5733pBKihoPiIx2qs0nnCalZsiY5j2sgabi4+v0y1/u8wbfxuWSEpNVOjxVd66L04kPFWjU8App13bt/HSzPnx6u04fvFbxtVsVVrVXg6uW6jeZS6XVklZLW8oHakfMMNUNHqFhfSbqqzV9JTntX1rqqS5RoQ4AAHouQnQAAACgA7WnB7qprZbn3YWyb74olZU4B4ZFyIw/SebEyVLmKBlXUKfPHd1XS61fJN9w3biDpUFDVFI2TLesjdNzt+5VSWSFehVsVMmqTdr20RadOWSt+hzYrdSIHVL1DinnHS0+9RGVvROhL18arS+Ks+RJG66IoPE+PdXj4+to/QIAAHosQnQAAACggxyqB3qQqdVtp72sjOf+KVta4OyMS5CZ+gOn8jw4WEBHailcbwjWhw+vUf/+QZIytTZplH7+5zi9fX+B+vcu0f6vNyl8zzeq2/CNehesV2RwuSbHLdPkuGWSpF+c49L6/w7VZ3PH6IviLI29aIgmXhDd7PoE6wAAoCcgRAcAAAA6SKs90P+vSCf3ek9xy55RaMkuqVRSdF+ZCy6VOeUsp0IY6CStVa03iE+NUHxqlqQsrV0brInn9dUrj36hxANfK2zPOrm3faPelbkaGZmjkZE5+tGgl6TN0oHH++nv48aoamGGNuZm6kDcEO0tad76hZ7qAACguyFEBwAAADqYtwe6tToz/mNd+NWj6lW42dnZu4/Mty6WOf1bMiGhbZ4H6CwH91RvyqMg9UpPVfLoZEnnau3aYP3oQumVBz9Rwf+ypc3rNSpqvcKq9+r8xPekTe9Jm6TKulC5zTDdmjlWe98fonUHMlQXFkVPdQAA0O0QogMAAABHobUe6OE7Vivh/af07+O/kQolhYXLnPNdmbO+I9MrPIAzBpprT0/1pvKq4rRv6ClKmXSS8vODtKm2Srv/t0Ur/rNJ52Ws0qDateobUqoMrVbGkNXSWklrpU37U2TCR+kHyeO1dVmqZBMlY+ipDgAAujRCdAAAAOAItdQDfWzUVxrw0l81OHaFJKnKhqrutG+r9/emyUT0CdRUgSPSVk/1+Pg69e/vqQ+3XbLuYfrbvafqlN/vVW7fOhWV7FLRZ9natHijThu4SgPMVg3pvV1DtF2nZL0prZAKP47RiuKxKsgaoYFThsmlvj7Xaq31C+E6AADoTIToAAAAwBFq2gN9VMwG9Vr8jAYU/k+SZF1uFY/6luy3Llb80OjAThToQIfqqd6vn0ejR9dK6q+1Mcm65aEf6Lnb9mpfRKnCc7/RvtXZKl2ZrQlxXyk2tFjnJ7wv5b8vvSCtOTtC5c+O0O7MkaoYMEpF7owWr0FfdQA9TXFxsWpra9scExcXp4KCgk6akf+wjq7lWFmH2+1WTEzMEZ+fEB0AAAA4CqkR23T6pj8rasNHkrWqsy6VjTxT/a68RHGx/QM9PaDTtNVXvV8/j0aO7iVpnNYOnqAf/C1Oby/crbVvbNfmRes1oe+XOj5mtaKC9yuy6DPpf59JkgbYEM07cZTsf0do8/YRqkgYprjkkBavT3U6gO6strZWNTU1re43xnjHWWs7a1odjnV0Layj/QjRAQAAgMPQ0APdvS9fvd5+Qe+euljuHCc03Jl4un74wg36600Rio1t/T/CQE90qNYvzQQF68wfD9boC4dIukCL1rj0r98X6qpJKxSdv1Yn9F2luNAindRvpbRtpbRNqvUEaU9whlxJo3R2/ERlr0yVFCZJ2rvX0FMdAAD4BSE6AAAA0E55eS7dNtPqpJKndEXKywoNqpFc0pK8U/WnnJ9q3b5MTZxYpfj44kBPFegS2t9TXZKCtW5fpgZeFat+/c5TgbX6bEWePvznRv3srOWKKvhKMcrVwLpvpB3f6MnjX5I+kb55c6iWF41TyMgR6h860eda9FQHAAAdgRAdAAAAaAfrqVPdW6/qkT7PKzymUpKUFz1G1795ky67PUUPja6RVOANBgG0rH091et/ksMk6Kd3jtaPLj1FvePrtGFjocJ3f63Kr9bJk/O10ntv1fDIjRoeuVEqly4/U9r3jwEqTB2hiqTR2h+RJSmu2TXoqQ4cW9atW6fXXntNW7ZsUXFxsX79619rwoQJrY7/+uuvdffddzfbPmfOHA0YMMD7etmyZZo3b57y8vLUv39/XXbZZW2eF0D3RYgOAAAAHILN3y3Pvx5W/03rJbd0oH+mIi6/Qntrj9fK5+N13+iCxtAPwBFps/WLVF+13lfSqVo7bIrOOy9OP7lsp3a8n60JMas0oe9KjYzMUZ8Du6R1uxSz7h0NkPTp6YmqfXG0tq8bpYrkLMUMjW3x/FSnAz1XVVWVBg8erDPOOEMPPvhgu497+OGHFR4e7n0dGRnpfZ6Tk6OHH35Yl156qSZMmKAVK1Zozpw5uueee5Sent6h8wcQeIToAAAAQCusx6Oy199W+Nv/lqu2StVB4brty19rws9P1ei6Wm3YyD+ngY5y2D3VJU2eGqZ+P8qSlKW1a6/VZbcF6bopnyt429ea2PcLZUWt08DwPVLuHil3sSSp2NVfYfFZujj5JG1ekS7ZfpIxLfZUlwjXgZ5g3LhxGjdu3GEfFxUVpYiIiBb3LVy4UFlZWZo2bZokadq0aVq3bp0WLlyoWbNmHc10AXRB/KsfAAAAaIEtKlDlE4+q96ZVkqRPC0/Qr9bcqd2VCXrpN43jnB7oLQd8AI5Oa61fGsL14cNrfILtstpoHfejLPXrN0rSpXrty1q98uA23X7xUoXvXKMBNd8oRnmKyX1HD2a9Iy2Tdr6foGV7j5MyRiolbJJkQ3yuResX4Nj1m9/8RjU1NUpOTtZFF12kUaNGeffl5OToggsu8Bk/ZswYvfnmm22es6amRjU1jT+9ZoxRWFiY93lrGva1NcaWFsvzxgtSQa5UV//nVbBbru9cITN4aJvz6iztWUd3wDq6ls5YByE6AAAA0IS1VvZ/78u+8A+FHCjXgbpQbRh9nWLOPF+/+CpUN98sPfBAibd9Cz3Qgc7XVl91n57qCtbHhROlC4eod3ydNu6qUfiedSr/8mtVfPmVxvf9Wslhufp+8kKpYqG+f4ZU/kSc9qZmqWLAaPUaM0qySc2uQXU60LPFxMToJz/5idLS0lRbW6uPPvpIv//973XnnXdqxIgRkqSSkhJFR0f7HBcdHa2SkpI2z71gwQLNnz/f+zo1NVWzZ89WXFzz+ze0JCEhodV9JYte1r73m4f4bo9H8bOfaNf5O0tb6+hOWEfX4s91EKIDAAAA9WxZiTzP/FVatUySVJEwTN+ad6/+9otwJ5QzTjA3enQNPdCBLqZ9PdWDJI3W2pTxuuhvcZp+eaE2Ltqkif2+0El9v9CY6K8VUVUgrX9X0evfld6VQkPjNCfrBO1fNFzrS0aoJipRe4tcVKcDPVhSUpKSkho/QMvIyFBhYaFef/11b4jeEmvtISthp02bpqlTp3pfN4wvKChQbW1tq8cZY5SQkKDc3FxZa1scU7d2Zf2ER8p12nlSbY08T/9FVV+t1O4vlktVlfLMnysz9VK5ho9pc57+0p51dAeso2tpzzrcbne7P6xq8fgjPhIAAADoQezKpU6Avr9M1uVW/ok/1Ichl2lLeT+tXVsiSdqwgX8+A13VkfRUP/sCox9clSYpTWvXXq4f3hqqx3+zVJ7sr9Rn9xpvqP695Del7DelbGn3gf6qisrSpcknKrgkVdbGdvsfgwdwaBkZGfr444+9r1uqOi8tLVVUVFSb5wkODlZwcHCL+9oTYlprWxxnrZXdvkmS5Lr0OpmUIc6OVSukVcvkWfii7IqPJeuR3bND+r9/ywQFHfJ6/tLaOrob1tG1+HMd/C8AAAAAxzRbvl/2hSdkl30gSdpaO1TX/+8effNGhnfMzTdHe5/TAx3oPg63p/qBumjFT85S/MUjlZ9/uTbVVCp36QatmZ+tS8ctV3z5eiWF5Smp+h2Ny3pHelqqXBCviuQsBQ0fragJo2T6HXmVG4Cua8uWLT7tWzIyMrR27VqfqvI1a9YoIyOjhaM7QUGuVFEuud1SUop3szn+ZNlVy2SXf9g4tqxEdvmHMpOmBGCiQPdEiA4AAIBjlv1qpTxPPSqV7JWMS4XHXayz/nCTHnykXOnpBVq7Nlg33xxND3Sgh2mrp3rDfud9HiQbPFoP/nGKcidcpZffCtJxMWt0Yt+VmtTvc42N/koh+/IV8s0S6Zsl8rwiKS5BZliWyieeJtt/oBQV02nrAtCyyspK5ebmel/n5+dr69at6t27t2JjY/X888+rqKhIN9xwgyRp4cKFiouL08CBA1VbW6uPP/5Yy5cv169+9SvvOc4//3zdeeedevXVV3XCCSfos88+09q1a3XPPfd0+vokyW5zqtA1YLCMu7HS3QwdLp+63IQBUu4u2VXLJEJ0oN0I0QEAAHDMsZUHZOf/W/bDt50N8UlyXTNL+RWjVe0JUXp6qU/Pc3qgAz3foVq/nH9+pa680iMpVWvXZuj7N/9UD92/Ryf0XaOIHasVlbdawbs3SAW5sgW5Kvp4sXNgQrLMsNEyw7KkjNEyfSI7b1EAJEmbNm3S3Xff7X399NNPS5ImT56smTNnqri4WIWFhd79tbW1euaZZ1RUVKSQkBANHDhQt956q8aPH+8dk5mZqVmzZumFF17QvHnzlJCQoFmzZik9Pb3zFtbUrq2SJJOS5ru9b5wUFCTVOX+2mW9fJvuPP0k7t3bu/IBujhAdAAAAxxS7YZ08/37Y+bFnSQcmfltbx10jW9FLa9c6lVsNj/RAB44dh9v6RZJGjHUrbfRoSaMl/VD2QIW04WvZ7LVyb1qvms3ZUu5O2dydsh+85Rw0YJDMsCyZYaOl9FEyEb39vzjgGDdy5Ei9+OKLre6fOXOmz+sLL7xQF1544SHPO3HiRE2cOPGo59chSvY6j/3ifTYbY6SQUOlAhfN6xFinMr0gV7aiXCY8onPnCXRT/K8AAAAAxwRbUy376nOy77wqWSv1jVXphbP04wfP0LLfhfqMpQc6gAaHav3SlAkLl7JOkGvMBCUkJmr3xg2y2WudX+vXSLu2Sbu2ye7aJvvu65Ix0sC0JqH6CJle4X5eEYCeyJYUOU+i+zbb57pmljyP3Sdz+fUyvSOlvrFSUaFTjZ4xsnMnCnRThOgAAADo8ey2TfL8a460e7skyZx8pswl12nXpmgtWxaqRx8tVnp6LT3QAbTLoVq/NDARvaVxE2XGOZWqdl+p5A3V10q5O6Xtm2S3b5JdvEByuaRBQxtD9SEjZEJD27wGAEiS6kN0E9U8RDdjJ8r16DwptJezYWCaVFQou2OLDCE60C6E6AAAAOixbF2d7JsvyS6c5/QCjYyW68qZMmNP9BmXnl5LD3QA7XY41elNmT5R0vGnyBx/iiTJluyVzf7KCdbXr3HaTG3Jkd2SI/vWfCnILQ3JlMnMcnqqp2X43DAQALxKW69ElyTTK6zx+cBU2dUrpJ1bOmNmQI9AiA4AAIAeye4rk+cfD0jfrHY2HDdJritmKL8iWvlrgySJHugAAspE95M5cbJ04mRJkt1bIJu9Rlq/1nksKpRyvpbN+Vr29f84fY2HjqivVM+SBqXJuIICvAoAgWZraqT99R/stRKi+0hKcY7bs8OPswJ6Fv6XAAAAgB7Hbt8sz1/vk/bmS6G9ZH44Q+bEycrPD9KMGTFatowe6AC6HtMvTmbSmdKkM2WtdW78t36NtH6N87ivVFr3pey6L50bA4ZFSBkjZYaPcUL1pBTnJoIAji1lxc6j2y1F9DnkcJOY7PwZsmenrLX8uQG0AyE6AAAAehTP8g9ln35Uqq6W4hLkmnm7zIBBkqT8/CB6oAPoFowxUnyiTHyidNq5Tqi+e7tsQ6Ce/ZV0oFxavUJ29QonEOsT5YTpw0Y7j3GJhGPAsaDhpqJRfdv3nu8/QDIuqWK/tK9Eiozx6/SAnoAQHQAAAD2CrauTfeVp5+Z8kjRynFw/vtm5sd9B6IEOoLsxxkgDBjkfCp75bVlPnbR9c2OovmGdtK9U9rOPpc8+dkL1vrEymVlSffsX0zc20MsA4A8lbfdDP5gJDpFi4537MOzeQYgOtAMhOgAAALo9u79Mnica+5+bb31P5rs/lHEF6auv3Hr66Qidf/4B7d7t/POXHugAujvjCpIGp8sMTpfO+55sbY20OccJ1bPXSJuypaJC2f+9J/3vPSdUj0+qr1TPkhk22rnRKYBuzzapRG+3xIFOy6g9O50/FwC0if81AAAAoFuzO7Y4/c8L86SQULmuvknm+FO8+59+OkLPPef8akAPdAA9jXEHO/3RM0ZKuky2qkratK6+Un2ttHWjlL9bNn+39NHbTqg+YFDjTUozRsmERxziKgC6pPqe6CYqut2HmMRk2TWfSdxcFGgXQnQAAAB0W57PPpGd+4hUXeX0P59xm0xyqs+Y88+v1HPPRejRR4tVWWnogQ7gmGBCQ6UR42RGjJMk2YpyacPXst+sdtq/7Nom7domu2ub7LuvO/2RBw91KtSHZUlDRjjnAND1le9zHiMi239M4kBJks3d6YcJAT0PIToAAAC6Heupk13wrOzbLzsbRoyT6ye/lonoI0nKy3MpPz9IkrR7t/NYWWnUq5eVJCUl1dIDHcAxxYRHSGMmyIyZIEmyZSWy2V9JDT3V83dLW3Jkt+TIvvWyFOSWhmTKZNZXqqdlONXuALqeinLnMaL9P01iEpKdn0ihEh1oF0J0AAAAdCu2fJ88//iT9PWXkiRz7kUyF13p9AeWE6DPmBGjZct8KyibtnB5880wnX56dafNGQC6GhMZLXPCKdIJTvsrW1TgtH1pCNWLC6Wcr2VzvpZ9/T9SSKg0dERj+5dBad4/dwEEli3f7zwJb34z9VbVV6KrpEi2opx2TsAhEKIDAACg27A7tzr9zwtypZBQmek/l+uEU33G5OcHadmyUD36aLHS02u1dm2wt4VLUlKd3nyzl666qjxAKwCArsn0jZOZNEWaNEXWWqlgjxOmr1/rPO4rldZ9KbvuS6d6NSzC6cE+fIwTqielyBgT6GUAx6YKJ0Rv+Im89jDhEc6NSEuLpNydUlqmv2YH9AiE6AAAAOgW7BefyvPvR6SqSqlfvFwzb5cZmNrq+PR035Yto0fXaPToGp1+elVnTBcAui1jjBSfJBOfJJ12nhOq795ef5PSNVL2V9KBcmn1CtnVK5xQvU+UE6Y39FSPSyRUBzpLQ0/0w6lEl6TEZKm0SHbPThlCdKBNhOgAAADo0qynTvbV52Tfmu9sGD5Grp/cLNO78eZZTXugr10b7PO4YQP/5AWAo2GMkQYMkhkwSDrz27KeOmn75sZQfcM6aV+p7GcfS5997ITqfWNlMutD9cwsmX5xgV4G0HM19EQ/zBDdJCY772H6ogOHxP8oAAAA0GXZ8v3y/PNB6asvJEnmnGkyF10lE9TYh7c9PdAnTqxSfHxdp8wZAHo64wqSBqfLDE6XzvuebG2NtGVDY6i+eb1UVCj7v/ek/73nhOpxCTKZo6XM0TLDRstE9wv0MoAewXo8R3RjUUnevug2d2cHzwroeQjRAQAA0CXZXdvleewP9f3PQ2SuulGuEyc3G9dWD/SGdi7x8XXq39/T2UsAgGOCcQdL6SNk0kdI3/6BbFWVtOkbJ1TPXitt3SAV5MoW5EqfvOOE6v0HOKH6sNEymaNkImMCvQyge6qskGz9v3EOtxI9Idl5P1KJDhwSIToAAAC6HLtyqTz/erix//mM/yeTktbmMa31QAcAdC4TGiqNGCszYqwkyVZWSBu+kc1eI7t+rbR9s5S3SzZvl/TR206IlzjQqVDPzJIyRsn0iWzrEgAalDs3FVVwiExIaNtjD1Zfia6CPNmaapngkI6dG9CDEKIDAACgy7DWyr79suwrTzsbhmXJ9ZPfNAtT6IEOAN2H6RUujT5OZvRxkiRbsV/asK6+/ctaaecWac8O2T07ZN9/0zkoebBMfesXpY+SiTjMGyYCx4oj7IcuSYqKkcIinBsF5+2Wkgd36NSAnoT/YQAAAKBLsJ462Rf+4Q1QzFnfkfn+1T79zyV6oANAd2fCe0tjJsiMmSBJsvvLpJyvZNevddq/7N4u7dwqu3Or7LuvS8ZIA9PqK9VHS+kjZcLCA7wKdCfr1q3Ta6+9pi1btqi4uFi//vWvNWHChFbHL1++XIsXL9bWrVtVW1ur5ORkXXzxxRo7dqx3zAcffKC//vWvzY599tlnFRLSiRXdFfWV6EfwQZMxRkpMljZny+7ZKUOIDrSKEB0AAAABZ6urnBuIfrlMMkbmkmvlOus7LY6lBzoA9Cymd6Q0fpLM+EmSJFtWIpv9lZRd31M9d5e0fZPs9k2yi1+VXC5p0FCnUj1jlDR0OKE62lRVVaXBgwfrjDPO0IMPPnjI8d98842ysrJ02WWXKSIiQu+//75mz56t++67T6mpqd5xYWFheuSRR3yO7dQAXZLK9zmPR1KJLskkJstuzqYvOnAIhOgAAAAIKLu/TJ6//EHatF5yB8t13S9ljjv5kMfRAx0AeiYTGS1zwinSCadIkmzJ3vpQfa3s+jXODae35MhuyZF9+2XJuKSUNJn0kTIZI6WhI+ipDh/jxo3TuHHj2j1++vTpPq8vv/xyff755/riiy98QnRjjKKjoztolkfGHkUluiQpaZBznh2bO2hGQM9EiA4AAICAsYV58jxyl1NlGB4h18zfOgHIQeiBDgDHLhPdT+bEydKJkyVJdm+BU6GevVZ2w9dOqL5to+y2jbJL/usclJTi/H1SH6yb6H4BXAG6O4/HowMHDqh3b9+gurKyUjNmzJDH49HgwYN16aWX+oTsnaLc6YluwiOO6HCTlunc3HfTellrnRYvAJrhfxwAAAAICLt9kzx/vkcqLZb6xsp1010ySSnNxtEDHQDQlOkXJzNpijRpiiTJFhU6YfqGr2VzvnbaUuzeLrt7u/TBW05AGJ8okz5SyhjpPMb2JyxEu73xxhuqqqrSSSed5N2WlJSkGTNmKCUlRQcOHNCbb76pO+64Qw888IASExNbPVdNTY1qahp/cs4Yo7CwMO/z1jTsazbmQOONRY/o9/TgoVKQW9pXKlOYJxPf+tw7Qqvr6GZYR9fSGesgRAcAAECns19/Kc/f7peqDkjJg+X6+Z0yMS1XCdIDHQDQFtM31rdSfV+ptGGd7IavZXO+knZskfL3yObvkT5d4oTqMbFOmJ45UiZ9lJQwoNuHSPCPTz75RC+99JJuvvlmRUVFebdnZGQoIyPD+zozM1O33HKL3nrrLV1zzTWtnm/BggWaP3++93Vqaqpmz56tuLi4ds0nISHB53VxkNF+SX3i4hXVRnjflrz04apev1ZRe3MVMWb8EZ3jcB28ju6KdXQt/lwHIToAAAA6lWfpe7JPPyrV1UnDsuT62W3t+hFkeqADANrD9ImSxp8kM96pGrYV5dKmb2RzvnYq1rdukIoLZVd8KK340AnV+0Q1tn5JHyklD5JxBQV0HQi8pUuX6u9//7t++ctfKisrq82xLpdLQ4YMUW5ubpvjpk2bpqlTp3pfN3x4U1BQoNra2laPM8YoISFBubm5stZ6t9ft3StJ2l9Tp4o9ew65ppbUDRwirV+r4i/+p7Lh7e8dfyRaW0d3wzq6lvasw+12t/vDqhaPP+IjAQAAgMNgrZV98yXZV5+VJJkJk2Wu/rmMO7jZWHqgAwA6igmPkEYfLzP6eEmSraqUNmfXV6p/LW3OlvaVSiuXyq5c6oTq4RHODUqHDpdJGyYNHioT2iug60Dn+uSTT/S3v/1NN910k8aPP3R1trVW27Zt08CBA9scFxwcrODg5v/2aThHe67TdJytrHAee/U64hDUDBkm+45kN67vtCD14HV0V6yja/HnOvgfCAAAAPzOeupkn39c9sO3JUnm3ItkLrpKxuVqNpYe6AAAfzKhvaThY2SGj5Ek2ZoaaduGxkr1jd9IFeXSms9k13zmhOoul5ScKjMkU0obJjNkGH3Vu5HKykqfCvH8/Hxt3bpVvXv3VmxsrJ5//nkVFRXphhtukOQE6I899pimT5+ujIwMlZSUSJJCQkIUHh4uSXrppZeUnp6uxMREb0/0rVu36tprr+3kxR1wHnuFHfk5hmQ6j7u2yR6okAkLP/p5AT0MIToAAAD8ylZVyfPPP0mrlkvGyFz6Y7nOnNrqeHqgAwA6kwkOrq86HyHpYtm6OmnnFidU3/SNtClbKtkrbd8ku32T9P6bTrAeGV0fqGc2VquHhLZ9MQTEpk2bdPfdd3tfP/3005KkyZMna+bMmSouLlZhYaF3/5IlS1RXV6cnn3xSTz75pHd7w3hJKi8v1xNPPKGSkhKFh4crNTVVd999t4YOHdpJq6pXH6KbowjRTXQ/qV+8tDdf2pIjjRjbQZMDeg5CdAAAAPiN3Vcmz19+7/yovDtYrut+JXPcpHYdSw90AEAgmKAgadBQmUFDpbMvlCTZogLZTdnS5vWym9ZL2zdLZSXSqmWyq5Y5oXpQUH21+jApLdN57BdPtXoXMHLkSL344out7m8Ixhvcddddhzzn9OnTNX369KOcWQdoqEQPPYpKdNW3dNmbL7vxGxlCdKAZQnQAAAD4hS3Ilefhu6T83VJ4b7lu+K1M+ogWx9IDHQDQlZm+cTJ946QTTpEk2Zpqadsm2YZQfVO2VFokbdsou22j9N4bTrAe1Veqr1Q3QzKdcD44JKBrQQ9T1dDO5ShbsGSOllZ8JLv8Q9mpl7bYcg84lvE/EgAAAHQ4u22jPI/c7dyorW+cXLPukkls+UZb9EAHAHQ3JjhEGjpcZuhwSfU3hCwqcAL1zdnO447NTrC+8n+yK/9XX63ullLSZNIypSFOb3XTNy6ga0E31xE90SWZCafJzp/rFD989YWUdcLRzw3oQQjRAQAA0KHsV1/I8/fZUlWllJwq102/c3pttoIe6ACA7s4Y47Ru6RcvTThNkmSrqxqr1Teulzavd1rAbMmR3ZIjvfu6bHCIXH9+QcZNPIPDZ63tuBC9V5jMqWfLLn5Vng/fVhAhOuCDP6UBAADQYTyfviv79KOSxyMNHyPXz26TCWvfjxfTAx0A0JOYkFApfYTTyuzc+sCzME92c7a0ab3z2CuMAB1Hrqba+TeXdNQhuiSZk8+SXfyq9PVK2X1lMn0ij/qcQE/Bn9QAAAA4atZa2bfmyy54RpJkJp4u86MbZdzBLY6nBzoA4FhjjJHiEmTiEqQTJ0uSrIefssJRaKhCl6TQXkd9OpOUIqUMkbZvkv38Y5kzLjjqc6JrsHV1kjH0uj8K/A8FAAAAR8VaK/vyU7KLXpEkmfO+J3PRVU5Y0AJ6oAMA4CDQwlFpCNFDe3XY7yVz0hmy2zfJLloge8o5MsEtF0S0xNbWSDlfS+5gqaxYSsv0a89/W1sjyUhF+VJM3GHNtafwtvQJDvYWr9iqSqm4UHb1Cqm2VirYI/vZJ1LiQOenRPtxH4YjQYgOAACAI2Y9dbLP/V32o0WSJHPx1XKdM63NY+iBDgAA0AE6qB96U+bUc2TffkXamy/70dsyZ377kMfYkr2yC1+U/fpLqSC3ycmM1DdO5tRzZL71/Q790Mjz0SLZF5907sEjOfckOPF0mUlTZPonHfX5rbXSzq1SWYlszlfOxr35TsX/gQoporeKQkNVZ4KctjrhvSVPndQnSnK5nJ84ie3vrD8ktM1rHda8PB7ZFR9J2zbKLv/QuXZVpRTSS4qIkOrqnHsvWNv84G0b5bn/Zrl+da9MwoAOm9OxghAdAAAAR8TW1sj+62HZzz6WjEvmyhlynXpOu4+nBzoAAMBR8Faid2CIHtpL5ts/kH32r7JvvyJ72nltVnjbwjx5Hrlbyt3ZuDEswgnQK/Y7Yfyrz8oue1+uS66TyTr+qOZnS4vleeL/nIr3pvbmy775ouz7C+X68a9kRh/Zdez+Mtm3Xpbd9I20aX2bY8vbOk/Dkz5RMsOypDETZCac1upParZrbnt2yLPgGenLZc13Vh1wfjWVkCxFxcj0jZM5bpI8rzwt7d4uz1/+INc9f5FxBR3xXI5FhOgAAAA4bLaqSp7HZ0trP5eC3HJd90uZ409pdTw90AEAADpYVcdXokuSmXSm7OsvSCV7Zf/3rsxp57U4zm5YJ8/Dd0rVVVJUX5kLL5cZP0kmordTyZ23S3b1Z7Kv/0fK3SXPX++VZt0jJSYe0bystfI89Wh9yxi3U91+6rlSaKjs0ndlP1ki7domz5/vkZl8nswVPzus0NruK5Xn/luk/N2NGyP6SANSpPA+MpHRUm2N8/Uu36/wqChV5OdKwSGy+8vq29iUOFXgebucCvF9pU7ByWcfy774pMxJU2S++8PDvqGwXb/G+VrX1UkulzT2RJkR42QGDJKiYqTCPKmi3LlhccIAmZPPalb570rLlOeOGc7cVi2Xxk86rDkc6/gfCwAAAA6LPVAhz19+7/wHJiTE6a046rhWx9MDHQAAoONZP7RzkSQTHCxzzndlX/qX7Py5ssPHOu1Jml67psYJtKurpKHD5brmFz5jjDFSQrJMQrLsaefK86850qrl8jz5oDwTjiy8te/81yngcLvluv0hmeTBjdc760LZ086TXfCs7Luvy374tnP9s77T/vMvfNEJ0KP7ypx+vvOBQGJyi2ONMeqbmKiqPXucDwwOPpfHI9XVOQH6lmzZj99xWsMsekX2y//JfOdyuepvMHzIeRXkyvPPh5wAfcgwuS6+RmbIMN9B9V97c1zrX1vTJ0pm8nmyb74kzzv/VRAh+mHhDhYAAABoN7uvTJ4Hf+sE6GHhcs26p80AXfLtgf722wV64IESSdIDD5To7bcL9PbbBfrrX4vpgQ7g/7N35/FR1df/x1/3ZpKQhSyELISwBQiCgOKCaKkoFrFIRdwogpUqagWtFsX+LLWKWJXaqv2iXdWKEiuKoggoFHdEwWorUSyggMiSlWyEkGRyP78/JhmISUiAzJa8n48Hj8zM/dw750MYzZycOUdERI6Gj5LoANbo8dD3BKg8gLNwQaNEsfngX56K5vhE7Jt/0yjJ3uBaUdHY02+HlG5QXEThvbMwxUVHFY/530bMi095rnfJ1Q0S6N7niYjEnnQt1hXXeM5Z+myrn8fsK/Ak3gH7p7diX3hFswn01rBsGys8HPus0dhTbsT+/dNY037uaXWTvxfzxB9wVi3F1B65iMSUFuPM/yWU7vMMBv3FvMYJ9KOJ69wLPZXsX32JObwFj7RISXQRERERaRVTXITz0J3wzVcQG+cZStR/UKvPr++BXt/3vP72kCE1SqCLiIiIHK26JLrliyS6y4V97SyIiIDNOZj17zQ4bja851l3/kSs6JiWrxcZif3TWyEikqrPP6X293M8LVBayXntec91vndei9Xl1nk/gn4DoboK5/m/NVkp3uj6i5/0tGrJOhEGntTquFrLio3D/t4PsH/3JNY5PwTALPkHzsN3Yaqrmj3PLH8eSos9CfRZ87Aij29IqZXQBU48xXPtdW8d17U6GiXRRURERKRFJn+Ppwpm77eQ2BX7jgexevVtdn1enk1OTrj3D+C9rR7oIiIiIm3ARz3R61nJaVgXTgLAvPysN9lriovgqy89a44wE6fR9foNJOzu/yMsOQ3yduM8+TCmprrFJLfZthm2fA5hLqyLprTY59yyLOwfXw9hYfDph5i3lh/5+l9+Bp+uA9vGnnz9cQ3/bInVKRrryp9hXfkzz/dty+eYpx5tuiVMUQHm/dUA2FNu9CTA24D9vfM819/wXqt+wSAeegcjIiIiIkdkdu3wDDIqLYaUbp4qmKSUZterB7qIiIiIHxw86Pka2clnT2GNmYB593XYV4hZ9hxcOg3z2XrP8My+J2B16Xp010tNJ+meR8m75Sr4/FOcGZdB53hI7Y511ugmB2KaT9Z5zj3te61+PqtXX6zLr8E8/3fMSwsxg0/FSk1vcq2z+hXPOaMuwMroc1T7ORaWZWGdOw7TvZenEv2TD+Dj97GGn91gnflkracPev9BWAMGt10Ag0/z/IKhKN8zkDS96b8XaUiV6CIiIiLSLLNtM85Dv/Ik0DN6eyrQj5BAB/VAFxEREfGL+jYgvkyih0dgXXI1AGbVUs/wzR1bPccGnnxM14zo3Q/7kp8ceqC8FL7ahHnmMcyTj3iGch7GfP6J58ZJw48u9tHjYdDJUFONk/3npqu9c3fB55+AZWH9YMLRbuW4WFknYo27zBPH0/+Hyfl3w9g+/dCz7iiq/Vv1vJGR0Lu/5zm2fN6m127PVIkuIiIiIk0yX36G8/hvoeog9D3BMzQqJrbV59f3QK93eD90ERERETlO1XWV6BHH1ye7JfYZo3DKSjAvPIl5Ndv7uNUr85ivaY2ZgN33BE8V+v4yzKb/Yl77J2bDu5CcinXxVMAz8JM9O8GysQadfHTPYVnYU2fg/GYGfPmZJ1k+5LQGa8xnH3tuDDoZK6XbMe/nWFnjLsd88zVs/BjnLw9i3zEfq1dfTGkxbNvsWXPyiLZ/3qwTMV//D7NZSfTWUiW6iIiIiDRi/vsRzv/d60mgDzwJ+9a5R0ygqwe6iIiIiJ9VV3u+RviuEr2ePWYC9QMxvXo2Px+nJZZlYWUO8PRd75OFfeEVWFf/HACzcomnDzpg/rfRc0JmFlZM56N/nuQ0z6BRwMn+C6aivMFxsznHs27QsGPdynGxXOHYN94Jg0+F6mqcvzyIqaqCr7/0tMzJ6HPULXNa9bxZnvYwZusXbX7t9krvaERERESkAeejtzH/+CM4DgwbgX3dbKzw8GbXqwe6iIiIiP+ZqvpK9Ai/PJ910RTMO68feiCxbZO79pnn4mz6D+ajd3D+8Ufsux6Bb3d4nrtP1jFf17pwkqc1SkGu57oz52BZFsapha82edYMGNIWWzi2+Fwu7Otux5l7MxTmYVY8D2Gen72Pp9r/iPoM8HwtyMXZX37ktQIoiS4iIiIih3HeXol57i8AWGeOxrr6ZqywsCOec3gP9P793eTkhDN7dgIPPVTibd+SklKrHugiIiJyRFdfffUxnTd37lx69+7dtsGEAj/0RD+c1TkOklI8Aykjo7Asq+2f48fXYb7cCLm7MMuew+ze4TnQvdexXzMqGvuGX+I8OBs+24B5c5mn//m326HyAETFQI/ebRL/MccYHYM9+Qacx3+LWf0KdEn2HPDRoFMrJha6dIV9hVTv2ApJ/m9lE2pCKom+evVqVq9eTUFBAQAZGRlcdtllDBsWmI9ciIiIiLQXxhjM60swS58FPIOYrEnTsezWd/9TD3QRERE5HgcPHmTYsGHExcW1ar3jOLz//vs4Tgf9RX1dJbrl457oh7NvvQfn2T9h//Ayn1zfiumMfdVMnMfmYf71KoR7quyt7r2P77q9+mJdcS3mub9iXnkOc9r3Pb3IAfpkYdlHLhrxB+vkM2DYCPjPR1CQ63msh2+S6IAnQb+vkJptW5REb4WQSqJ36dKFK6+8krS0NADeffddfve73/G73/2OHj16BDg6ERERkdBkjMG8tBCz6mUArPE/xrpo8hGri/LybPLzPW82Du+BDqgHuoiIiByzyy67jH79+rVqbW1tLe+//36L6zZt2sSyZcvYvn07xcXF3H777QwfPrzFcxYuXMiuXbtITEzkoosu4vzzz2+w5qOPPmLx4sXk5eWRmprK5MmTW7xum/JzJTqAlZZB2Oz7ffscJ50Op54Fn6zz/KLAsiC95/Ff95xxmA/fhu1bMK8sgroe61a3jOO+dluxf3w9zn8+OvSAjyrRAayMPpiNH1OzfSucPspnz9NehNQ7nNNOazhBd/LkyaxevZqtW7cqiS4iIiJyDIzjYLL/gnnvDQCsK67FHjPhiOeoB7qIiIj4wg9/+EMSEhJavd627VadU1VVRe/evTn33HP5wx/+0OJ18/PzeeCBBzjvvPO4+eab2bx5M0888QRxcXGMGDECgC1btvDoo48yadIkhg8fzoYNG3jkkUe499576d+/f6v3cFzqk+h+rET3F3vSdThf/AcOVkJyGlbk8e/RsizsSdNxHrwDs+5NSEjyHEjtftzXbitWl65YP7wM8/oS6BTlabviq+fq0RsDVG/f6rPnaE9CKol+OMdx+PDDD6mqqiIrq/nhAjU1NdTUHPoYsWVZREVFeW+HqvrYQ3kPIqFArzUR/9BrLTBMbS3m6T96KnIsG/vqm7BHjmnxvNb0QE9NdUhNNYC+p8FErzUR/9BrTeTYTJs27ajWW5bVqnOGDRt2VK2AV69eTdeuXb3XzsjI4Ouvv+a1117zJtFXrFjB0KFDmThxIgATJ05k06ZNrFixgltvvfWo9nHM2nES3UpMwrrkJ5jn/oqVNbjtrtv3BKzhozAb3oXiQs9jqeltdv22YF10JUTHHNcw1VbJ6A2Ae+fX2I7jqfiXZoVcEn3nzp3MmTOHmpoaOnXqxO23305GRvMfu1i6dClLlizx3u/Tpw/z588nOTnZH+H6XH1rGxHxLb3WRPxDrzX/MTU1FD30ayo/fBvsMJJmzyP67PNbPhHYu9fz9ayzEjnlFKj/sWr06AROOcVHAUub0mtNxD/0WhMJTVu3bmXo0KENHjv55JN5++23cbvduFwutmzZwoUXXthgzUknncTKlSv9F6i3nUv7S6ID2OdeiMkc0OaV4taPJnmS6PXSgqcSHcByubAuuNT3T9Q1DWwbU1UFJfsgMcn3zxnCQi6Jnp6ezkMPPURFRQXr16/n8ccfZ+7cuc0m0idOnMj48eO99+srAQoKCnC73X6J2RcsyyItLY3c3FyMMYEOR6Td0mtNxD/0WvMvU1ON8+cHMRs/BpcL+4ZfUtp/CKX12fEm5OXZ5OV5hox6ep8n8NZbJRQU1NT1QE+koKCAvXtD9+erjkCvNRH/0GtNOhqXy9XmxYqff/455eXlnHnmmQCUlJTw5z//mW3btnHSSSdx/fXXExER0abPWa+kpIT4+PgGj8XHx1NbW0t5eTmJiYmUlJQ0aiOTkJBASUnJEa99rB0TvvsJF2PMocGikZ1C5pMvR/tJHat327fGsbr1wImI9P4SwkrsetR/f+3hE0dWeDhOchrk7YH8PVhdugY6pGPmj+9HyCXRXS6X97f5ffv25euvv2blypVcf/31Ta4PDw8nPDy8yWPt4YcZY0y72IdIsNNrTcQ/9FrzPVN1EOfx38KXn0F4BPaMX2ENPuWIf++eHugJreqBru9faNBrTcQ/9FoTOXaLFy9uUA2+aNEivvzyS4YOHcpHH31EWloal112mc+e/7vJuPrX8pGSdMaYFpN4x9sxoT4nZmpq2OU4nsd69sb2Ye9sXwj0J3WKzjqXA+94ZgKldz/2SvRA7+N4FfTM5GDeHuIqy4nt1i3Q4Rw3X34/Qi6J/l3GmAa/wRMRERGRppnKAzgL7oWtmyCyE/bNd2ENGNLiea3pgZ6SUktqquPrLYiIiEgHsXfvXiZM8Aw7r62t5eOPP2bKlCmMHTuWZcuW8fbbb/ssid5URXlZWRlhYWHExsY2u6a0tLRRBft3HWvHhO9+wsVU7Pcey91XjFVW3pqtBVywfFLHXHwVVlkp1vBR7D3CpzGbEyz7OF5Ooqf6vHTLl5QPO/q/h2DRmu/H8X5iJqSS6M899xzDhg0jKSmJgwcP8sEHH/DFF18wZ86cQIcmIiIiEtRMRTnOH+fC9i0QFYN9y91YfU84qmv07+/2Js0BhgypaXBfREREpK1UVlYSExMDwLZt2zh48CCnnXYaAP369ePFF1/02XP379+fTz75pMFjn332GZmZmbhcnlRaVlYWOTk5DRLiGzduJCvryMMgj7djQv0nXExdKxfCXBAWFnKJ3IB/UiemM/aNd3pjOVYB38fxqhuqavJ2h/Y+6vjy+xFSSfTS0lIee+wxiouLiY6OplevXsyZM6fRsAcREREROcSUl+I8/BvYtR1iO2Pfei9Wr75HPCcvzyY/Pwyo74F+6KunB7qIiIiI78TFxbF3714GDhxITk4OycnJJCV5Bh8ePHjQm8xujYMHD5Kbm+u9n5+fz44dO4iNjaVr164899xz7Nu3j5tuugmA888/n1WrVrFw4ULOO+88tmzZwltvvcUtt9zivca4ceO4++67eeWVVzj99NP5+OOPycnJ4d57722jv4EW1CfRI9rnUFHxk7qhrSZ3d4ADCX4h9Q7oxhtvDHQIIiIiIiHFlBR5Euh7v4W4BOxZ87C69zriOZ4e6Imt6oEuIiIi4gsnn3wy//znP9m1axfvvPMOo0aN8h7bvXv3UbVl+Prrr5k7d673/jPPPAPAqFGjmDlzJsXFxRQWFnqPp6SkcOedd7Jw4UJWrVpFYmIiP/3pTxkxYoR3zYABA7j11lt5/vnnWbx4MWlpadx6663079/2gzCbVDcUk0gl0eXYWSl1fdCLCjBOLZYdFtiAglhIJdFFREREpPVMUT7OH34NBbmQ2NWTQE9reXCSeqCLiIhIoE2ePJnCwkLefPNN+vXrx6WXXuo9tnbt2hbbphzuxBNP5IUXXmj2+MyZMxs9NmjQIObPn3/E644YMaJBYt2vqlWJLm0goQuEhUGtG0qKoUvXQEcUtJREFxEREWmHTP4enD/cBfsKoGuqJ4GefHTT6tUDXURERAIlLi6u2Rl4d999NxEREX6OKMjUV6JHdApsHBLSLDuMsOQ0anN3Q1G+kuhHoCS6iIiISDtj9n7rSaCX7oPU7p4Eegs/EKsHuoiIiATaHXfcwYgRIxg+fDgZGRnNrouOjvZjVEGqSu1cpG24UtOpzd2NKcrD6j8o0OEELb0jEhEREWlHzLfbcR75DZSXQvde2LPuxYpLPOI56oEuIiIiweDEE0/kzTffZPHixaSnp3PGGWcwYsQIevfuHejQgo7xVqIriS7Hx5XSjSqAwvxAhxLUlEQXERERaSfM9i04j94NByqgVz/sW+/Bio1r8Tz1QBcREZFgcPXVV3P11Vfz1VdfsX79ej788EOWLl1KSkqKN6Her1+/QIcZHJRElzYSlpruuVGkJPqRKIkuIiIi0g6YLV/gLLgXDlZC3xOwf343VnTMUV1DPdBFREQkGPTr149+/foxZcoUduzYwfr161m/fj2vvfYaXbp0Yfjw4YwYMYITTjgBy7ICHW5gVHkGi1pKostxcqV2A8AoiX5ESqKLiIiIhDiz6b84j//WU5E0YAj2Tb/G6hR1xHPUA11ERERCQe/evenduzeTJk1i165d3oT6G2+8QXx8PH/7298CHWJg1FeiR2qwqBwfV0pdJXphXmADCXJ6hyQiIiISwszGj3H+/CC4a2DwKdg33tliRZJ6oIuIiEgoysjIICMjg0svvZTc3Fw2bNgQ6JACp0rtXKRthCWnem4UF2KM6bif7miBkugiIiIiIcp88gHO338PtbUwbAT2dbOxwsNbPE890EVERCTUpaWlcdFFFwU6jMDxVqIriS7HJ6xLV88NtxsqyqEVM5U6IiXRRUREREKQ8/H7mCf+AI6DNfxsrJ/eiuU6uh/t1ANdREREgpXjOLz++uusXbuWgoICamoa/4yycOHCAEQWJKo9PdFViS7HywqP8CTO95dBSZGS6M1QEl1EREQkxDRIoJ85GmvazVh22BHPUQ90ERERCSXZ2dksX76c3r17M3ToUFxHWSzQ7tVXokeoJ7q0gYQudUn0fZDRJ9DRBCX9F0hEREQkhDgb3sM88TAYB+t752H95KZWJdDVA11ERERCydq1a5kwYQJXXnlloEMJSqZKlejSdqyEJMyuHZiSfagjetOURBcREREJEc76dzFPPnJYAv1mLNtu8Tz1QBcREZFQU11dzdChQwMdRvDy9kRXJbq0gYQunq8lRYGNI4gpiS4iIiISAhok0EeOwbpqZqsS6IdTD3QREREJFUOHDmXr1q0MHjw40KEEpypPEt1SJbq0BW8SfV9g4whiSqKLiIiIBDnno3cwTz3qSaB//3ysqTNaTKCrB7qIiIiEsp/+9Kc8+OCDREZGcsoppxAbG9toTVOPdRjeSnQl0eX4WYlJGMAoid4svYMSERERCWLOR29jnvrjUSfQ1QNdREREQll0dDTp6eksXLiQhQsXNrlm8eLFfo4qiFSrJ7q0ofgkz1cl0ZulJLqIiIhIkHI+fBvzj7oE+tljsabcqB7oIiIi0iH87W9/48MPP+T000+ne/fuuFxKYTVQX4muJLq0AUvtXFqk/wKJiIiIBCFn3VuYp/8IxmCdfQHWlJ+pB7qIiIh0GB9//DGTJ0/moosuCnQowUmDRaUtxSd6vu4vxTjOUb/v6AiURBcREREJMs66NzFP/58ngT7qAqwrW06gqwe6iIiItCcul4s+ffoEOozgVaVKdGlDneM8X2trobICYjoHNp4gpHdUIiIiIkHE+eBNzMK6BPo5P8SafIN6oIuIiEiHM3z4cD777DOGDBkS6FCCjnEcqKn23IlQJbocP8sVDlExngR6WamS6E1QEl1EREQkSDgfrMEsXHAogX7lz7Asq8Xz1ANdRERE2pvvfe97/PWvf8XtdnPKKacQGxvbaE1mZmYAIgsC9a1cQJXo0nY6x3uS6OUl0C0j0NEEHSXRRURERIKAs/ZfmGceq0ugj8O68oZWJdAPpx7oIiIi0l7MmzcPgNdff53XX3+9yTWLFy8+qmuuWrWKZcuWUVJSQkZGBtOmTWPgwIFNrn388cd59913Gz2ekZHBww8/DMA777zDn/70p0ZrFi1aRERExFHFdlQaJNF9+DzSscTFQ/4eKC8LdCRBSUl0ERERkQBrkEA/90Ksyde3mEBXD3QRERFpz2688cY2vd66det4+umnmT59OgMGDGDNmjXcf//9PPLII3Tt2rXR+p/+9KdMmTLFe7+2tpbZs2czYsSIBuuioqL44x//2OAxnybQAaoO1j1R5FEXXYg0KzYeAFNegv5VNaZ3WCIiIiIB5Ly/2pNAB6zR47F+fF2rEujqgS4iIiLt2TnnnNOm11u+fDmjR4/mvPPOA2DatGl89tlnrF69miuvvLLR+ujoaKKjo733N2zYQEVFBeeee26DdZZlkZCQ0Kaxtqi6rh96pPqhS9ux4uIx4OmJLo0oiS4iIiISIA0S6Of9CGvSdPVAFxEREWljbrebbdu2cfHFFzd4fOjQoWzevLlV13jrrbcYMmQIycnJDR4/ePAgM2bMwHEcevfuzaRJk+jTp0+z16mpqaGm5lC7PcuyiIqK8t5uTv0xy7Kw6tu5hGAl+uH7CGXtch9xCZ4H95eG3L788f1QEl1EREQkAJz33sA86+mheTQJ9MOpB7qIiIi0J8uXL2fkyJFHVdm9fPlyzj77bOLi4ppdU1ZWhuM4xMfHN3g8Pj6ekpKSFp+juLiY//73v/z85z9v8Hh6ejozZsygZ8+eVFZWsnLlSu666y4eeughunXr1uS1li5dypIlS7z3+/Tpw/z58xsl55uTlpbGwfxdFACumNhmnyfYpaWlBTqENtGe9lHevQclQKeaarrq31UjSqKLiIiI+FmDBPoPLsK64lr1QBcREZEO79lnn+WEE05odRLdcRyeffZZBg0adMQker2mft5qTRHDO++8Q0xMDMOHD2/weFZWFllZWd77AwYM4Je//CWvv/4611xzTZPXmjhxIuPHj2/0/AUFBbjd7iPGnpaWRm5uLrV79wDgtm327t3bYvzB5PB9GGMCHc4xa4/7qDWef4uV+bnt8t+Vy+Vq9S+rmjz/mM8UERERkaPmrHvrsAT6BKwrrlEPdBEREZE6b731Fv/9739btdZxWte6Li4uDtu2G1Wdl5aWNqpO/y5jDG+//Tbf//73cbmOnEazbZu+ffuSm5vb7Jrw8HDCw8Obfa6WGGMaDBYN1QSuMSZkYz9ce9oHsXW/iCovDdk9+fL7oSS6iIiIiJ+Y/3yEWfh/QF0Ll1Yk0EE90EVERKTjePPNN9v8mi6Xi8zMTDZu3Nigmnzjxo2cfvrpRzx306ZN5ObmMnr06BafxxjDN998Q48ePY475iM+T1V9T3QNFpU2VN8TvbwkkFEELSXRRURERPzAfPkZzt9+B46DddZ5rWrh8l3qgS4iIiLt2eLFi3127fHjx7NgwQIyMzPJyspizZo1FBYWMmbMGACee+459u3bx0033dTgvLfeeov+/fvTs2fPRtd88cUX6d+/P926dfP2RN+xYwfXXnutz/YBwGGDRUXaTH0lesV+jFOLZYcFNp4goyS6iIiIiI+Zr/+H8/hvwe2GU87E+slNWLZ9xHPUA11ERESk7Zx11lmUl5fz0ksvUVxcTI8ePbjzzju9PZKLi4spLCxscM6BAwdYv34906ZNa/KaFRUV/O1vf6OkpITo6Gj69OnD3Llz6devn283U5dEtyKVRJc2FNPZ89UYqKiAzi3PGehI9A5MRERExIfMru04/zfX07ty0MnY02/HCjtyVYd6oIuIiIi0vbFjxzJ27Ngmj82cObPRY9HR0SxatKjZ602bNq3ZBLtPHdYTXaStWC4XRMVAZQXsL1MS/TuURBcRERHxEZO3B+eRu+FABfQ9AXvGr7CaGSR1OPVAFxEREZFm1bdziVRPdGljneMOJdGlASXRRURERHzA7CvAefguKCuBHn2wf/4brKN8o6Me6CIiIiLSSLUq0cVHYuMgf6+S6E1QEl1ERESkjZnyUpxHfgP7CiC1O/atc7GiY494jnqgi4iIiEireAeLqhJd2ljdcFGzvwwrwKEEG70jExEREWlD5kAFzqN3Q+5u6NIV+xf3YsUlHPEc9UAXERERkVarqk+iqxJd2pYVG4cBVaI3QUl0ERERkTZiqqpwFsyDndugczz2L+ZhJSW3eJ56oIuIiIhIaxlvT3Ql0aWN1VWiK4nemJLoIiIiIm3AuGtw/vIAfLUJomI8LVzSuh/VNdQDXURERMTjiy++4NNPP2Xz5s3s27eP6upqOnfuTEZGBoMHD+bMM88kLi4u0GEGRpV6oouP1CfRy0sDG0cQUhJdRERE5DgZpxbzxMPw+acQEYn987uwemYe8Rz1QBcRERFp7J133uHVV19lz549dOrUiV69epGZmUlERAT79+9n586dbNiwgWeeeYYzzzyTSZMmkZzc8if/2pW6SvSjHVov0qLYzgCY/eUBDiT46B2aiIiIyHEwxmCe/RPmkw8gzIU941dY/QYd8Rz1QBcRERFp7Je//CX5+fl8//vfZ+bMmWRmZmLbdqN1+/fvZ8OGDbz77rv84he/4KabbmLEiBEBiDhAqtUTXXzD6qye6M1REl1ERETkGBljMC88hVn7L7Bs7OtuxzpxWIvnqQe6iIiISGOnnHIKP/rRj4iOjj7iutjYWEaPHs3o0aPZtGkT+/fv91OEQUJJdPEV9URvlpLoIiIiIsfIrFiMWfMqANbVN2OdetZRna8e6CIiIiKHTJo06ajPGTToyJ8AbJfqe6JrsKi0tdh4z1cl0Rtp/JkYEREREWmR8+ZrmFefA8CaNB37e+cdcX1enk1OTrj3D+C9rR7oIiIiIg0tWbKEffv2NXmsuLiYJUuW+DmiIKJKdPGVznWV6JUHMG4V9xxO79hEREREjpKz7k3M838HwLroSuwfXHTE9eqBLiIiInJ0XnzxRU4++WS6dOnS6FhxcTEvvvgil112WQAiCyxjzGFJdA0WlTYWFQOWDcaB/eWQ0Pj111EpiS4iIiJyFMyn6zBPLwDA+sEErPEtf+xYPdBFRERE2s7BgwdxuTpoSsvtBqfuZ0ZVoksbs2wbYjtDeamnpYuS6F4d9L84IiIiIkfPbPoPzt9/D8bB+t4PsK64BsuyWn2+eqCLiIiINO+bb75hx44d3vuffvopu3fvbrCmurqatWvXkpqa6ufogkR9FTooiS6+ERt3KIkuXkqii4iIiLSC2bUD508Peqp/Tj0L6yczj5hAz8uzyc8PA2jQAx1QD3QRERGRJmzYsKFBr/OXXnqpyXURERHceOON/goruNQPFQ1zYXXUanzxrdjOAJjyMlpfLtT+6dUmIiIi0gJTVoLz2H1QVQkDhmBfexuWHdbsevVAFxERETl6P/jBDzj11FMxxvCrX/2KG2+8kZ49ezZY43K5SEtLIyIiIkBRBlh9JXqkqtDFR2LrhouqEr0BJdFFREREjsDU1OD8+QEoyoeUbtg/+yVWePgRz1EPdBEREZGjl5iYSGJiIgB33303mZmZdOqk4ZkNVNdVoquVi/iIFRuHASXRv0NJdBEREZFmGGMwzz4GX30JUTHYN92FVV+Z0QrqgS4iIiJybAYNGhToEIJTVV0leoR+uSA+okr0JtmBDkBEREQkWJlVL2M+fBtsG/tnd2B1y2h2bV6eTU5OuPcP4L2tHugiIiIiLXvggQfYvn17q9fX1NSwfPly3njjDR9GFVyMKtHF1zrHe74qid6A3tGJiIiINMH89yPMy88AYP34OqxBw5pdqx7oIiIiIscvPj6eO++8k/79+3P22Wdz4oknkp6e3mBNZWUlW7du5d///jcffPAB0dHR3HTTTa26/qpVq1i2bBklJSVkZGQwbdo0Bg4c2OTaL774grlz5zZ6/JFHHqF79+7e+x999BGLFy8mLy+P1NRUJk+ezPDhw49i10dJPdHF1+oq0Y2S6A0oiS4iIiLyHebb7ThPPAzGYJ0zDvvcC4+4Xj3QRURERI7fjBkz+OEPf8grr7zCP/7xD2pra4mIiCAuLo6IiAj2799PeXk5xhiSk5OZOHEiY8eOJbyFeTUA69at4+mnn2b69OkMGDCANWvWcP/99/PII4/QtWvXZs979NFHiY6O9t6PizvU2m/Lli08+uijTJo0ieHDh7NhwwYeeeQR7r33Xvr37398fxnN8bZzURJdfEM90ZumJLqIiIjIYUxpMc5j86DqIAw8CWvS9Fafqx7oIiIiIsenT58+/OIXv6C0tJTPPvuMLVu2UFxcTHV1NX369KF79+6ceOKJDBgwAMuyWn3d5cuXM3r0aM477zwApk2bxmeffcbq1au58sormz0vPj6emJiYJo+tWLGCoUOHMnHiRAAmTpzIpk2bWLFiBbfeemvrN300qpVEFx+r74leriT64ZREFxEREaljaqpx/nQ/7CuE1O7YN/wSy9X0j0t5eTb5+WEADXqgA+qBLiIiInKc4uPjOfvsszn77LOP+1put5tt27Zx8cUXN3h86NChbN68+Yjn3nHHHdTU1JCRkcEll1zC4MGDvce2bNnChRc2/MTiSSedxMqVK4875mZVeXqiW5EaLCo+EtvZ83V/GcaYo/plVXumd3giIiIigDEGs3ABbNsM0bHYN9+FFRPb5Fr1QBcRERHxrZ07d9KzZ882uVZZWRmO4xAfH9/g8fj4eEpKSpo8JzExkeuvv57MzEzcbjfvvfce8+bN4+6772bQoEEAlJSUkJCQ0OC8hISEZq8JnmGoNTWHPqloWRZRUVHe283xHqup9nyNiAzJ5GZ9zKEY++Ha9T7i6l4nNdVYNdUh8Qsbf3w/lEQXERERAczKFzHr34WwMOyf/RIrNb3ZteqBLiIiIuJbs2fPJjMzk3PPPZfvfe97zbZUORpNJdiaS7qlp6c3GGqalZVFYWEhr732mjeJ3pSWKneXLl3KkiVLvPf79OnD/PnzSU5Obs0WiA13UQbEdEkisVu3Vp0TjNLS0gIdQptoj/swxrArPAJqqkmJ7oQrJXT+nfny+6EkuoiIiHR45tN1mFcWAWBNvgFr4EmtOk890EVERER849prr+Xdd9/lySef5JlnnuH000/n3HPPZejQoUd9rbi4OGzbblQhXlpa2qg6/UiysrJ4//33vfebqjpv6ZoTJ05k/Pjx3vv1CfeCggLcbnez51mWRVpaGvv3FQFQUePm4N69rY49WNTvIzc3F2NMoMM5Zu1+H7GdobiI/K+3YoXAh2tb8/1wuVyt/mVVk+cf85kiIiIi7YD55mucJx8BwDrvR9ijLmhynXqgi4iIiPjP+eefz/nnn8+uXbt45513eP/991m3bh1dunThnHPOYdSoUa2uOnW5XGRmZrJx40aGDx/ufXzjxo2cfvrprY5p+/btDdq3ZGVlkZOT0yApvnHjRrKyspq9Rnh4OOHh4U0ea00y1tT1RCciMqSTt8aYkI6/XrvdR0wcFBdhykshhPbny++H3vGJiIhIh2VK9uE8dh9UV8GJw7Auv6bJdeqBLiIiIhIYGRkZTJ06lSuvvJL//ve/vPPOOyxbtoylS5fy/PPPt/o648ePZ8GCBWRmZpKVlcWaNWsoLCxkzJgxADz33HPs27ePm266CYAVK1aQnJxMjx49cLvdvP/++6xfv57bbrvNe81x48Zx991388orr3D66afz8ccfk5OTw7333tu2fwmHq6ryfI2IPPI6kePROQ4As7+M0O763naURBcREZEOyVRX4Tz+Wygpgm49sK+/AyssrMm16oEuIiIiEli2bZOWlkZqairR0dGUlZUd1flnnXUW5eXlvPTSSxQXF9OjRw/uvPNOb3uH4uJiCgsLvevdbjfPPvss+/btIyIigh49evD//t//45RTTvGuGTBgALfeeivPP/88ixcvJi0tjVtvvZX+/fu3zaabUl2XRA+BYY8SuqzYOAzA/qN7nbVnSqKLiIhIh2OMwTz9f7BjK8R0xr7p11jRLQ+rUg90EREREf+qrKxk3bp1vPPOO2zZsoXw8HCGDx/OOeecc9TXGjt2LGPHjm3y2MyZMxvcnzBhAhMmTGjxmiNGjGDEiBFHHcsxqz7UzkXEZ2I9leiUK4leT0l0ERER6XDM8sWYj9+HsDDsG+/EamLivHqgi4iIiATO559/zjvvvMP69euprq6mb9++XHvttYwcOZLo6OhAhxcwpq4S3YpUEl18qHPdcFxVonvpHaCIiIh0KM7HazHLngPAmnIj1oDBjdaoB7qIiIhIYM2bN4+4uDjGjBnD6NGjycjICHRIwaFKlejiB7GHeqKLh5LoIiIi0mGY7Vsx/3gUAGvMBOzvn9/kOvVAFxEREQms22+/nVNPPRXbtgMdSnCp1mBR8T2rc11P9PLSQIcSNJREFxERkQ7BFBd5BonWVMOQ07Aum9biOeqBLiIiIhIYp59+eqBDCE5VGiwqflDfE31/eWDjCCJKoouIiEi7Z2pqPAn00n3QrQf2dbdj2WEN1qgHuoiIiIgEPVWiiz94B4uqEr2e3hGKiIhIu2deXgjffAWxnbFvvgsrquEwKvVAFxEREZGQ4O2Jrkp08aH4RM/XinKM243lUgpZfwMiIiLSrpmNH2PWLAPAnnYrVnJaozXqgS4iIiIiwc7U1oK7rrWgKtHFl2I6g22D48D+UkhICnREAackuoiIiLRbpqQI5x9/BMA670dYJx25t6Z6oIuIiIhIsDL1rVwAIpVEF9+xbBviEqBkH5SWKImOkugiIiLSThmnFueJh2F/GfTog3XptAbH1QNdREREREKJOVjpuWFZEB4R2GCk/YtL9CTRy4oDHUlQ0DtEERERaZfM6y/B5hyI7IR9/Wys8HDvMfVAFxEREZFQY7z90COxLCuwwUj7V9cX3ZQWo39tSqKLiIhIO2S++hKz7DkArMk3YKVlNDiuHugiIiIiEmqc+kp09UMXP7DiEjAApapEByXRRUREpJ0xFftx/v57cBys4aOwzhrd7Fr1QBcRERGRUHF4JbqIz9VVolNWEtAwgoWS6CIiItJuGGNwnnkM9hVAchrW1Bu9H3VVD3QRERERCWXmoJLo4kdx9e1c9gU4kOCgd4wiIiLSbpj3VsGn6yAsDPu62VhR0YB6oIuIiIhI6PNWokd2Cmwg0iFY8fXtXEoCHElwUBJdRERE2gWz+xvM4icAsCb+BKtPf+8x9UAXERERkVBnqtQTXfworr6di3qig5LoIiIi0g6Yqiqcvz0ENdVw4jCsMROaXKce6CIiIiISqtTORfyqvid6yT6MMd42mR2VkugiIiIS8syLT8KenRCXgH3NrVi2rR7oIiIiItKuOPWV6JFKoosfJCR5vlZXwYEKiIkNbDwBpneQIiIiEtLMJ+sw774BgH3tL7DiEtUDXURERETanfqe6JYq0cUPrMhIiO0M+8uhuFBJ9EAHICIiInKsTFE+zjMLALDGXoI1aBigHugiIiIi0v6Yg/WV6BosKn6S0PVQEj2jd6CjCSgl0UVERCQkmdpanCf+4PloYZ8srIunNlqjHugiIiIi0l7UV6KrJ7r4TZeusGs7Zl8hHbsjupLoIiIiEqLMa/+Er76EqGjs624nvyhCPdBFREREpFmrVq1i2bJllJSUkJGRwbRp0xg4cGCTa9evX8/q1avZsWMHbrebjIwMLr/8ck4++WTvmnfeeYc//elPjc5dtGgRERERbR7/oSS6KtHFP6zEJAx4KtE7OL2jFBERkZBj/rcRs/JFAKypM8h30tUDXURERESatW7dOp5++mmmT5/OgAEDWLNmDffffz+PPPIIXbt2bbT+yy+/ZOjQoUyePJmYmBjefvtt5s+fz/3330+fPn2866KiovjjH//Y4FxfJNABnIOqRBc/S6x7bexTEl1JdBEREQkpprwM58mHwRis7/0Ae/jZ5OeoB7qIiIiING/58uWMHj2a8847D4Bp06bx2WefsXr1aq688spG66dNm9bg/pVXXsm///1vPvnkkwZJdMuySEhI8GXoXt5K9Egl0cVPuiQDYEqKAhxI4CmJLiIiIiHDGIPz9B+hZB+kZWBNvr7BcfVAFxEREZHvcrvdbNu2jYsvvrjB40OHDmXz5s2tuobjOFRWVhIbG9vg8YMHDzJjxgwcx6F3795MmjSpQZK9LXkHi6oSXfzE285FlehKoouIiEjoMG++Bhs/Blc4xZfewd4tnQH1QBcRERGR5pWVleE4DvHx8Q0ej4+Pp6SkpFXXWL58OVVVVZx55pnex9LT05kxYwY9e/aksrKSlStXctddd/HQQw/RrVu3Jq9TU1NDTc2hIg/LsoiKivLebo5lWd5KdCsy6ohrg1l93KEaf70Os4+kFM/XfQVHXhdg/vh+6B2miIiIhASz82vMS08DsP+Ca7hh3qnqgS4iIiIirdZUgq01Sbe1a9fy4osvMnv27AaJ+KysLLKysrz3BwwYwC9/+Utef/11rrnmmiavtXTpUpYsWeK936dPH+bPn09ycnKLceTVVaJ3SUsjqpkkfahIS0sLdAhtor3vwyQns8u2oaaa1MhwwpJa/ncaSL78fiiJLiIiIkHPVB3E+dvvwe2Gk89gZ58J6oEuIiIiIq0SFxeHbduNqs5LS0sbVad/17p16/jLX/7CrFmzGDp06BHX2rZN3759yc3NbXbNxIkTGT9+vPd+fRK/oKAAt9vd7HmWZUFdJfq+igPYe/ceMZZgZVkWaWlp5ObmYowJdDjHrEPto0tXKMwn7/PPsLJO9G+ArdSafbhcrlb9sqo5SqKLiIhI0DOvLIK83ZCQhH31zbDd82ZDPdBFREREpCUul4vMzEw2btzI8OHDvY9v3LiR008/vdnz1q5dy5///GduueUWTjnllBafxxjDN998Q48ePZpdEx4eTnh4eLPnH/H6B+sGi4ZHhHTiFjx7DfU9QAfZR3I3KMzHKdiL3X+QfwM7Sr78fiiJLiIiIkHNfP0/Ty90YOfZt7B/e5J6oIuIiIjIURk/fjwLFiwgMzOTrKws1qxZQ2FhIWPGjAHgueeeY9++fdx0002AJ4H++OOPM23aNLKysrxV7BEREURHRwPw4osv0r9/f7p16+btib5jxw6uvfZan+yhvic6kRosKv5jJadhvvwMCpr/hEVHoHecIiIiErRMTQ3OwgVgDO9WXcBVPxvX4Lh6oIuIiIhIa5x11lmUl5fz0ksvUVxcTI8ePbjzzju97R2Ki4spLCz0rl+zZg21tbU8+eSTPPnkk97HR40axcyZMwGoqKjgb3/7GyUlJURHR9OnTx/mzp1Lv379fLIHU+XpiU5EJ59cX6RJyXV9xpVEFxEREQlOZsVi2Pst7qgEbv7X7eqBLiIiIiLHbOzYsYwdO7bJY/WJ8Xr33HNPi9ebNm0a06ZNa4PIWmaMOVSJHqFKdPEfKzkNAxgl0UVERESCj/l2O+aNlwDYe84MSl5KoH//AvVAFxEREZGOx10DTl3BSKQq0cWP6ivR80NzmG1bURJdREREgo6praXqiQWE19ZS1vcs1lWeC6gHuoiIiIh0UFVVh26rEl38KbW75+v+Mkx5GVbnuMDGEyB6ByoiIiJBp/zlV4nZ8xWlNZ0572+/Ib8qEVAPdBERERHpoKrrkuguF1ZYWGBjkQ7FiuwESSlQlA97d0LnwYEOKSCURBcREZGgYnJ3EfVmNgBfn3IDz9xmyMkpUQ90EREREem4qtUPXQIovScU5WP27MTKUhJdREREJKCM4+AsfAy7toZ3C0aQfM5o9UAXEREREamvRFc/dAkAK70HJuffsOfbQIcSMCGVRF+6dCkbNmxg9+7dREREkJWVxdSpU0lPTw90aCIiInKc9u6FXdmr6PbVJmrCOnHn57/ils8jwLLUA11EREREOrYqVaJLAKX3BMDs2RngQAInpN6Rbtq0ibFjx9K3b19qa2t5/vnnue+++3j44Yfp1Em/iRMREQlVn3/u4tcz9vJ05tPggns33syuynRmzz60Rj3QRURERKSjMvWV6BHKf4n/Wek9MQB7dmKMwbKsQIfkdyGVRJ8zZ06D+zNmzGD69Ols27aNQYMGBSgqEREROV6b/xfGzYlziXUd4EC3QQw+ZwzcgXqgi4iIiIgAVNUn0VWJLgGQ3hPCwqC8FIoLoUtyoCPyu5BKon/XgQMHAIiNjQ1wJCIiInI8euz+F6ckf0StHU7sjJsYUuCpOFcPdBERERERvD3RLSXRJQCsiEhPIv3b7bBjq5LoocQYw8KFCznhhBPo2bNns+tqamqoqTn05tuyLKKiory3Q1V97KG8B5FQoNeaiO98/rmLzZtdRFbt4+ycvwDwRthPca/rz7ffhnnX6fUn0nb0/zUR/9BrTUTaXH1P9Egl0SUwrN79Md9ux2zfinXKWYEOx+9CNon+5JNPsnPnTu69994jrlu6dClLlizx3u/Tpw/z588nObl9/MYkLS0t0CGIdAh6rYm0vcmT4d134S+n3E90Wjk5pSdw07prqH3V8+NJr14wdGgy3boFOFCRdkj/XxPxD73WRKTNVKudiwRYnyx4fzVmx9ZARxIQIZlEf+qpp/jkk0+YO3cuSUlJR1w7ceJExo8f771fXwlQUFCA2+32aZy+ZFkWaWlp5ObmYowJdDgi7ZZeayK+M2eOi+mnfMiozW9TSxi3b/wNl1xWzdlnlwMwYIAbcLN3b2DjFGlP9P81Ef/Qa006GpfL1W6KFYOWtxJdg0UlMKze/T3DRXdsxdTWYoWFtXRKuxJSSXRjDE899RQbNmzgnnvuISUlpcVzwsPDCQ8Pb/Z6oc4Y0y72IRLs9FoTaXuDeu+j387/A+DT5B/zZXkWM84u5pJLKr1r9LIT8Q39f03EP/RaE5G2YlSJLoHWvSdEx8KB/Z6+6H1PCHREfmUHOoCj8eSTT/L+++9zyy23EBUVRUlJCSUlJVRXVwc6NBERETlKZvETuCpL2Freh4+Trwp0OCIiIiIiwWt/GQBWbFyAA5GOyrLD4IShAJj/bQxwNP4XUpXoq1evBuCee+5p8PiMGTM455xz/B+QiIiIHLW8PJsDGz6l54dvY7CYnXMXZ58awSmngGUZ8vJsUlOdQIcpIiIiIhI8yko8X+PiAxqGdGzWwKGYT9dhvvwMLrwi0OH4VUgl0V944YVAhyAiIiLH6YWFMGHj4xAFT27/MZ+WDOXTRz3HPv20C7NmlXPbbeUBjVFEREREJJiY8lLPjc4JAY1DOjZr0MmevuhfbcJU7MeKiQ10SH4TUu1cREREJPT9OOrPdI/KozI2jYSrrwTgoYdK+OQTeOONAqZOrQhwhCIiIiIiQabMk0S3OqsSXQLHSkmH7r2gthbznw8DHY5fKYkuIiIifmO2fE6XjSsAyB/zcwad7PlQ3JAhNZxyCgwd6lYrFxERERGR7yov8XyNSwhkFCJYp40EwHy8NsCR+JeS6CIiIuIXproKZ+FjAPxz58VU9BgW4IhERERERIKfqa6Cg5WeO6pElwCzTv++58aXn2Hy9wQ2GD9SEl1ERER8Li/PJv+pFyF/Dwcikvjt/24hJyecoiKbKVMqsPUTiYiIiIhI08rLPF9d4RAVHdhYpMOzUtNhyGlgHMyqVwIdjt+E1GBRERERCU0rnixi8tcvgw0///BOytydmT370PHUVIcxYwIXn4iIiIi0f6tWrWLZsmWUlJSQkZHBtGnTGDhwYLPrN23axMKFC9m1axeJiYlcdNFFnH/++Q3WfPTRRyxevJi8vDxSU1OZPHkyw4cPb9vA61q5hCV0wbIsjDFte32Ro2SPvQQn59+YD9ZgzhuPld4z0CH5nOq+RERExKeMMUx2/R8RtpvNrjM447qTAc8w0TfeKOCNNwq46qoDgQ1SRERERNq1devW8fTTT3PJJZcwf/58Bg4cyP33309hYWGT6/Pz83nggQcYOHAg8+fPZ+LEifzjH//go48+8q7ZsmULjz76KGeffTYPPfQQZ599No888ghbt25t2+DLPUNF7fjEtr2uyLHKOhFOGg61bpyn/w9TVRXoiHxOSXQRERHxrY0fE7H1E4zt4vo37yAl1VM5M2RIjfePhomKiIiIiC8tX76c0aNHc95553mr0Lt27crq1aubXL969Wq6du3KtGnTyMjI4LzzzuPcc8/ltdde865ZsWIFQ4cOZeLEiXTv3p2JEycyePBgVqxY0aaxmzJPEj0soUubXlfkWFmWhX3lDRAVA9u34Cy4F7Ov6V9ItRdq5yIiIiI+Y2qqcRY/AUDRsIlsX94LKA5sUCIiIiLSobjdbrZt28bFF1/c4PGhQ4eyefPmJs/ZunUrQ4cObfDYySefzNtvv43b7cblcrFlyxYuvPDCBmtOOukkVq5c2WwsNTU11NTUeO9blkVUVJT3dlOs8lIMYCckNrsmVNTHr30Eh+PZh5WUgvXzu6h95G7YnINz53RI6w5RMVjhEW0daovMg3/16fdDSXQRERHxmfKXlxFTkEtNTBfejb4KgPx8zzDRoiKbvDxbVegiIiIi4lNlZWU4jkN8fHyDx+Pj4ykpKWnynJKSkibX19bWUl5eTmJiIiUlJSQkJDRYk5CQ0Ow1AZYuXcqSJUu89/v06cP8+fNJTk5u9pwSx005EBbfhaS0tGbXhZI07SOoHPM+unWjpncm+x67n+ov/gt7vgUgMF37jU+/H0qii4iIiE+YfQVEvPkCALd98AteeTEdgHnzPG9GsrNjmDWrnNtuKw9YjCIiIiLScTRVpXqkytXvHqsf6Hmkc4wxRzw+ceJExo8f3+g5CgoKcLvdTV9z2JmEpXYneuAQcnNzQ3qwqGVZpKWlaR9Bok32ER4Fv5hHWEEupjAPDlRAbdP/ln3FArDDjrgPl8t1xF9WtURJdBEREfEJs+Rpws1BdoQN4fLfncb39pYwe3YCDz1UwpAhno+wpqTUBjhKEREREWnv4uLisG27UYV4aWlpo2rzek1VlJeVlREWFkZsbGyza450TYDw8HDCw8ObPNZsErNbD6z0nkR064bZuzekk7b1jDHaRxBpk310TcXqmto2AR0ly7KwwsJ8+v3QYFERERFpc2bz55iP38dgceO7vySpK97EuQaKioiIiIg/uVwuMjMz2bhxY4PHN27cyIABA5o8p3///o3Wf/bZZ2RmZuJyeWpSs7KyyMnJaXTNrKysNoxeRIKBkugiIiLSpkxtLc4//wpA8ZAf8kXZCQGOSEREREQ6uvHjx/Pmm2/y1ltvsWvXLp5++mkKCwsZM2YMAM899xyPPfaYd/35559PYWEhCxcuZNeuXbz11lu89dZb/OhHP/KuGTduHJ999hmvvPIKu3fv5pVXXiEnJ6fRsFERCX1q5yIiIiJtqmz5KmJ3f0NtZCzvxl8LQE5OOOnptUyZUoFlhf7HHUVEREQktJx11lmUl5fz0ksvUVxcTI8ePbjzzju9PZKLi4spLCz0rk9JSeHOO+9k4cKFrFq1isTERH76058yYsQI75oBAwZw66238vzzz7N48WLS0tK49dZb6d+/v9/3JyK+pSS6iIiItBlTXoZrZTYAv/lkJs8u7QXA7NkJ3jWpqQ6DB2uYqIiIiIj419ixYxk7dmyTx2bOnNnosUGDBjF//vwjXnPEiBENEusi0j4piS4iIiJtxryyiE5OOfsTMzEjx3JX31LmzYvXMFEREREREREJWUqii4iISJsw33yNeX8VAIWjf8aia+NYsKAYODRMVEREREREGqsfVtpW64Kd9hFcOsI+jneP7eNvSERERALKGOMZJmoM1vCzOdB9SKBDEhEREREJGYmJia1aV9/DPdRpH8FF+2iZ7bMri4iISIdh1r8DX/8PxxXJ5hOnk5MTDkB+vs2UKRUUFdnk5enHDhERERGRY1FZWckvf/lLKisrAx3KcdE+gov20XqqRBcREZHjYg4ewCxZCMBDX0zn8csHeY/NmxcPQHZ2DLNmlXPbbRooKiIiIiJytIwxbN++HWNMoEM5LtpHcNE+Wk9JdBERETkuZvkLULqP6vhulJ9xMdn3FrJnj4vZsxM0UFRERERERERCnpLoIiIicsxM7i7MmmUA5J59A8/cmMiVPykgKcmTONdAUREREREREQl1ak4qIiIix8QYg7P4Cah1w5DT2N/njECHJCIiIiLSLoWHh3PZZZcRHh4e6FCOi/YRXLSP1lMluoiIiBybjR/D559ibBdfn3yDd5hoTk446em1TJlSgWWFdm89EREREZFgEB4ezhVXXBHoMI6b9hFctI/WUxJdREREjpqpqfZUoQN/3jqFBycP8x6bPTvBezs11WHwYA0TFRERERERkdClJLqIiIgcNbP6FSjIpSYmibxTf0z2bzRMVERERERERNonJdFFRETkqJh9BZiVLwKQ971r+MetyUzSMFERERERERFppzRYVERERI6KWfI0VFdBv4GUDTg30OGIiIiIiIiI+JQq0UVERKTVzObPMR+/j8Fi+2kzyPk8AtAwURERERERX1m1ahXLli2jpKSEjIwMpk2bxsCBAwMdVrNeeOEFlixZ0uCx+Ph4/v73vwNgjOHFF1/kzTffZP/+/fTv359rr72WHj16BCJcr02bNrFs2TK2b99OcXExt99+O8OHD/ceb03cNTU1PPvss3zwwQdUV1czePBgpk+fTlJSUtDs4/HHH+fdd99tcE7//v357W9/G1T7WLp0KRs2bGD37t1ERESQlZXF1KlTSU9P967x5/dESXQRERFpFeM4OC88CcCiby5hzk/O9B7TMFERERERkba3bt06nn76aaZPn86AAQNYs2YN999/P4888ghdu3YNdHjN6tGjB3fddZf3vm0faobx6quvsmLFCmbMmEG3bt14+eWXue+++3j00UeJiooKRLgAVFVV0bt3b84991z+8Ic/NDremriffvppPvnkE2655RY6d+7MM888w4MPPsj8+fMb/B0Ech8AJ598MjNmzPDed7kapoiDYR+bNm1i7Nix9O3bl9raWp5//nnuu+8+Hn74YTp16gT493uidi4iIiLSKuaTD2Dn1ziRUfSfdTlTplRw112lADz0UAlvvFHAG28UMHVqRYAjFRERERFpH5YvX87o0aM577zzvFXoXbt2ZfXq1YEO7Yhs2yYhIcH7Jy4uDvBUDq9cuZKJEydyxhln0LNnT2bOnElVVRVr164NaMzDhg3jxz/+MWeccUajY62J+8CBA7z11lv85Cc/YejQofTp04ebb76ZnTt3snHjxqDYRz2Xy9Xg+xMbG+s9Fiz7mDNnDueccw49evSgd+/ezJgxg8LCQrZt2wb4/3uiJLqIiIi0yLhrMEufBSDsgonEdY8nOzuGlBQHODRMdMiQGlJTnUCGKiIiIiLSLrjdbrZt28ZJJ53U4PGhQ4eyefPmAEXVOrm5udxwww3MnDmTRx99lLy8PADy8/MpKSlpsKfw8HAGDRoU1HtqTdzbtm2jtraWoUOHetd06dKFnj17smXLFr/HfCSbNm1i+vTp3HLLLfzlL3+htLTUeyxY93HgwAEAb8Lf398TtXMRERGRFpn3/wUFuRCXgPWDCbA10BGJiIiIiLRvZWVlOI5DfHx8g8fj4+MpKSkJTFCt0L9/f2bOnEl6ejolJSW8/PLL/PrXv+bhhx/2xt3UngoLCwMQbeu0Ju6SkhJcLleDqu76NcH0/Ro2bBhnnnkmXbt2JT8/n8WLF3Pvvffy4IMPEh4eHpT7MMawcOFCTjjhBHr27An4/3tyTEn0bdu2kZmZeSynioiISIgxBysxr/0TgL2nTKF4axw5OeEA5OfbTJlSQVGRTV6erSp0EREREZE2ZllWqx4LFsOGDfPe7tmzJ1lZWdx88828++679O/fH2gcvzHGrzEeq2OJO9j2dtZZZ3lv9+zZk759+zJjxgw+/fTTI7aACeQ+nnzySXbu3Mm9997b6Ji/vifH1M7lzjvvZM6cObz//vu43e5juYSIiIiECLPmVSgvpSQ8ne/98iouuCDZO0h03jxPW5cpU5JYtCgmsIGKiIiIiLQjcXFx2LbdqGK2tLS0UfVtMOvUqRM9e/Zk7969JCQkADTaU1lZWVDvqTVxJyQk4Ha72b9/f6M19ecHo8TERJKTk9m7dy8QfPt46qmn+OSTT7j77rtJSkryPu7v78kxJdFnzJiBMYbHHnuMG2+8keeff56ioqJjuZSIiIgEMVNeinljKQD2JVNZ/noxb7xRwEMPlQAaKCoiIiIi4isul4vMzMxGAxA3btzIgAEDAhTV0aupqWH37t0kJiaSkpJCQkJCgz253W42bdoU1HtqTdyZmZmEhYU1WFNcXMzOnTvJysrye8ytVV5eTlFREYmJiUDw7MMYw5NPPsn69ev5zW9+Q0pKSoPj/v6eHFM7l1GjRjFq1Ci++uor3njjDV577TVeffVVTj31VH74wx9y4oknHstlRUREJMiYFS9AVSX07Ev1iSNZ/Vwnpk6tYMgQz/H6YaIiIiIiItL2xo8fz4IFC8jMzCQrK4s1a9ZQWFjImDFjAh1as5555hlOO+00unbtSmlpKS+99BKVlZWMGjUKy7IYN24cS5cupVu3bqSlpbF06VIiIyMZOXJkQOM+ePAgubm53vv5+fns2LGD2NhYunbt2mLc0dHRjB49mmeffZbOnTsTGxvLs88+S8+ePRsMtgzkPmJjY3nhhRcYMWIECQkJFBQU8M9//pPOnTszfPjwoNrHk08+ydq1a7njjjuIioryVpxHR0cTERHRqn9LbbkXy7RBQ5uysjLWrFnDmjVrKCoqIiMjgwsuuIBRo0YRERFxvJf3iYKCAmpqQvdNv2VZdOvWjb179wZdbyWR9kSvNenITEEuzl0zoNaN/Yu5fF47nAsuSOaNNwoAvLfbIomu15qIf+i1JuIfeq1JRxMeHk5ycnKgw2i3Vq1axbJlyyguLqZHjx5cffXVDBo0KNBhNevRRx/lyy+/pKysjLi4OPr378+Pf/xjMjIyAE+F8YsvvsiaNWuoqKigX79+XHvttd6BkYHyxRdfMHfu3EaPjxo1ipkzZ7Yq7urqahYtWsTatWuprq5m8ODBTJ8+na5duwbFPq677joeeughtm/fTkVFBYmJiZx44olMmjSpQYzBsI8rrriiycdnzJjBOeecA7Tu31Jb7aVNkugHDhzg7bffZtWqVeTl5ZGcnExBQQFdunThF7/4RVB+ZEFJdBFpDb3WpCNznnwY89E7MPAkwmbNIycn3Js4T0mpZdGiGKZOrWiTYaJ6rYn4h15rIv6h15p0NEqii0h7d0ztXOp98803rFq1irVr1+J2uxkxYgQ///nP6devH9988w1/+9vf+Pvf/85DDz3UVvGKiIiIH5hvt2PWvwvAtpOu5WBOODk54QDk5IQzZAicf/7BQIYoIiIiIiIi4hfHlERft24dq1at4n//+x9xcXGMHz+e888/v8FU0169ejF58mR++9vftlWsIiIi4ifOy8+AMWzufC5jfnJWg2OzZyd4b8+aVc5tt5X7OToRERERERER/zmmJPof//hHevfuzY033sjIkSNxuZq+THJyMt///vePK0ARERHxL7M5Bz7/BMLCSJ4+meyLClm5MorMTDfz5sXz0EMl3j7oKSm1AY5WRERERERExLeOKYk+d+5cTjjhhBbXpaamMmPGjGN5ChEREQkAYwzOSwsBsL4/luRBaSTVGrKzY1iwoBiAIUNq2mSYqIiIiIiIiEgosI/lpNYk0EVERCQE/edD2L4FIiKxxk8KdDQiIiIiIiIiAXdcg0VFRESk/TC1tThLnwXgwFkT2bEzBcA7UDQ/32bKlAqKimzy8mxSU52AxSoiIiIiIiLiL0qii4iICADmgzWQuxti43h691QevCO5wfF58+IByM6O0UBRERERERER6TCURBcRERFMVRVm2T8BsC68gnPTbL4trGDcuEr27HExe3aCBoqKiIiIiIhIh3RMPdFFRESkfTFvvQal+yApBWvUDzHGIjs7hqQk402c1w8UHTKkRq1cREREREREpMNQEl1ERKSDMxXlmNdfAsC6eApWeHiAIxIREREREREJHmrnIiIi0sGZlUugsgJ3Wm+2RP8AcmzvMNGcnHDS02uZMqUCyzIBjlRERERERETE/5REFxER6cBMUQHmreUALHf9jJ//MLXB8dmzE7y3U1MdBg/WMFERERERERHpWJREFxER6cDMa8+BuwayBjPyqhPJHlXIypVRZGa6mTcvXsNERUREREREpMNTT3QREZEOyuzeiVn3NgD2pVeTmmZISjJkZ8eQkuIZHKphoiIiIiIiItLRKYkuIiLSQTlLnwHjwClnYmUOCHQ4IiIiIiIiIkFJ7VxEREQ6ILN1E3y2AWyb4u9fzd7DBokC5OfbTJlSQVGRTV6erSp0ERERERER6bCURBcREelgjDE4Ly8EwPreD1i4agAPP9y5wZp58+IByM6OYdascm67TQNFRUREREREpGNSEl1ERKSj+Ww9fPUlRERg/WgyY3dXkpdnM25cJXv2uJg9O0EDRUVERERERETqKIkuIiLSgZjaWpyX6qrQfzABKzEJs8siOzuGq646QFKSJ3FeP0xURERERER8r7i4GLfbfcQ1ycnJFBQU+Cki39E+gk972cuR9uFyuUhMTDzmayuJLiIi0oGYtf+C3N0QG4c19pJAhyMiIiIiIoDb7aampvkiFsuyvOuMMf4Kq81pH8GnvezF1/tQEl1ERKSDMAcrMcueA2D/qMns/DoBODRMNCcnnPT0WqZMqcCyQveHJxEREREREZG2pCS6iIhIB2FWvwJlJZCcxlNfXcrvZ3ZpcHz27ATv7dRUh8GDNUxUREREREREREl0ERGRDsCUFmNWLwXAvuQnXNmjmmGnFbJyZRSZmW7mzYvXMFERERERkTqrV69m9erV3v7KGRkZXHbZZQwbNgwAYwwvvvgib775Jvv376d///5ce+219OjRI5Bhi4iP2IEOQERERHzPvPZPqDoIfbLg1O+RmuqQlGTIzo4hJcUBDg0THTKkhtRUJ8ARi4iIiIgETpcuXbjyyit54IEHeOCBBxg8eDC/+93v+PbbbwF49dVXWbFiBddccw0PPPAACQkJ3HfffVRWVgY4chHxBSXRRURE2jmTuwvz/moA7MumeQeuiIiIiIhI00477TROOeUU0tPTSU9PZ/LkyXTq1ImtW7dijGHlypVMnDiRM844g549ezJz5kyqqqpYu3ZtoEMXER9QOxcREZF2znn5GXAcOGk4+fFDyc8JAw4NFM3Pt5kypYKiIpu8PFtV6CIiIiIih3Echw8//JCqqiqysrLIz8+npKSEk046ybsmPDycQYMGsXnzZsaMGdPstWpqaqipqfHetyyLqKgo7+1mleyj+NVFOPv3Y505Gue/H2F//3ys5LTj36Af1e8x1At72ss+oP3sxdf7UBJdRESkHTNfbYL/fASWjX3p1SxaFMPDD3dusGbevHgAsrNjmDWrnNtu00BREREREZGdO3cyZ84campq6NSpE7fffjsZGRls3rwZgPj4+Abr4+PjKSwsPOI1ly5dypIlS7z3+/Tpw/z580lOTj7ieaVvv0bZa4s9d95eAYC18WO6/XXJEc4KXmlpoZX8b0572Qe0n734ah9KoouIiLRTxhicJU8DYH1/DFa3HowdW0lens24cZXs2eNi9uwEDRQVEREREWlCeno6Dz30EBUVFaxfv57HH3+cuXPneo9/t+LVGNPiNSdOnMj48eMbXaOgoAC3293seU7u3kaPuXftYO/exo8HM8uySEtLIzc3t1V/X8GqvewD2s9eWtqHy+Vq8ZdVR6IkuoiISHv1nw/h6/9BRCTWjyYDYIxFdnYMV111gKQkT+K8fpioiIiIiIgc4nK5vFWtffv25euvv2blypVMmDABgJKSEhITE73ry8rKGlWnf1d4eDjh4eFNHjtSAtMcbHpgaagmPY0xIRv74drLPqD97MVX+9BgURERkXbIuN04Lz0DgHX+RKyELgGOSEREREQktBljqKmpISUlhYSEBDZu3Og95na72bRpEwMGDPDNk1c1kUQPj/DNc4lII6pEFxERaYfM+6shfw90jqdw2CXk1Q0RzTnsa3p6LVOmVGBZoV9tICIiIiLSlp577jmGDRtGUlISBw8e5IMPPuCLL75gzpw5WJbFuHHjWLp0Kd26dSMtLY2lS5cSGRnJyJEjfRPQwYONH4uJ9c1ziUgjSqKLiIi0M+bgAcxr/wTA+tFknn0xudEw0dmzE7y3U1MdBg/WMFERERERkXqlpaU89thjFBcXEx0dTa9evZgzZw5Dhw4FYMKECVRXV/PEE09QUVFBv379mDNnDlFRUT6Jx1Q1lUTv3PgxEfEJJdFFRETaGbNqKZSXQko61vfPZ+qgCk49tYqVK6PIzHQzb168homKiIiIiBzBjTfeeMTjlmVxxRVXcMUVV/gnoKbauUTH+Oe5RUQ90UVERNoTU1KEWf0KAPalP8FyuUhNdUhKMmRnx5CS4gCHhokOGVJDaqoTwIhFRERERKRFTVWiu5oeUCoibU9JdBERkXbELPsnVFdB3xNg2JmBDkdERERERNpCUz3Ra93+j0Okg1I7FxERkXbC7NmJWbsGAPuyaeTnh5GfHwYcGiian28zZUoFRUU2eXm2qtBFREREREJBU+1catWWUcRflEQXERFpJ5yXnwHjwLARWP0GsegPMY0Gis6bFw9AdnYMs2aVc9ttGigqIiIiIhLMjDFNt3NxqxJdxF+URBcREWkHzObP4bMNYNvYl/wEgLFjK8nLsxk3rpI9e1zMnp2ggaIiIiIiIqGmuhqM8dzuOxC+/tJzW5XoIn6jnugiIiIhzhiDs+QfAFhnj8VKy6h73CI7O4akJONNnGugqIiIiIhIiDmslUvYjf/PM/8I1BNdxI+URBcREQlx5t8fwI6tENkJ60c/DnQ4IiIiIiLSlupauVidorASumBfOs3zuCrRRfxG7VxERERCmHHXYJY+A4A19hLyK5PI/6bhMNGcnHDS02uZMqUCyzIBi1VERERERI5BXSW61Snacz/M8/O+KtFF/EdJdBERkRBm3n0DCnIhPhFrzAQWPd54mOjs2Qne26mpDoMHa5ioiIiIiEjIOOipRLejojz3w+rSeUqii/iNkugiIiIhyhyowCx/HgDroslYnaI0TFREREREpL3xtnOJxsBhlej62V7EX5REFxERCVHmjZdgfzmkZWB9b4znsbpholdddYCkpIbDREVEREREJATVt3OJiqpLoqsSXcTfNFhUREQkBJl9BZg1ywCwL70aq74aRURERERE2hVT386lvie6qz6Jrkp0EX9RJbqIiEgIcv75d6iphv6DyE8bQX6O53/pGiYqIiIiItLO1Ldz8fZE12BREX9TEl1ERCTEmP98BP/9CMLCsKfcyKLsWA0TFRERERFpr+rbudRXote3c3G7McZgWVaAAhPpOJREFxERCSGm8gDOc38FwDp/Ilb3XkydWsGpp1axcmUUmZlu5s2L1zBREREREZH2oq4S3f5uJTqA4zS8LyI+oZ7oIiIiIcS8sghKiiA5DWv8JMBTaZ6UZMjOjiElxQEODRMdMqSG1FQnkCGLiIiIiMjxMAYiIhtXooNauoj4iSrRRUREQoTZvgXz9goA7KkzsCIiAxyRiIiIiIj4mn3xVKyJVxGflkZlbu6hwaKg4aIifqIkuoiISAgwbjfOM4+BMVgjzsUadDJ5eTb5+Z6PbtYPFM3Pt5kypYKiIpu8PFtV6CIiIiIi7YS39/nh7VtUiS7iF0qii4iIhACz5lXYtQNiO2NdcQ0AixbFNBooOm9ePADZ2THMmlXObbdpoKiIiIiISHti2WFgWZ42L6pEF/ELJdFFRESCnCnIxbz2TwCsy67B6uxJlE+dWsH553uGDOXkhDN7doIGioqIiIiIdARhYeB2e/6IiM9psKiIiEgQM8bgZP8ZqqthwBCss0Y3OL56dSdSUmq9iXMNFBURERER6QDqh4uqnYuIXyiJLiIiEsTMhvfgi/+AK9wzTLS+DyKQnx/Gww939vZFFxERERGRDqK+L7rauYj4hZLoIiIiQcpUlGMWPwGAdeEVWGndm12bklLLrFnlauEiIiIiItIRqBJdxK/UE11ERCRImSVPQ3kpdOuBdcElAOTl2d7K85yccO/XIUPw9kcXEREREZF2zptEVxGNiD8oiS4iIhKEzJbPMWv/BYB91UwslydhvmhRDA8/3LnB2tmzE7y3Z80q57bbyv0Wp4iIiIiIBIC3nYsq0UX8QUl0ERGRIGNqanCefRwA6+yxWP0HeY9NnVrBqadWsXJlFJmZbubNi+ehh0q8g0XVzkVERERE5PgtXbqUDRs2sHv3biIiIsjKymLq1Kmkp6d71xhjePHFF3nzzTfZv38//fv359prr6VHjx6+D1CV6CJ+pZ7oIiIiQca8/iLk7ob4RKxLr25wLDXVISnJkJ0dQ0qKA8CQITXeP6mpTiBCFhERERFpVzZt2sTYsWP57W9/y69//Wscx+G+++7j4MFDLRRfffVVVqxYwTXXXMMDDzxAQkIC9913H5WVlb4PsL4S3V3j++cSkdBLom/atIkHH3yQG264gSuuuIINGzYEOiQREZE2Y/buwry+BABr0nVY0bEBjkhEREREpOOZM2cO55xzDj169KB3797MmDGDwsJCtm3bBniq0FeuXMnEiRM544wz6NmzJzNnzqSqqoq1a9f6PkBVoov4Vci1c6mqqqJ3796ce+65/OEPfwh0OCIiIm3GOA7OosfB7YYhp2Gd9j3vsaYGiubn20yZUkFRkU1enq0qdBERERERHzlw4AAAsbGeIpf8/HxKSko46aSTvGvCw8MZNGgQmzdvZsyYMU1ep6amhpqaQ9XjlmURFRXlvd2c+mPeNa66lJ5Te8Tzgk2jfYSo9rIPaD978fU+Qi6JPmzYMIYNGxboMERERNqc+WANbPkCIiKxr7yhwf/8mxooOm9ePADZ2TEaKCoiIiIi4iPGGBYuXMgJJ5xAz549ASgpKQEgPj6+wdr4+HgKCwubvdbSpUtZsmSJ936fPn2YP38+ycnJrYolLS0NgLyoKKqBxLg4ort1O4rdBIf6fYS69rIPaD978dU+Qi6JfrSO9Td8wa69/JZIJNjptSb+YkqLMUueBsCeMAU7ueH/+C+44CB5eTYXXniQ3bvDmD07ocFA0dRUJ6T/neq1JuIfeq2J+IdeayLty5NPPsnOnTu59957Gx377uvcGHPEa02cOJHx48c3Or+goAC3293seZZlkZaWRm5uLsYY3LWeT6EWFxZQundvq/cSaN/dR6hqL/uA9rOXlvbhcrla/cuqprT7JPrx/oYv2LWX3xKJBDu91sTXip59jAMH9hPedwCpV12PFdbwf9F790J2NsyaFcOAAZ7HRo9O4JRTAhCsD+m1JuIfeq2J+IdeayKh76mnnuKTTz5h7ty5JCUleR9PSEgAPBXpiYmJ3sfLysoaVacfLjw8nPDw8CaPtSaBaYzxrKsbLGrc7pBMfHr3EeLayz6g/ezFV/to90n0Y/0NX7BrL78lEgl2eq2JPziff4Lz7iqwbJzJPyM3v6DRmoICF5BMQUH9Mc/tvXtD9/9lh9NrTcQ/9FoT8Q+91qSjOd4Kz2BkjOGpp55iw4YN3HPPPaSkpDQ4npKSQkJCAhs3bqRPnz4AuN1uNm3axJQpU3wfoHewaPt4PyAS7Np9Ev14f8MX7NrLb4lEgp1ea+IrpqoKZ9GfAbDOGw+9+nr/rTU1TDQnJ5z09FqmTKnAstrfv0u91kT8Q681Ef/Qa03k6C1fvvyYzjv77LOJi4trsziefPJJ1q5dyx133EFUVJS3B3p0dDQRERFYlsW4ceNYunQp3bp1Iy0tjaVLlxIZGcnIkSPbLI5muZREF/Gndp9EFxERCWbmtX9CYR506Yo1oWHFSlPDRGfPTvDeTk11GDxYw0RFREREpP149tlnj+m8QYMGtWkSffXq1QDcc889DR6fMWMG55xzDgATJkygurqaJ554goqKCvr168ecOXO8s/h8qq6dC7W1vn8uEQm9JPrBgwfJzc313s/Pz2fHjh3ExsbStWvXAEYmIiJydMy32zH/egUA+8qfYXVq+MP21KkVnHpqFStXRpGZ6WbevPgGw0RTUvQDs4iIiIi0P7fffju9e/du1dra2lpuueWWNo/hhRdeaHGNZVlcccUVXHHFFW3+/C0+d5gLA6pEF/GTkEuif/3118ydO9d7/5lnngFg1KhRzJw5M1BhiYiIHBXj1OI88xg4Dpx6FtZJwxutSU11yM83ZGfHsGBBMQBDhtR4k+giIiIiIu1RYmJiq3usO47j42iClCrRRfwq5JLoJ554Yqt+GygiIhLMzNuvw46tEBWN/ePrAh2OiIiIiEhQ+Mc//kGnTp1avd627aM+p12oHyzqViW6iD+EXBJdREQk1Jl9hZilnl6P1iU/wUpIanC8qYGi+fk2U6ZUUFRkk5dnk5raQStuRERERKRdi46O9ss5Ic9bia4kuog/KIkuIiLiR8ZxcJ5ZAFWV0PcErLMvaLSmqYGi8+bFA5CdHcOsWeXcdpsGioqIiIiIdFguT7GN2rmI+IeS6CIiIn5k3l4BX/wHwiOwf3ITlm03WjN2bCV5eTbjxlWyZ4+L2bMTNFBURERERDqEw+fgtcSyLH7zm9/4MJogpkp0Eb9SEl1ERMRPzO5vMEueBsC6/KdY6T2bXmcssrNjuOqqAyQleRLnGigqIiIiIh2BMQbLsrz39+zZQ0lJCV27diUhIYGSkhIKCwtJSEggPT09gJEGmAaLiviVkugiIiJ+YGqqcf7+e3DXwJDTsM4ZF+iQRERERESCzj333OO9/d///pe//vWvzJs3j6ysLO/jmzdv5tFHH+VHP/pRACIMEnWDRc2aZZhzx2GldOBfKIj4QePPkIuIiEibMy8/C7u/gc7x2NNublBdA55hojk54d4/4BkqWlTkGShqWSYQYYuIiIiIBMzzzz/P5Zdf3iCBDjBgwAAuu+wynn/++QBFFgSSUrw3zZplAQxEpGNQJbqIiIiPmU3/wax5FQD76p9jxSU2WtPUMNHZsxO8t1NTHQYP1jBREREREek4vv32W5KSkpo81rVrV3bv3u3niIKH9b0fYP691jNvqbIy0OGItHtKoouIiPiQ2V+G848/AmCd80Osk05vct3UqRWcemoVK1dGkZnpZt68eA0TFREREZEOLSEhgfXr13PSSSc1Ovbhhx+SkJDg/6CChGVZWENOw3zxH0/LSBHxKSXRRUREfMQYg/PMY1CyD9IysC67ptm1qakO+fmG7OwYFiwoBjRMVEREREQ6tvPPP5/nnnuO/fv3M3LkSO9g0ffff58NGzZw5ZVXBjrEwHJ52kAaJdFFfE5JdBERER8xa/8F//kIwlzY02/DiowMdEgiIiIiIiFjwoQJVFVVsWzZMtavX+99PDw8nEsuuYQJEyYEMLogUJdEVyW6iO8piS4iIuIDJm8PZvETAFgTpmD16tvkurw8m/z8MADvQNH8fM8w0aIim7w8m9RUxz9Bi4iIiIgEmSuuuILx48ezZcsWysvL6dy5M/379ycmJibQoQWeqy6tV6MkuoivKYkuIiLSxozbjfPkw1B1EAYMwRp7cbNrmxooOm9ePADZ2THMmlXObbdpoKiIiIiIdFzR0dGcfPLJgQ4j6Fjh4RhQJbqIHyiJLiIi0sbMisWwfQtEx2BfcyuWHdbs2rFjK8nLsxk3rpI9e1zMnp2ggaIiIiIiIoc5cOAAe/bsobq6utGxQYMGBSCiIOFt5+IObBwiHYCS6CIiIm3IfLUJs+JFAKypM7C6JB95vbHIzo7hqqsOkJTkSZxroKiIiIiICNTW1vL3v/+dd999F8dpusXh4sWL/RxVEFFPdBG/sQMdgIiISHthKg/gPPEwGAdrxLnYp38/0CGJiIiIiISsFStW8Mknn3DjjTcCcO2113L99dfTt29funXrxq9+9asARxhg9Ul09UQX8Tkl0UVERNqIee6vUJQPSSlYV97Q7Lq8PJucnHDvH/AMFS0q8gwUtSzjr5BFRERERILWe++9x8SJExk5ciQA/fr147zzzuP+++8nOTmZL774IsARBli4KtFF/EXtXERERNqA8/H7mI/eBsvGnj4LKyq62bVNDROdPTvBezs11WHwYA0TFREREZGOLS8vj969e2NZFgA1h1Vcjxkzhn/84x9ceeWVgQov8NTORcRvlEQXERE5TmZfAWbRnwCwLrwcq9+RhxtNnVrBqadWsXJlFJmZbubNi9cwURERERGR7+jUqRNutxvLsoiNjaWgoIABAwYAEBERwf79+wMcYYApiS7iN2rnIiIichyMU4vz1KNwoAL6ZGFdOKnFc1JTHZKSDNnZMaSkeAYk1Q8THTKkhtTUpocmiYiIiIh0JOnp6eTn5wOQlZXFihUrKCoqorS0lFdffZX09PQARxhgrrraWCXRRXxOlegiIiLHwax+BTbnQGQnTxsXl/7XKiIiIiLSFs466yz27NkDwBVXXMHdd9/NjBkzAHC5XNx2222BDC/w6nui17gDG4dIB6B3+iIiIsfIfPM15pVsAKxJ07FSjlwJk5dnk58fBuAdKJqf7xkmWlRkk5dnqwpdRERERKTO2LFjvbf79OnDww8/zMcff4xlWQwdOlSV6PXtXIyDqa3FCgsLbDwi7ZiS6CIiIsfAVFXhPPF7qHXDsBFYI8e0eE5TA0XnzYsHIDs7hlmzyrntNg0UFRERERGprq5myZIljBgxgszMTAC6du3KD3/4wwBHFkTqk+jgaemiJLqIzyiJLiIicgzMkqcgdzckdMH+yU1YltXiOWPHVpKXZzNuXCV79riYPTtBA0VFRERERJoQERHBihUrOPnkkwMdSvD6bhI9slPgYhFp55REFxEROUrms48x77wOgP3TW7Bi41p3nrHIzo7hqqsOkJTkSZzXDxMVEREREZGGMjIyyM/PZ9CgQQF5/k2bNrFs2TK2b99OcXExt99+O8OHD/ceN8bw4osv8uabb7J//3769+/PtddeS48ePfwTYFgYWBYYAzV6TyHiS3agAxAREQklpqwYZ+H/AWD9YALWoGEBjkhEREREpH269NJLefnll8nNzQ3I81dVVdG7d2+uueaaJo+/+uqrrFixgmuuuYYHHniAhIQE7rvvPiorK/0Sn2VZh6rR3Uqii/iSKtFFRERayRiD8/QCKC+F7r2wLrmqxXOaGiaakxNOenotU6ZUYFnGpzGLiIiIiISqt99+m6qqKn7xi1/Qq1cvEhISGrRRtCyLO+64w2fPP2zYMIYNa7poxhjDypUrmThxImeccQYAM2fO5LrrrmPt2rWMGdPyzKQ24QqHmmol0UV8TEl0ERGRVjLvrIScf4MrHPu627HCI1o8p6lhorNnJ3hvp6Y6DB6sYaIiIiIiIt+1c+dOXC4XXbp0oby8nPLyhj83t2Yuka/k5+dTUlLCSSed5H0sPDycQYMGsXnz5maT6DU1NdQc1nrFsiyioqK8t5tTf6zRmrpKdMvtDujfR2s1u48Q0172Ae1nL77eh5LoIiIirWB2bsO8+A8ArEuvxureq1XnaZioiIiIiMixefzxxwMdQrNKSkoAiI+Pb/B4fHw8hYWFzZ63dOlSlixZ4r3fp08f5s+fT3JycqueNy0trcH9PZ0iqS2H8DeWkHj9bbjSurdyB4H13X2EqvayD2g/e/HVPpREFxERaYEpLcZ5/D7PxyQHn4I1enzrz9UwURERERGRduu7Va/GHLld48SJExk//tD7ifrzCwoKcLvdR3yetLQ0cnNzGzxHreUZd3hw/Xvs/fp/uB588qj34E/N7SPUtJd9QPvZS0v7cLlcrf5lVVOURBcRETkCU12F8/hvYV8hpHXHnn47lq253CIiIiIiHVlCQgLgqUhPTEz0Pl5WVtaoOv1w4eHhhIeHN3msNQlMY0zDda7DrlWYHzJJ0Eb7CFHtZR/Qfvbiq30oCyAiItIMYwxm4QLYvgWiY7FvugsrJrbF8/LybHJywr1/wDNMtKjI1jBREREREZEjuPrqq9m2bVur1zuOw9VXX82OHTt8F1QTUlJSSEhIYOPGjd7H3G43mzZtYsCAAf4LxNV0Ql5E2pYq0UVERJphVizGbHgPwsKwb/x/WKnprTpPw0RFRERERI7NwYMHcRzH5+e09rq5ubne+/n5+ezYsYPY2Fi6du3KuHHjWLp0Kd26dSMtLY2lS5cSGRnJyJEj2zyWZjVT1S4ibUtJdBERkSaYf6/FvPocANaVP8M6YWirz506tYJTT61i5cooMjPdzJsXr2GiIiIiIiKtNGfOnECHAMDXX3/N3LlzvfefeeYZAEaNGsXMmTOZMGEC1dXVPPHEE1RUVNCvXz/mzJlDVFSU/4JUJbqIXyiJLiIi8h1mx1acfzwKgPWDi7DPHntU56emOuTnG7KzY1iwoBjQMFERERERkda47LLLjum8Ll26tHEkcOKJJ/LCCy80e9yyLK644gquuOKKNn/uVnM1TO0569/FGjQMq3NcgAISaZ+URBcRETmMKS7Ceey3UF0NQ07DuvyngQ5JRERERKTDuPzyywMdQmj5TiW6eeIPmF79CPv1w577xsDuHXDgAGRmYalyXeSYKIkuIiJSx1QdxHnsPijdB+k9sa+7HcsOa/X5eXk2+fme9fUDRfPzPcNEi4ps8vJsUlPbvlejiIiIiIh0UK4mUnvffHXo9saPPe9x8HzK1po03U+BibQvSqKLiIgAxnFwnnoUdn4NsXHYN/0aKyr6qK7R1EDRefPiAcjOjmHWrHJuu00DRUVEREREpI243Uc8bLZtPnQ7d5evoxFpt5REFxERAc8Q0U/XQZgLe8avsJLTjvoaU6dWcP75BwFPJfrs2QkaKCoiIiIiIr5TXXXk4wW5h24frPRtLBJyTE0N5oN/4R4zPtChBD070AGIiIgEmvPRO5iVnoFB1k9mYvUfdMzXWr26Eykptd7Eef1A0SFDatTKRURERERE2lYLiXFTmHfY2oM+DkZCjVn+PE72Xyi4++eYmppAhxPUlEQXEZEOzXz9P8zCBQBYF1yKfdZ5x3yt/PwwHn64s7cvuoiIiIiIiE81U4luaus+BXt4Er1KlehyiCkvw6x8EQD3N9swry8JcETBTUl0ERHpsExRPs7jvwV3DZx8BtbEq9rs2ikptcyaVa4WLiIiIiIi4jvNVaJXlGMOHoDy0pbXSodk1r/T4L7z1nJVox+BeqKLiEiHZA4ewFkwz/NDZUYf7GtnYdlH/7vlvDzbW3mekxPu/TpkCN7+6CIiIiIicmwOHDjA1q1b2bdvH9XV1XTu3JmMjAx69uwZ6NCCQ1Uz7zn2l4HznYIeJdHlMGbrJgDsi6divb+a2qJ8zKfrsM4YFeDIgpOS6CIi0uEYpxbniYdh9zcQl4B906+xOkUd07UWLYrh4Yc7N3hs9uwE7+1Zs8q57bby4wlXRERERKRDqa2t5aOPPuJf//oXmzdvxnEazxbq3LkzI0eOZOzYsXTr1i0AUQYH6wcXYV5Z1PjA/jKo2O+53TXV09alphpTW4sVpvaTHZ0xBr7+EgArazAxUVGU/fPvmH9/AEqiN0lJdBER6XDMy8/AZxvAFY49cw5WUvIxX2vq1ApOPbWKlSujyMx0M29ePA89VOIdLKp2LiIiIiIirffvf/+bZ599lvz8fIYOHcrkyZPp06cP8fHxhIeHs3//fvLy8tiyZQsff/wxq1at4txzz+XHP/4xcXFxgQ7f76wfXoqVNRjn0bsb9kffX44pKfLc7t7rUG/0qkqIjvV/oBJcCvOgtBjCXNC7H5Gd6/5N5O0ObFxBTEl0ERHpUJwP1mBWLQXAmvZzrMwBx3W91FSH/HxDdnYMCxYUAzBkSI03iS4iIiIiIq33+OOPc+GFFzJmzBji4+ObXNO/f39GjhzJNddcQ05ODi+//DKrV6/msssu83O0gWfZYdB/EMR0bpBEN/vLvK1erNjOmDAX1Lo9LV2URO/w6lu50DMTKyISV7cMz/2CXIzjHFOr0/ZOSXQREekwzJbPMc/+CQBr/CRsfUxNRERERCSoPPbYY8TExLR6/ZAhQxgyZAgVFRU+jCoEhEc0vL+/7FBSPaITRHaCA/vVF108Pv8EAOuEIQCEpaR5qtLdNVBcBMfxae32Sr9WEBGRDsEU5OL8+QGodWOd+j2sH00+ruvl5dnk5IR7/wDk59tMmVJBUZFNXp7+FysiIiIicrSOJoHeFue1G+HhDe9XlENVXRI9shPUzYBy/vwAZvPnfg5OgolxuzGffwqANXS452uYy9M7HyB/T6BCC2p6hy8iIu2eOVCBs2Ae7C+HXv2wfnrrcX88bdGiGC64IJkLLkj2DhKdNy+e7OwYpkxJYtGiDv5DvIiIiIjIcZo0aRJfffVVk8e2bdvGpEmT/BxREPvu8NXyMqj2tHMhMtKbRCd3N87vf+Xf2CS4fLUJKisgNg4ys7wPW6meAb0mf2+gIgtqauciIiLtmqmtxfnb72Dvt5DQBfumOViRkcd93bFjK8nLsxk3rpI9e1zMnp2ggaIiIiIiIn7iOA6WZQU6jOBhGibRTWUFltPJcyfiUCW697gx+vvroMxXXwJgDRrm6alfLyXd81VJ9CYpiS4iIu2aefEp+OI/EBGBfdOvsRKS2ua6xiI7O4arrjpAUpInca6BoiIiIiIi/rFt2zaio6MDHUbw+G4l+oEKDHVJ8si6nuiHK8o/1L7DT4xTi/PsnyhJ7YY576LGfdzFP3J3eb5m9GrwsJWSjgFM/XFpQEl0ERFpt5x3Xse8+RoA9jWzsHr1C3BEIiIiIiJyJCtXrmTlypXe+w899BDh3+n3XV1dTWlpKSNGjPB3eMHLmIb3KyvAVZf2O7ydS71vt/s9ic7WTZi1/6Ic4KP3sG+4A6tbhn9jEEzubgCs1O4NHrd69PHc+OZrf4cUEpREFxGRdsls+i/mn38FwLp4KtapZx33NfPybPLzPR93qx8mmpMTTnp6LVOmVGBZ5kini4iIiIhIC+Li4sjI8CRWCwoKSE1NbVRxHh4eTs+ePRk3blwgQgxOTVSiE+FpY2nVtXM5/N2K2bkNa5h/fwlhNuccurN7B84f78G+/2/HPa9KWs8YA3meJDppDZPo9MwE24bSfZjiIqzEtvkUd3uhJLqIiLQ7ZuPHOH+ZD46DdcYorHGXt8l1Fy2K4eGHOzd4rH6oKEBqqsPgweVt8lwiIiIiIh3RyJEjGTlyJABz585l+vTpdO/evYWzpFESvfIARMV4bkdEQnjDuVBm9w7/xHX4c9Yl0eOm3EDZS894Wsp88xX0yWrhTGkzpcVwsBIsG5K7NThkRXaC9F6wazvs2ApKojegJLqIiLQrzodvY57+o+eHyCGnYV19c5sNzJk6tYJTT61i5cooMjPdzJsXr2GiIiIiIiI+cvfddwc6hNBhmkiiV1V6bkd28iROD1ex3z9x1THVVbBtMwDRo8ZS/r8czCfrMBv/jaUkuv/U9ztPTsX6TpskAKtPf8yu7ZjtW/z+SYVgp89LiIhIu+GsWYZ56hFPBfqIc7Fn/AqrDYfVpKY6JCUZsrNjSEnx/JBaP0x0yJAaUlOdFq4gIiIiIiJHsnXr1qM+p7q6mm+//dYH0YSQ71aiGwfKSj23IyMxB76TNK+s8E9c9b74D7jdkNgVV3oPrCGne8LM+bd/4+jgzJ6dnhupzXy6o3d/z7q6X3jIIUqii4hIyDPG4LyyCLP4CQCsH1yE9dNbsFz6wJWIiIiISCi55557+N3vfsfGjRtbXFtSUsKyZcu46aab+OSTT/wQXRA7PIkeVvc+qL4SPaITuGsarq884J+46jjr3wHAOn0klmVhDTnVc+CbrzAl+/waS0dmPv0QAKv/oCaPW1knem5s24ypqfZXWCFB2QUREQlpxqnFZP8V894bQN0Q0XGXt1kLF2h6oGh+vs2UKRUUFdnk5dmqQhcRERERaQN/+MMfePbZZ/ntb39LQkICAwcOJDMzk7i4OCIiIti/fz+5ubls3bqVr776itjYWC6//HJ+8IMfBDr0gLImTMFk/xnr++dj/rseyksPHYzshH3ZNJzfz8E69SzMB2/CQf8l0U15GXz2MQD2iHM88cYnQq9+niT6559gjRzjt3g6KrOvELZ8DoA1/OymF6V2h/hET+/0bVtgwGA/RhjclEQXEZGQZWpqcJ78A3yyDiwLa8qN2KMuaPPnaWqg6Lx58QBkZ8cwa1Y5t92mgaIiIiIiIscrLS2N2bNns2vXLlavXs1//vMfPvzwwwZrIiIiyMrK4vrrr2fkyJGEN9HbuaOxRl2AdcJQSEnDbP78O0n0SKxe/bD/+ByUFHuS6JUHMMa0afFRU4wxmOw/eyrhe2ZCj8xDMQ89DfPNV56WLm2URDeVBzD/+Qh274DUdOyz2/79Yagyn3wAxkD/QVhJKU2usSwLK2sw5uP3MZtzsJRE91ISXUREQpI5WInzp/vhy88gzIU9fRbWaSN98lxjx1aSl2czblwle/a4mD07QQNFRURERER8KCMjg2uuuQaAsrIy9u3bR3V1NXFxcXTt2hVXELVuXLVqFcuWLaOkpISMjAymTZvGwIED/RqDZVmQVtfnOiq64cGITp41dhim/lhtLdRUQ0SkbwPbsdWTvA0Lw/7JTQ2S9taQ0zGvPQ9fbmyThL6pPIAz71YoyD30WOYArIw+x3Xd9qK+/7w17MwjLzxhKHz8PmbDe5gLr8AKC/NDdMFPPdFFRCTkmPIynIfv8iTQIzth//wunyXQAYyxyM6OISnJeBPnGigqIiIiIuIfcXFx9O7dm6ysLNLS0oIqgb5u3TqefvppLrnkEubPn8/AgQO5//77KSwsDFxQ0TGHboe5Gs6KiuwE9clqP/RFN+vfBcA69XtYvfo1PNi9Z10cFfDdwadH+zwHKjDP/cWTQI+MOvR4XRuZQDOVB3DeW0Xtw3dRO/Nyah+7r/GwV18+f9VB2PoFANbgU4+41hr+fYiNg7zdmHVv+iO8kKAkuoiIhBSzrwDnd/8Ptm+BmM7Yt92HNWhYoMMSEREREZEOaPny5YwePZrzzjvPW4XetWtXVq9eHbigog5Lokc2rDS3bBs61VWjV1b4NAzjdmP+/YHneZvowW1FREJnT5tMigqO/XkqynHm3Yr56B0A7Bl3Yl01w3Osrvo6kEzJPpz5v8Q8+7inEKy6Cj7bgFm11H9BfP4puN2QlHLoEwvNsDpFY/3wMgDM8uc1YLRO8PzqTkREpAVm7y6cR38D+wohsSv2L+Zidevhk+dqaphoTk446em1TJlSgWUZnzyviIiIiIgcsmnTJl5//XV2795NdXXDZJ5lWSxYsCBAkYHb7Wbbtm1cfPHFDR4fOnQomzdvDkxQgBUdg/fdSl0rlwaiojwJ9MpKn8VgDh7AWTAPSvdBdCw0V/jUJdnTv31fgadn+tE+z67tOM8/AYV5kNgV6/KfYg06GYqLPH8H2zZjykux6pP1R3PtbZtx3ngJvvkaOkVBeAQkJWNFRWOl9aC8a1ccB88vAmI6g22DZYNtear9qw5i1izzJveJjMIaPQ6qqjBvLcd8sg5z8dTjamNj3DWe+A5WglMLqelYKekN1+Tuwln0OADWsBGtej7r3HGYNctgXyHm5WdgwhSsTodV+BsDtW5PWyC3G2prwF3recwE6L1ySjefXl5JdBERCQlmx1acP86F/WWQ1h371nuxkpJ99nxNDROdPTvBezs11WHwYA0TFRERERHxlf/973/MmzePQYMGsXv3bk4++WQqKyvZsmULqampDBgwIKDxlZWV4TgO8fENE7Tx8fGUlJQ0eU5NTQ01NTXe+5ZlERUV5b3dnPpjrUq4NqhE79T4nKgYoBAOHvDJYFFTWoz5x6Ow5QvoFIU9/TbsiAig8T6spGTMN19BceFRx2K+/h/O7+d4eru7XITdNMfbMsbq0hWnZybs3Aaff4p11uijunbtoj9h3nm98YFvvsIABig5mgumdSds+m1YvftjKg9Q+94qyNuNtfdbrO69jio28PwdO8sXYz5+D/Y3fF9qDRgC/QZ6Bs06Ds7zf/es6ZOF3UTSvql/W1ZEJEy4Eufp//P8IuDtFZ5WQO66xHmt+6hj9jXXXzyV/b4alqskuoiIBD3z5Wc4j98PVZXQqx/2LXcfUyXB0Zg6tYJTT61i5cooMjPdzJsXr2GiIiIiIiJ+9MILL3DOOedw3XXXMXnyZCZNmkRmZibffPMN999/P8OHDw90iEDTSbvmEnlLly5lyZIl3vt9+vRh/vz5JCe3rkAoLS2txTWlqWmU1d0Oj40lrVvDCt28+ASqd39DYqdIoru1XfWuMYb9ry2m9OnHMFUHsSIiSb7/z0QOGNxobf0+inv0Zv+nHxJTdYCEo4il6vP/ULhgHtRUEzn0NBKm/4KIvg1/qVJ61mjKdm4jcksOXS+d0uprV/57HYXvvA62TfToC4kZNRZsG1N5AHdRAU5xEe7c3Rh3DU5pMbWlxTj7y8AxYBzPH8dAWBjhPTOJ/8kMIged1OA5Ck49k4Pr3yP683+TcNqIVscG4M7dTf7v7sTk7QbAjksgLCkFgJpvvsJszoHNOZgVL3jPCUtKJnXeAsISk5q97nf/bZnLruJAQiJli5/EvXcXHGih/Y8r3NN/3wpM9/C0tNS6ry2/Ro6FkugiIhLUzKfrcP7+e89vvE8Yij3zV1idols+8Tilpjrk5xuys2NYsKAYODRMVEREREREfO/bb7/lRz/6kfe+4zgA9OrVi0svvZSXXnqJ0047LVDhERcXh23bjarOS0tLG1Wn15s4cSLjx4/33q9PthcUFOB2N1/da1kWaWlp5ObmelppHIETFu69XWOHsXfv3gbHa21POrB4z25Kv3MM6oZQRkQeVUWvMQbnub9g3l7peaBPFvbl17AvLgkOe47v7sOJ9Ly32//NdiqbiKXJ5yopovY3P/cUWfUdiPuGX1IU2anB8wCYzIEAVH6yjj3f7sRyhTd1uUb7qP3r7z2xnvcjqidNp0ETod4DGu0DY5odOlkL7INGsTmnnAXr36N89TIO/OBirLCwljcOmLw91P7+V1BcBMlp2FNuxBp4Eqbu/LBdO3DeWwWlxZj/bYTO8Z5K94smk3+wulEc391Lo39bg0/DnHgqYfsKoKYGwsLAFV731QVhLs992/ZZBXhr5RXtO+JrxOVytfqXVU1REl1ERIKW8/5qzLN/8vwm/5QzsaffhhUeEeiwRERERETED6qqqujUqRO2beNyuSgvP9S2Ij09nV27dgUwOk9SLjMzk40bNzaoit+4cSOnn356k+eEh4cTHt50Mrel5Hj9mhbXDT3sufcVNl4f5Ulcm8r9jY6Zb7fjPDAbuqZi3/BLrO49W4wJwFmzzJNAtyysK67BGv0jT/V2M7F691HXotPsK2jV/gGcl57xJND7ZGHPuhciIps81/TqC9ExcKACs+db6NGnxWubr76EPTs9v0QYP6nFmFr1/WjK0NMhNg5K92G++BSGtO6XQf+/vTsPj6q8+z/+uSczgYSQBZKQsAQSIIjsriBYsP83eQAAee1JREFUEKpSxSpqFTdq1aoFrV3U1qp1F6lPrb/H5dFWK261IItSl4K44Fb3BQQrIoQ1IQnZE7LO/fvjZCEmgSQkc2aS9+u6uDJzzplzvjeTE8gnd753zT//5gToyYPk+c3tMrF96+uQJA0YLM95l7dY64EccCx9Dh4+t+vvoRO0+z05CHfm1wMAcADWWvlfXSb71IOS9cscf5I8V1wfkAB9zx6P1q/31f+RpOxsjy64oFR793q0Zw//dAIAAACBEB8fr8LCQknSwIED9dlnn9Xv27hxo6Kiotwqrd6sWbP0+uuv64033tDOnTu1aNEi5ebm6sQTT3StJhMd2/Bkb3bTA2pD9OYWFrUfvOn0GM/cIf8//9qq69mcLNlli5xrn3uZPD88XcbTyu+b6sLZvJzWXWtvtlOjJM95Vzi9u1tgPB4pobZFTO6e1p3/3dXOa4+cLBPZeZ9fxuuTmeC0cbGbv25dbdu3SOs/kYxHnqturA/QERjMRAcABBVrrezSJ2RXvyBJMj86S2b23ID9alhzC4recYfzq5jPPttLv/lNsX77WxYUBQAAADrb4Ycfrg0bNmjixImaMWOGHn/8ce3atUs+n09ffvllo7YobjnuuONUXFysZcuWKT8/X4MGDdINN9xwSG0jOoLn2rvl/9/bZM7+WdOd9SF60x7X9quGH1Ro9/ZWXcu+/q/69ptmehvfk9pe3irIk62sOGAoLkn2vdcla51rpQ4/6OlNQpLsts2yuXt0sO8ord8v+8VHzusm/7A11R+agUOc6+7a1qrD7VtOqxxz1GSZxP6dVRVaQIgOAAgatqZG9qkHZd9/XZJkfvIzeU6aHdAaTj55n/bs8eiUU/Zp926vrrsulgVFAQAAABecc845KikpkSSddNJJqqys1DvvvCNjjM4880ydeeaZLlfoOPnkk3XyySe7XUYjZsRoeR74p4ynmV7bEb2cj+WNZ6LbvJzGwXlRgWz5PpmeES1ex+4rk313jSTJ86Oz2j75KSraCfX3lTmzxfu33D7GWtvwveKUVs70T3AWm1RO1sGP3b1dKi2WevSUhh7WuvMfAtM/Rbbuugdha2pkP/+P87rjT+rcwtAsQnQAQFCwlRXy//Ve6cuPnEVJ5l4tz+QZga/DGj37bC9ddFGZ+vZ1gnMWFAUAAAACLzo6WtHR0fXPZ82aFRSzz0NFswG6JPWsnYle1ngmuv16nfMgbYSUtUsqK3GC7doZ082xX37k9CdPGiCNHN/2Go1xWq5s/07KzjxgiK49u532NL7w+lYoBxXvhOi2Fe1c7KavnAdDD5PxBiAyHTDY+Zi7R7aiXKZHz5aP3fSVVFIsRfWW0kd3fm1ogsauAADX2bJS+f/fbU6A7vXJ84vfuxKgAwAAAAget912m3bt2tXsvt27d+u2224LcEVdg4mrXYxy+3eNF2Dc+o2zf9hIKSHJ2XawGdzrP3FeM2FSu1twmkSnb7k9yLXsFqc+DR560LYv9eeOrx1HG0J0E6CQ2vSOkXrHOO1pMncc8Fi77mPnNeOOlQlr4Ycj6FSE6AAAV9mifPn/5w/OT9Z7Rsjzq9tkxrdyVkEHaW4x0fXrfdq711lQ1JjgWGUcAAAA6E42btyofc0sfilJ5eXl2rhxY4Ar6iJGTZB6RDgB+XcNi1rarZskSSY1XaY2RD9QsG1ramS/+tR5zdij219PbYiu7MwDH1cX8qeNaP25ExpC9EY/MGj2/N865x92eOvPf6hqZ6PbXQdu6WK/+6/zYOS4zq4ILaCdCwDANTZ3j/x/+aPzn6XeMfL86laZlKEBr6O5xUSvuy62/nG/fn6NHs1iogAAAECwyM/PV48erZuNjMZMj54yRx4n+/7r8q9aIU/aCGdh0J0ZzgGpI6TtW5zHB5odnvGt0xKmV28pLb39BdUF9gcJ0etmorcpRI+LlzweqapSKsyXYvs0f+7qKik/13mSPKD15z9Epm+i0xe9YG+Lx9iqKmmH8360aezoUIToAABX2M1fy//oQqkgT+qbKM+vb5fp584K4xdeWKojj6zQK69EKC2tWnfcEcNiogAAAIALPv74Y3388cf1z5cuXdqoL7okVVZWauPGjUpNTQ10eV2GmXaK7AdvSl98KLvyOZnRR0h+vxQTJ/WJbwi2c1oOtu2uDOdB6vCW+6+3ppbEZCdIPtC1qir3C/lbH9gbr9dZvLSoQCopbDFE194cp61KeA+pd2yrz3/Iomo/t0sOMGlrxxbnhxy9Y+p7vCPwCNEBAAFl/TWyry6TXfkP5z9p/VOcFi61ffnc0K+fX9nZVs8+20sPPJAvicVEAQAAADfs3LlTH3zwQf3zDRs2NOm17fP5lJKSoosvvjjA1XUdJnW4zIXzZJ96UPbdNVJMbbicMtT5++43wAm2M3e2fJLdTh9vkzzo0Iqp61u+N1vWX9N8IJ+b7Xz/2CPCmV3eFhG9nBC9rKzlY+p6psf3a3dv93aJqv2N6JKiFg+p7wWfmh7Y2tAIIToAIGBswV75H/+L9F9n1XdzzFSZC38hExHpcmUAAAAAgsHs2bM1e/ZsSdK5556rW265RcOGDXO5qq7JTDxBdvFjUmGe7MdvO9uSaluZ1PbqVl6ObFmpTGSvJq+3dYthHmqIHh0rGeOE5CXFzvPvqwu5E9oRctd9v7mvtMVD6nu/B3qmd+1MdFt6gJnotTPwzWDuAzcRogMAAsKu/1T+v//F+Ql7eA+Z86+UOW66qz9J37PHo+xsZ5ZD3YKi2dnOYqJ793q0Z49H/fr5XasPAAAA6M4WL17sdgldmvH5pMPHS59/IH1bu0hrbYhuekU5bV3ycqVd26ThzSy2WTcTvX/KodVR13KluFAqym82RLe5hxBy14bodl+pWvzuszakr1tQNVBMVG9nxv+BZqLvzXYeJAa2NjRGiA4A6FS2ukp2+VOyr73obBg4RJ7Lr5dJHuhuYWp+QdE77oiRJD37bC/95jfF+u1vWVAUAAAAQNdkxh4t+3lD+xzTb79FNQcMkfJyZXdmyHwvRLdlpQ2LYXbE93bRsbUhekHz++tC7naF6LWz6Pe13M6lIaRPbPv5D0V9T/SWQ3TVhuimT4BrQyOE6ACATmOzd8v/1/+Rtm2WJJkTTpX5yc9kfOEuV+Y4+eR92rPHo1NO2afdu7267rpYFhQFAAAAXDR//vxW/7aqMUYPPPBAJ1fUtZkxRzkzoevsF6KbgYNl138i1S0gur+s2l7pMXEykVGHXkh0rLRrm2xhQbOzxW19z/K2z8Y2EZHOGMtabuei3NqgOtDtXHrVhugttHOxfr/z2wCS1JcQ3U2E6ACATuH/cK3sMw9L5fukyCh5Lv6lzISJbpfViLVGzz7bSxddVKa+fZ3gnAVFAQAAAPccfvjhLJ4YQCYmTho8zJn41CNCiolr2DlgiCTJ7tre5HX1PcQTkzusDis57Vya08kz0ZVfG1T3SWj7+Q9F3Uz0slLZmhqZsO8tqlqYL9VUSx6PFNsnsLWhEUJ0AECHshXlss89Kvve686G4YfLc9lvZQL9nxEAAAAAIWf+/Plul9DtmLFHy27bLPXr3+gHGCa+nxNs5+U0fVHt7GjTUbOjo2vD+8IWQvScupno7e+J3lKIbq1taKcSFdP28x+KXr2cRVWtdWajf78ffF0/9Lj4pgE7AooQHQDQYez2LfL/7V4pa5dkjMyp58rMOjeo/rFvbjHR9et96t+/RhdcUCpj7IFeDgAAAABdivnBybKbvpI5/qTGO+LinY+FebJ+v4zH07Avrzbc7ag+3TGxtdcqaLLL7iuT9tW2YmlPz/LIuhC9hXYuZaWS3+887h3d9vMfAuMJkyKjnAC9pKhJiF6/qCitXFxHiA4AOGTWWtk3X5Z9/gmpukqK7ePMPh8xxu3SmmhuMdHrroutf9yvn1+jR7OYKAAAABAMioqK9NJLL2nDhg0qLi7Wddddp0GDBum1117TsGHDlJqa6naJIc/E9lHYtXc13RETJxmPVFPjLPq5X6sXu7d2dnrfDvqN49qZ6La5di51i432jJDp0bPt565t52JbaudSNwu9R4Q763f16l0bojfzfWjdoqId9feMdiNEBwAcEltaLP+i/5W++NDZMPZoeS6+RibAP8FvLRYTBQAAAEJDdna2br75ZpWVlWnw4MHas2ePqqqc/7dv27ZN3377rebNm+dylV2XCQtzZogX5Dk9w/fvl17b4qWj2rk09EQvaLqzuHZb7/a1WqlfWLSlmejFhbXnd+l72N7RUvbuhjB/f3WtdGiP6jpCdABAu9lNG+R//M9OPzyvV+asi2VmnBbUCwGxmCgAAAAQGp555hlFRkZqwYIFiomJ0fnnn1+/77DDDtPzzz/vYnXdRFy8E6IX7JU0XFJtD/G6NiMdFe7W9URvdiZ6bcj9/X7hrXWwhUXr+6G7FKL3cn5T2pYW6/vfSdu6HyrEsKio2wjRAQBtZv01sq88L7vyn5L1S4n95bn8OpnBQ90uDQAAAEAXsX79ev385z9Xnz595K/rWV0rLi5OeXl5LlXWjcQ64a3N39sQ8JaVSuX7nMcdFqLXzjIvKZatrpbxNkSWtn6meDsX/TzYwqKHev5DVD8LP39v0521tZlod2pDA0J0AECb2Py98j9+n/TNekmSmXiCzAVXyPSMdLmylrGYKAAAABB6qqqqFBUV1ey+iooKefZf6BKdwsTFNw1462ah946R6dGjYy7UK0oyRrLW6Q++f+uY2nYupt0het1M9BbaudT2IjdRvZvf39ni+zkfc7Ka7ityN+BHA0J0AECr2S8/ln/R/c5/Mnr0lLngF/JMOsHtsg6KxUQBAACA0NO/f3+tW7dOY8eObbJv48aNGjRokAtVdTNxfZ2P+4fondBixHjCnLYmJUVNFjFtCJJj23fyupno5ftk/TXOtfZX4nJQnZAsSbI5mU33FR/i2NFhCNEBAAdlq6pkly2Sff1fzoaUNHl+fp1M0gB3C2ulCy8s1ZFHVuiVVyKUllatO+6IYTFRAAAAIMjNmDFDTz31lPr06aMpU6ZIkqqrq/XBBx9o9erVuuSSS1yusBuIdUJ0m5/bsK28ti1KZAf/NnLvmIYQfX91z9vb0qRuJrrktKGJ/N5vNxS72xPdJCY5s/2/NxPdVlU1zJ6nnYvrCNEBAAdk9+yW/69/krZvkSSZH/5Y5syfyvh8LlfWev36+ZWdbfXss730wAPOQjUsJgoAAAAEt5NPPlkZGRl68skn9dRTT0mS/vjHP8paqxkzZmjatGnuFtgN1Pfrrlt8U5Kt64fe0S09e0dLmZItKWq0wOah9iw3Pp/k9UnVVU5f9O+F6NbthUUTkpyPRQWy5ftkekY4z2vb2CgsrGnwj4AjRAcAtMj/nzdln31EqtgnRfWW5+JfyYw72u2yAAAAAHQTV1xxhU444QR99tlnKiwsVO/evXXkkUdqxIgRbpfWPfSqDW9L92t/WTsTvT7s7ShRtSH592ei17aPaXdPdMlpFVOY57Qm7ZvYeF9tiG56uzQTPTLKqa+0WMrNkgamOjv2++GBMablEyAgCNEBAE3Y8n2y/3hE9j9vOhvSR8tz2W9l6vrhhYjmFhTNzvboggtKtXevR3v2eNSvn9/NEgEAAAAcRHp6utLT090uo3vqVbu2VGlJw7Z9nTMT3fSOdma9Fxc13lHfziW2/SfvHeOE6HWzu/fn9kx0yZmNXlosZe8XorOoaFAhRAcANGIzvpX/b3+WsndLxiPz4zkyp/yk6eIrIaC5BUXvuMP5D8izz/bSb35TrN/+lgVFAQAAAKBZdTPRqyplKytkwns4fcUlqaNnoteFxSUNM9FtTU3DLPhDCZNre4rb4satYiQ5LV6kjm9P0wYmIUk241vZ3Kz6+mxd4M+iokGBEB0AIEmy1VWyLy+RfeV5ye+X4uKd2efpo9wurd0uvLBUJ51ULsmZiX7ddbEsKAoAAAAEsXPPPbdNxy9evLiTKoEkqUeE05O7psaZjR7eo2Fh0YjOaedi92/nsq9UstZ53Kt3My9qHRMVUzvLvaDpzsoK52OPnu0+/yGr+63vgryGbbV/D4ZFRYMCIToAQHbnVvn/fr+0Y6skyRx9vMwFV8ocwn9SgsXq1T114YWlGjPGec6CogAAAEDwOuussxr1f37rrbdUXl6uI488UrGxscrPz9dnn32mHj166IQTTui0OpYvX67PPvtMGRkZ8nq9WrRoUZNjcnNz9dhjj2nDhg0KDw/X5MmTNXfuXHm9XSduM8Y4i1oWFzozwuP67jdzu6Nnote2U9m/nUvdrPfwcJmwQ/jt6Loguqhxv3Xr9+8Xovdo//kPVUwf5+P+ITrtXIJK17mrAQBtZmtqZP+9TPZf/5RqqqWo3jLn/0Keo6e4XVqHyM4O03339a6fjQ4AAAAguJ1zzjn1j//1r38pNjZWN998s3r2bJglvG/fPt1xxx3q0YmhZ3V1tSZOnKj09HS98cYbTfb7/X4tWLBA0dHRuv3221VcXKyHHnpIknTJJZd0Wl2u6NW7NkR3+qLb8s7qiV43W3y/oLui9nu5HocY2PduYdHSqsqGx+EuzkSPdUJ0W7hfiF5a+8OELjC5rSvwuF0AAMAdNnOH/PdcL/vCM06APv5YeW57sMsE6N+XmFij3/ymmBYuAAAAQIhYvXq1fvzjHzcK0CUpIiJCP/7xj7Vq1apOu/Y555yjWbNmKSUlpdn9X375pXbu3Kmrr75aqampGjt2rObOnavXX39dZWVlnVaXK+r6otf1Jq9t52IiOriHeN1M9JJmZqIfaquV3s20ipEaQnrJaVXjEhNbNxM9v2FjZW3A72abGdRjJjoAdDPWXyO7ZqXsimek6iopopfMeZfLTJzW6NcmQ9WePR5lZzu/5rd+va/+45gxYkY6AAAAEELy8vIU1kILj7CwMBUUFAS2oP1s2rRJKSkp6tOnT/22cePGqaqqSlu2bNHo0aNdq63DRTohui0qkF36hPTtRmf7oc4O/76ouoVFi2X9NTKesP1moh9akGyiY5vOcpcazh8eLuNxca5xXYhemCdrrYwxsh00dnSMkAzRV61apZUrV6qgoEADBw7UxRdfrJEjR7pdFgAEPZu9W/4n/p+0+Wtnw+gj5Jl7tUzdIiZdwDPP9NJ99zX+dbfrroutf/yb3xTrt78tDnBVAAAAANpqwIABeumllzR+/PhGfcarq6v10ksvacCAAa7VVlBQoJiYxr2qo6Ki5PV6DxjuV1VVqaqqYY0mY4wiahfoPNCkprp9bkx8MlG9ZSXZfy+T9mY3bI/s1eZ6DjiO6FjJGMn6ZUpLnOC7LkjuGXloY9+vnUuj89S1cwnv0abzd/j7EVv7PXlFuUxFuUxEpExlhawk06Nnp77vbn5udaTOHkfIhejvv/++Fi1apMsuu0wjRozQmjVrdPfdd+svf/mL4uPj3S4vYPbs8ejRR6UzzvA0ak2wZ49HzzzTSxdeWKp+/fwH3B4MxwZzbV1lHNR26LVde61afWzQjuPpCF02/HlFrX5CqqyQPzxCr/eZrwnnTlW/OOv633FHXu/CC0uVllalRx+N0owZ5br//mjde29B/WKitHMBAAAAQsOcOXN077336uqrr9Yxxxyj2NhYFRQU6KOPPlJBQYGuu+66Np1vyZIlWrp06QGPWbBggYYOHdqq8zUX1tXNIm7JihUrGtWQmpqqhQsXKiEhoVXXTEpKatVxHSk/MUklUqMAXZLiBw5SeHJyu87Z0jh2xcTJX5Cn+HCvwpOTVRrRQ3mSesbEKKGd15KkatUoU5IpKVTyfuepKNqrbElhEb0abW+tjnw/dvaKki0tUYIvTL7kZO3x16hSUp+kZEUcwthby43Prc7QWeMIuRD9pZde0vTp0zVjxgxJ0sUXX6wvv/xSq1ev1vnnn+9ydYGzZ49Ht90mTZrUOETffxG9/cOn5rYHw7HBXFtXGQe1HXptF1wg1f17FQy1tXUc+ZtzdfR7Dynqm4+dDSPG6LtJv9Wl54zWv8/JUb+kqg67XjC8//36+WWt0fr14frRj5xZC2PGVNWH6AAAAABCwxFHHKE//OEP+uc//6lVq1bJWmcC0LBhw/SLX/xCY8eObdP5Zs6cqcmTJx/wmNaG2bGxsdq8eXOjbSUlJaqpqWkyQ31/s2fP1qxZs+qf1wXuOTk5qq6ubvF1xhglJSUpKyur/u8hUPxq/ocCuSWlMpmZbTrXwcbh7xUtFeQp57tN8vSMkj8rS5JUIaPMNl5rf7bcmXFuKyq0O2OrTG2LFP/uXZKkGq+vTefvjPfDRsdJpSXK/va/8nh7qLrE+Q3qvLJ98hzC2A/Gzc+tjnSwcXi93lbf380JqRC9urpaW7Zs0RlnnNFo+9ixY/XNN9+4UxQABClrrey7ryntucc1PH6f/N4eCvvJT2WmnaKqDe4tmAIAAAAArTVmzBiNGTNGFRUVKi0tVa9evdSjR/u+n4mOjlZ0dHSH1JWenq7ly5crPz9fcXFxkqR169bJ5/MpLS2txdf5fD75fL5m97UmwLTWBjzotLU90Zts7xkhtbOWFscREyvtkmxBvnNMRcPCoocybhveQwoPlyorZQvzpYTa2crldT3Re7Tr/B36fsT2kTJ3yBbsdc5ZWeFs94UH5D1343OrM3TWOEIqRC8qKpLf72/yE72YmJgW+021t9dUMNqzx6M9e5xFDr76Krz+4969HuXledS3r1+7djUsptfc9vfeC9e33zpv+/4L7wXy2GCurauMg9o6trY33pAiInrK2tD53Czeka8h7/5F/XI+Vpikj/PGacvxv1XPgmTpheD7O+6I623eHKbt272KifHr88+dr5EbNnj1ox/t0yef+OTxSKNHtzyzA+7qKn34gGDHvQYEBvca0PF69OjR7vC8PXJzc1VSUqLc3Fz5/X5lZGRIclpF9OzZU+PGjdPAgQP14IMP6sILL1RJSYmefvppzZgxQ5GRkQGrMyB69W5+e0cvLCrJRMfVLgBa4GyoC7l7Htq1jDFSr2ipMlcqLa4P0W1l8CzeaWL6OGPP3+tsqF9YlElwwcDYEPoRQ15enq688krdeeedSk9Pr9++fPlyvf3227r//vubvOb7/a7qek2FoltvlW67ze0qAAQ3q9n9X9Xto+5VjK9Y5TXhunfTPD2+9Tz51fyq9t3F1KnSW2+5XQUAAACAUPDQQw9p7dq1TbbfcsstGjVqlCQnaH/sscf01VdfKTw8XFOmTNFFF13U4kzzA8nJyWk0CfT7jDFKTk5WZmZm4Geib9ss/52/abI97G8r23yug43D//wTsqtXyJx4ujznXCr/4sdl17woM/Msec76abvqr1Nz69XSrm3y/Oo2mVETnOu9+5rskw9IY45S2C//2GHjaA//i/+QfemfMsefJM/cq1Rz1TlSRbk8dz0qk9h5PdHd/NzqSAcbh8/n6z7tXKKjo+XxeJrMOi8sLGyx31R7e00FozPO8GjSpIaZ6NdeG6P/+Z9CJSdXN5qped11sbr33gL171/TZPvNNxcqMbGhl/Add0QH/Nhgrq2rjIPaOra2e++VIiLy62eiB+vnZu7WIvVc9pBmJr0lScqPGaEtP7hW6SWp8l8XFtR/xx1xvYgIf6OZ6EuXRurss8s0darzK3AjRlQrMzO0vu53J12lDx8Q7LjXgMDgXkN3c6i9hoPR/PnzNX/+/AMeEx8fr9///vcBqsg9ZvAwmfOvlF3xlLSvrHMvFhPrfCwscD7u187lkNXOqLdlJQ1d3itqW6aEhx/6+Q9VQj9Jks3d07idSxDMkkeIheher1dpaWlat26djjnmmPrt69at09FHH93saw6111QwSUysabSIqCSNHl3ZaLG89eudsX5/Eb267ZMnNxzv1rHBXFtXGQe1dWxt06dLycnlstYG7TjsJ++q8tNH5E0qkvV45fnxHPWdeZbiw8IUsb4q6P+OO/p60dFWS5dGaurUCp155r767SH2Zb9b6ip9+IBgx70GBAb3GoCuwnPCKbJTT5Z99hHZt1d13oWinf7ytq6dS11Lk54dECTX9XYvLWnYVhtUm3D3g2qTkOy0c8nOlCorG76BDaedSzAIqRBdkmbNmqUHHnhAaWlpSk9P15o1a5Sbm6sTTzzR7dIAIOBsSZHsPx6V/fgdeSVtKEpXzyuuUfr0QW6XBgAAAADoQownTPrhj50Q/YhJnXON6FgnSC7MlyTZ+r7gh95/3fSKcs5dWtywMYh6otcvdpqXK+0rbdhOT/SgEHIh+nHHHafi4mItW7ZM+fn5GjRokG644YYu92tDB9Ovn1+33OJ83F9iYo1+85viJjPWm9seDMcGc21dZRzUdui1JSf3btc5OvvYgXnvy//kg85/Ljwelf3gJ3o981KdP6pSkr9V5wiWv+OOvl56epUmTqxQenrLPQUBAAAAAG1jkgfJ85dnpMhenXOBGGcmuoqcEF3ltb9ZfIgLi0qSetXORC/bL6AOpsU7Y+KctjKVlVLmDmeb1+f88AKuC6mFRTvSwRZsCHZdpek/EOyC8V6zZSWy/3xM9j9vOBuSB8nzs1/JpA53tzDgEATjvQZ0RdxrQGBwr6G7OdQF+xDcC4t2pIONw5YWy/+rCyRJngcWy/8/N0rbNstz9c0yY5tv5dxa/peXyL7wjMzkH8pz8S+dbU8/LPv2v2VOO0+eH5/XYeNor5pbrpJ2b5c591LZxY9LvXor7P5nO+z8zekun1vdamFRAOju7IbP5X/yASk/VzJG5qQzZE6/QMYXBIugAAAAAABwCEyv3lJMH6kwT9q1bb+Z4h03E92W7d8TPYjauUhOS5fd22U3fO48D4YZ8pBEiA4AIcGWl8k+v0j27X87GxKTndnnw0a6WxgAAAAAAB1p4GCpME92/SdS9m5nW0e0c2lmYVFbu7BosCzeacYcJfvlR9JXnzkbgqQuEKIDQNCzmzfK//f7pZwsSZKZcZrM7Lky/EQaAAAAANDFmIFDZDd8LvvykoaNHTBT3PTq7Swsuv9M9GDqiS7J/OBk2Y1fSJ+972wID5IZ8iBEB4BgZaurZP/1T9lXl0nWL/VNlOfiX8ocNtbt0gAAAAAA6BwDhzTd1rMDwuS6meiNQnRnJroJknYuxhiZYSNl60L0IAn3QYgOAEHJ7t4u/+P3Sdu3SJLMpOky510uExHpcmUAAAAAAHQeM3CImiwL2YE90fdv51LfEz2IZnybvokN4w+ScB+E6AAQVKzfL/vmy7LLnpSqKqWo3vJcOF/myOPcLg0AAAAAgM6XnCKNGOPMGN+xVYqL75gwuS5EryiXra6S8frqZ6IH1Yzv+MSGx0EU7nd3hOgAECRsXq78i/6f9PWXzobRR8rz06tlYvu4WxgAAAAAAAFiwsIUdu1dkiSblyN5wmQ8nkM/8f6/2V1WIkXH7dcTPYjC6r79Gh4b98pAY4ToABAE/B+/I/vMw1JZqRQeLvOTS2Sm/kjG8C8mAAAAAKB7Mn0SOu5cnjApspfzfXdpbYheWTsTPTyIZqJH9mp4XFLsXh1ohBAdAFxkS0tk//Go7EdrnQ1Dhstz6a9lkga6WxgAAAAAAF1NVLQTohcXSckKzp7o+0+mKy50rxA0QogOAC6xX38p/xP/T8rPlTwemVPPkTnlHBkvX5oBAAAAAOhwvWOk7EyppFC2pkaqrna2B1NP9P0RogcNkhoACDBbVSm7/GnZNS86GxL7O7PP00a4WxgAAAAAAF1ZVLQkyRYVytT1Q5eCqye6JHP6+bIv/kOeC+e5XQpqEaIDQADZ7d/J/9h9UuYOSZKZOtPpfx5k/2ADAAAAANDVmOhYWUkqKWxo5WI8ktfnZllNmFPPlZl2ikxt6A/3EaIDQABYf43sqhWyL/5DqqmWomPl+enVMmOPdrs0AAAAAAC6h7pQurhIqqhdVLRHj8Z9yIOAMaahVgQFQnQA6GQ2J0v+v98vbd7obBg/UZ6582V6x7haFwAAAAAA3Urd9+HFhVJlbYgeHqT90BFUCNEBoJNYa2Xff132ub9JFfuknhEycy6XOW560P2UGwAAAACALq93bU/0kqKGnui0V0UrEKIDQCewxYXyP/2Q9PkHzoZhh8tzya9kEpLcLQwAAAAAgG7KRMU4PdGLChp6ojMTHa1AiA4AHcyu+1j+Jx9w/lEO88qcfoHMyWfIeMLcLg0AAAAAgO4ruradS8n+PdGZiY6DI0QHgA5iK8pll/xd9u1/Oxv6p8hz6W9kUtLcLQwAAAAAAEhRtSF6Yb5s9m7nMSE6WoEQHQA6gN3yjfyP3ydlZ0qSzA9PlznzIhlfuMuVAQAAAAAASQ0Li0qySxc5D2jnglYgRAeAQ2Crq2VfXiL7yhLJ75fi4uX52TUyI8e5XRoAAAAAANiP8fmabiNERysQogNAO9nMnfL//S9SxreSJHPMVJnzr5DpFeVyZQAAAAAAoDnmtDmy//pnwwbauaAVCNEBoI1sdbXsquWyLy2WqqukyF4yF/xCnmN+4HZpAAAAAIBDlJ2drWXLlumrr75SQUGB+vTpo+OPP15nnnmmvN6GKC03N1ePPfaYNmzYoPDwcE2ePFlz585tdAyCj+fH56tm1zbps/84GwjR0Qrc1QDQBnbbd/Iv+l9p51Znw6gJ8sy9WqZPvLuFAQAAAAA6xO7du2Wt1eWXX66kpCTt2LFDjz76qMrLyzV37lxJkt/v14IFCxQdHa3bb79dxcXFeuihhyRJl1xyiZvloxVM7xjZuie0c0ErEKIDQCvYygr5Vz4nu3qF0/u8V2+Zcy+TmThNxhi3ywMAAAAAdJDx48dr/Pjx9c/79eun3bt3a/Xq1fUh+pdffqmdO3fq//7v/9SnTx9J0ty5c/Xwww9rzpw5ioyMdKN0tFZ0bMNjZqKjFQjRAeAgyr/6TDX33Srt2S1JMkcfLzPnMpnoOHcLAwAAAAAERFlZmaKiGta/2rRpk1JSUuoDdEkaN26cqqqqtGXLFo0ePdqNMtFavWMbHvdgJjoOjhAdAFpg95XJv+xJ5ax91dkQ20eeC66UGT/R3cIAAAAAAAGTlZWlV199tX4WuiQVFBQoJiam0XFRUVHyer0qKCho8VxVVVWqqqqqf26MUURERP3jltTtC/XfhA6WcZjo2Pp2Lia8Z5vrCZZxdISuMpbOHgchOgA0w677WP5n/k/Kz5UkmR+cLHPWT2Uiow7ySgAAAABAMFqyZImWLl16wGMWLFigoUOH1j/Py8vT3XffrUmTJmnGjBmNjm0urLPWHjDEW7FiRaMaUlNTtXDhQiUkJLRqDElJSa06Lti5PY7y1DTl1D6O7ZekXsnJ7TqP2+PoSF1lLJ01DkJ0ANiPLS6U/edjsh+tdTYkJCvh17coP3GArLUHfjEAAAAAIGjNnDlTkydPPuAx+4fZeXl5uu2225Senq7LL7+80XGxsbHavHlzo20lJSWqqalpMkN9f7Nnz9asWbPqn9cF7jk5Oaqurm7xdcYYJSUlKSsrK6S/Nw2WcdiqmvrHBfv2qSgzs02vD5ZxdISuMpaDjcPr9bb6h1XNIUQHADmzBexHb8v+829SSZFkPDInni7P6eer55BUqY3/oAIAAAAAgkt0dLSio6NbdWxdgJ6amqp58+bJ4/E02p+enq7ly5crPz9fcXHOelnr1q2Tz+dTWlpai+f1+Xzy+XzN7mtNgGmtDemgs47b47BR+/2gw4S1uxa3x9GRuspYOmschOgAuj2bl+O0bln/ibNhwGB5fvpLmdThId8TDAAAAADQNnl5ebr11lsVHx+vuXPnqqioqH5fbGysJGcR0YEDB+rBBx/UhRdeqJKSEj399NOaMWOGIiMjXaocrRbZq/6hrawQ3/njYAjRAXRb1u+XfXuV7LJFUvk+yeuVOfUcmZlnyXibnxkAAAAAAOja1q1bp6ysLGVlZenKK69stG/JkiWSJI/HoxtuuEGPPfaYbr75ZoWHh2vKlCm66KKL3CgZbbT/hDmTNMDFShAqCNEBdEs2a5f8Tz8obdrgbBh6mDxzr5Lpn+JuYQAAAAAAV02bNk3Tpk076HHx8fH6/e9/3/kFoVN4bn1Q2rtHZlCq26UgBBCiA+hWbE2N7OoXZFf+Q6quksJ7yJw5V+aEU2Q8YW6XBwAAAAAAAsAMSJEGMJEOrUOIDqDbsNu3yP/kA9L275wNh0+Q56J5MvH93C0MAAAAAAAAQYsQHUCXZ6sqZV9aLPvvZZLfL0VGyZx7qcyk6SwcCgAAAAAAgAMiRAfQpdlvN8r/1ANS1i5nw5HHyXPeFTIxce4WBgAAAAAAgJBAiA6gS7LlZbLLn5J98xVnQ0ycPOdfKXPEJHcLAwAAAAAAQEghRAfQ5dj1n8r/zENSXq4kyUw5Uebsn8n0inK5MgAAAAAAAIQaQnQAXYbdmyO74inZD9c6G+L7yTP3KpmR49wtDAAAAAAAACGLEB1AyLN5ubKvPi/7zmtSTbVkPDI/PE3m9AtkevR0uzwAAAAAAA7I621dRNfa44Id4wg+XWUsLY3jUMfXNf52AHRLtmCv7CtLZd9ZJVVXOxtHjJHnrJ/KpKa7WxwAAAAAAK0UFxfXquMSEhI6uZLAYBzBp6uMpbPG4emUswJAJ7IFefL/82/y33C57JsvOwF6+ih5rr1LYdfeRYAOAAAAAOhS9u3bp9/97nfat2+f26UcEsYRfLrKWDp7HMxEBxAybFG+7L+Xy771qlRV6WwcNlKeH58vHTZWxhh3CwQAAAAAoBNYa7V161ZZa90u5ZAwjuDTVcbS2eMgRAcQ9Gxxoeyq5c6s88ra8HzoYfL8+Dxp5HjCcwAAAAAAAHQaQnQAQcuWFMmuXiH7xstSRbmzMTXdCc9HHUF4DgAAAAAAgE5HiA4g6NjSYtnVL8i+/pJUUdvLavAwJzwfcxThOQAAAACgW/H5fDr77LPl8/ncLuWQMI7g01XG0tnjMDbUG960U05Ojqqqqtwuo92MMUpKSlJWVlbI9ywC6tjSEtk1L8quWSmV14bnKWnynHaeNO4YV8JzY4ySk5OVmZnJvQZ0Iu41IDC414DA4F5Dd+Pz+ZSQkOB2GQDQaZiJHqL86z9R1u1Py176G6l/itvlAIfElpXKrlnphOf7Sp2NA4c4C4aOP5aZ5wAAAAAAAHANIXqIsm+vUvX2LTLP/VXmN3cQMiIk2X1lsq//S/a1F6Sy2vC8f4oTnk+YKOPxuFofAAAAAAAAQIgeojznXKqarz6T/e866T9vyhw33e2SgFaz5WWyb7wsu/oFqbTY2Zg8SOa082SOPI7wHAAAAAAAAEGDED1EmYQkxZx/uQqffFB28WOyoyfIRMe5XRZwQLaiXPbNl2VXLZdKasPzpAEys+bIHD1FxhPmboEAAAAAAASZVatWaeXKlSooKNDAgQN18cUXa+TIkW6X1aIlS5Zo6dKljbbFxMTob3/7myTJWqvnn39er7/+ukpKSjR8+HBdeumlGjRokBvlNrJx40atXLlSW7duVX5+vq699lodc8wx9ftbU3tVVZWefvppvffee6qsrNTo0aN12WWXqW/fvkEzjoceekhr165t9Jrhw4frrrvuCqpxrFixQh999JF27dql8PBwpaen68ILL1T//v3rjwnUe8J0zxDW+8wLpZQ0qaxE9h9/dbscoEW2okL+1Svkv+HnssuedAL0xP4yl/5antselOfYqQToAAAAAAB8z/vvv69FixbpzDPP1MKFCzVy5Ejdfffdys3Ndbu0Axo0aJD++te/1v/585//XL/vxRdf1Msvv6xLLrlECxYsUGxsrO68807t27fPxYodFRUVGjJkiC655JJm97em9kWLFumjjz7SNddco9tvv13l5eW655575Pf7AzWMg45DksaPH9/oPbrhhhsa7Q+GcWzcuFEnn3yy7rrrLt10003y+/268847VV5eXn9MoN4TQvQQZrxehV38S8njkf30Pfnff8PtkoBGbGWF/GtelP8PP5d9/gmpuFBKSJL52TXy3P6QPBNPIDwHAAAAAKAFL730kqZPn64ZM2bUz0KPj4/X6tWr3S7tgDwej2JjY+v/REdHS3JmDb/yyiuaPXu2jj32WKWkpGj+/PmqqKjQu+++63LV0oQJEzRnzhwde+yxTfa1pvaysjK98cYbmjt3rsaOHavU1FRdffXV2r59u9atWxcU46jj9XobvUdRUVH1+4JlHDfeeKOmTZumQYMGaciQIZo3b55yc3O1ZcsWSYF9TwjRQ5xJGSpz6jmSJPv0Q7JbvnG5IkCyBXnyv7xE/j9cIbv4camoQOqbKPPTq+W5/WF5jpshE0Z4DgAAAABAS6qrq7VlyxaNGzeu0faxY8fqm2+CO//JysrSFVdcofnz5+v+++/Xnj17JEnZ2dkqKChoNCafz6fDDz886MfUmtq3bNmimpoajR07tv6YPn36KCUlRZs2bQp4zQeyceNGXXbZZbrmmmv0yCOPqLCwsH5fsI6jrKxMkuoD/0C+J/RE7wLMrDmy27dIX34k/8ML5LnxzzJxgetPBEiS9fulr7+U/+1/S198KNX9SkyfBJlTz5E5brqM1+dukQAAAAAAhIiioiL5/X7FxMQ02h4TE6OCggJ3imqF4cOHa/78+erfv78KCgq0fPly3XTTTbrvvvvq625uTMHeoqY1tRcUFMjr9Taa1V13TDC9ZxMmTNCkSZMUHx+v7OxsLV68WLfffrvuuece+Xy+oByHtVZPPvmkDjvsMKWkpEgK7HtCiN4FGI9Hnst+I/89v5N2bZP/obvkuX6BTHgPt0tDN2CL8mXfe132ndVSTlbDjmEjZX4w01kwlPAcAAAAAIB2Mca0aluwmDBhQv3jlJQUpaen6+qrr9batWs1fPhwSU3rt9YGtMZD0Z7ag218xx13XP3jlJQUDR06VPPmzdNnn312wBYwbo7j8ccf1/bt23X77bc32ReI94R2Ll2E6Rkpz/wbpaje0rbNsov+N+huUHQd1u+X/fpL+R9ZKP/1l8ouf8oJ0CN6yUyfJc+tDyjsdwvlmXQCAToAAAAAAO0QHR0tj8fTZLZsYWFhk5m3waxnz55KSUlRZmamYmNjJanJmIqKioJ+TK2pPTY2VtXV1SopKWlyTN3rg1FcXJwSEhKUmZkpKfjG8fe//12ffvqpbrnlFvXt29B9I5DvCSF6F2ISkuS58gYpLEz243dkX13qdknoYmxxofyrlst/8y/kv+9m2U/fk2qqpdR0mYt/Kc+9i+Q573KZAYPdLhUAAAAAgJDm9XqVlpbWZPHDdevWacSIES5V1XZVVVXatWuX4uLilJiYqNjY2EZjqq6u1saNG4N+TK2pPS0tTWFhYY2Oyc/P1/bt25Wenh7wmluruLhYe/fuVVxcnKTgGYe1Vo8//rg+/PBD/fGPf1RiYmKj/YF8T2jn0sWYEaNlzrtC9pmHZV94RjZ5kMyEiW6XhRBmrZU2bZB9+9+yn70vVVc7O3pGyEyc5rRsGZTqbpEAAAAAAHRBs2bN0gMPPKC0tDSlp6drzZo1ys3N1Yknnuh2aS166qmndNRRRyk+Pl6FhYVatmyZ9u3bp6lTp8oYo1NOOUUrVqxQcnKykpKStGLFCvXo0UNTpkxxu3SVl5crK6uhVW12drYyMjIUFRWl+Pj4g9YeGRmp6dOn6+mnn1bv3r0VFRWlp59+WikpKY0WtnRzHFFRUVqyZIkmTpyo2NhY5eTk6LnnnlPv3r11zDHHBNU4Hn/8cb377ru6/vrrFRERUT/jPDIyUuHh4a36fOqosRjbTXt+5OTkqKqqyu0y2s0Yo+TkZGVmZjbbtsX/j0dk33xFCguTOf9KeX5wsgtVIpTZ0mLZ99+QfXuVlLWzYcfgYTJTZ8ocfbxMzwj3CgyQg91rADoG9xoQGNxrQGBwr6G78fl8SkhIcLuMLmvVqlVauXKl8vPzNWjQIP30pz/V4Ycf7nZZLbr//vv19ddfq6ioSNHR0Ro+fLjmzJmjgQMHSnIm6z3//PNas2aNSktLNWzYMF166aX1i0W6acOGDbrtttuabJ86darmz5/fqtorKyv1zDPP6N1331VlZaVGjx6tyy67TPHx8UExjp///Oe69957tXXrVpWWliouLk6jRo3Sueee26jGYBjHOeec0+z2efPmadq0aZJa9/nUEWMhRA9RB/tPma2uln3yf2U/eMs5/uTZMmf+VMZDBx+0zForbf7amXX+yXtSde090qOnzLFTnVnng4e6W2SA8Q0QEBjca0BgcK8BgcG9hu6GEB1AV0c7ly7KeL3SJb+WEvvLrvyH7KoVsnsy5bnsNzI9erpdHoKMLS2R/eBNZ9b57u0NO1LSnOD82B/I9Ix0r0AAAAAAAADAJYToXZgxRua0OfInJssu+n/SFx/If+8f5LnqRpnYvgc/Abo0a6205RvZtf+W/fRdqbLS2RHew2nVMnWmNGS4jDHuFgoAAAAAAAC4iBC9G/AcO1W2b4L8D90tbdss/93XyXP1zSwG2U3ZslLZD9fKvv1vaWdGw44Bg51e58dOk4ns5Vp9AAAAAAAAQDAhRO8mzLDD5fnD/8j/v7dLWTvlX/g7eX5+ncy4o90uDQFgrZUyNju9zj96W6qscHb4wmWOmuLMOk8bwaxzAAAAAAAA4HsI0bsRk5Akzw1/kv+RhdLXX8r/0F0y51wiM+M0wtMuyFor7d4uu+4T2U/elbZ/17AzeZAz63ziCTK9otwrEgAAAAAAAAhyhOjdjImMkueXt8j+4xHZd1bLLn5M2rNbmvNzmbAwt8vDIbKVFdI3653gfP0n0t7shp1en8xRk2V+MFMaNpIfnAAAAAAAAACtQIjeDRmvV7povtRvgOyyRbJvvSK7eaM8p54jHXGcjMfjdoloA5uXK7v+E9l1H0v//bJhgVBJ8oVLh42VGXuU07YlKtq9QgEAAAAAAIAQRIjeTRljZE6eLZuYLP/f/yLtzJD/0T85bT5OOVvm6B8wMz1IWX+NtPVb2XUfy677RNq5tfEBfeJlxhwlM/ZoacRYmR493CkUAAAAAAAA6AII0bs5M2GiPPc8JrvmX7Jv/EvK3CH7+F9kVz4n86OzZSadIOP1uV1mt2fLSmQ3fC6t+1j2q8+kkqKGncYjpaXLjD1aZuxR0oAhtGoBAAAAAAAAOgghOmR69ZY5/XzZE093Wru89qKUkyX71IOyL/1TZuZZMpN/KBPOjOZAsdZKWTsbZptv3ij5/Q0HRPaSGXWENPZomdFH0KYFAAAAAAAA6CSE6KhnInvJnPIT2Rmnyb69SnbVCikvV/Yfj8q+vETmpDNkfjBTpmeE26V2SbaqUvrmq4b+5rl7Gh+QPKhhtvnQkbTbAQAAAAAAAAKAEB1NmB49ZU48XXbaj2TfWyP76jIpL0f2+SdkX10q88PTZU44VSayl9ulhjxbsFd23Sey6z+Rvv5Sqihv2On1SYeNcfqbjzlKJiHJvUIBAAAAAACAbooQHS0yvnCZaafITjlR9oO3ZF9dKmVnyr7wjOyqFTIzZsnMOI1WIm1g/X4p49uG2ebbtzQ+ILZPw6KgI8fJ9OjpTqEAAAAAAAAAJBGioxWM1ycz5UTZSdNlP3lX9uUlzgKkLy2Wfe1FmeNPkjlsnJQ6TCY6zu1yg4K1VirMd/6edu+QMrfLZu6Udm2TSosbDjRGGjK8oU3LoDQWBQUAAAAAAACCCCE6Ws2EhckcO1X26OOlLz6Q/+Ul0vYtsmtWyq5Z6RwUFy8NGSYzZLjMkGHS4OEyvaLcLbwTWWul/Fxp9w7ZzB21ofl2KXOHVFba/IsiImUOn9CwKGh0bEBrBgAAAAAAANB6hOhoM+PxSEccJ8+ESdL6T2Q/eU9222YnOM7PlfJzZT//QLbuBYnJMoOHOTOuhwyXUtJCbnFS6/dLe7Nrw/LtUuZOJzTfvUOq2Nf8i4xHSkx2FgTtP0hKHiiTnCINSJHx+gI7AAAAAAAAAADtQoiOdjPGOLOpxx4tSbLl+6Tt38lmfCtlbHY+5mQ5fdSzM6WP33GCdeNxAuUhw+tnrWtgqozP/WDZ1tQ4Ne83o9xm7pCydkqVlc2/KCxMSuwv9R/khOT9B8kkD5L69ZfxhQd2AAAAAAAAAAA6FCE6OozpGSGlj5ZJH12/zZYWS9s2y279VjZjs5TxrVSwV9q93Qmp33/dCdbDvNKAwQ3B+uChUo8IyVrnj6zkr/1ov/enuW0H2193vvIyp1d5XWi+Z5dUXd38AL1eKWmgE5DvF5grIVnGy60EAAAAAAAAdEUkf+hUpldv6fAJTg/wWrYgzwnWM76tnbX+rVRS7Mxi3/6d9LYaWsG4ITxcSqprwVL3MUWK7ycTFuZmZQAAAAAAoAvKz89XdUuT+molJCQoJycnQBV1HsYRXLrLOLxer+Li4tp9fkJ0BJyJ7SPFHiMz7hhJtYtz7s2WMpzZ6jbjW2lXhlRTIxkjyUie2o/me3+a22ZM7YU8Tbd5PPvtkxTeQyZpgJScUh+aq0+C0/cdAAAAAAAgAKqrq1VVVdXiflOba1RXVzs5SohiHMGFcbQeITpcZ4yR4vs5M72PmuJ2OQAAAAAAAABQj+m2AAAAAAAAAAC0gBAdAAAAAAAAAIAWEKIDAAAAAAAAANACQnQAAAAAAAAAAFpAiA4AAAAAAAB0E7Z8n/xrVsoW5LldChAyvG4XAAAAAAAAAISijRs3auXKldq6davy8/N17bXX6phjjnG7rAOy//yb7HtrZN9ZLc8N98r0jHC7JCDoMRMdAAAAAAAAaIeKigoNGTJEl1xyidultIrdmSH73hrnye7tsosfc7cgIEQwEx0AAAAAAABohwkTJmjChAlul9Fq9o2XnAfRsVJRgTMj/QczZVKHu1oXEOwI0QEAAAAAAIAAqKqqUlVVVf1zY4wiIiLqH7ekbt+BjjkYW1Up+8l7kiTP5dfLvvea7H/elP+ff1XY7/8k4+n8hhUdMY5gwDiCSyDGQYgOAAAAAAAABMCKFSu0dOnS+uepqalauHChEhISWvX6pKSkdl+79I1XlLevVGHx/ZQ89YfyjztCmV98KLvlG8X893P1mjGr3eduq0MZRzBhHMGlM8dBiA4AAAAAAAAEwOzZszVrVkNYXTdzNicnR9XV1S2+zhijpKQkZWVlyVrb5uvanCzVPLxQkuSfdIKy9uxxznvKT2SXPam8Z/+mwsMmdPps9EMdR7BgHMGlNePwer2t/mFVs69v9ysBAAAAAAAAtJrP55PP52t2X2tCTGttu8JO/1uvSvtKpdR0mR/9pOEc034kvbJU2rNLdt3H0rhj2nzu9mjvOIIN4wgunTmOzm92BAAAAAAAAMA1NuNbSZI5/iSZ/UJ80zNS5gcnS5L8b77sSm1AKCBEBwAAAAAAANqhvLxcGRkZysjIkCRlZ2crIyNDubm57ha2H+v3S9s2S5JM6vAm+80PTnIebPxSNn9vIEsDQgbtXAAAAAAAAIB2+O6773TbbbfVP3/qqackSVOnTtX8+fPdKquxPbuk8n1SeLiUnNJkt0nsLw0/XPp2o+y7r8mcNseFIoHgRogOAAAAAAAAtMOoUaO0ZMkSt8s4ILvVaeWilKEyYWHNHmOm/kj2242yq5bLTp4h06f9CzACXRHtXAAAAAAAAICuqq4f+pCmrVzqmKOPl4aNlCrK5X/gTtmcrEBVB4SEkJqJvnz5cn322WfKyMiQ1+vVokWL3C4JAAAAAAAACFp1i4rqQCG6xyPPT6+W/94/SDu3yn/TlTJHTpY5+2cyfeIDVCkQvEJqJnp1dbUmTpyok046ye1SAAAAAAAAgKBmq6ukHVslHXgmuiSZpIHy/G6hNHKc5PfLfvyO/A/dJVtdHYhSgaAWUiH6Oeeco1mzZiklpekiCAAAAAAAAAD2s2ubVF0lRfaSEpMPerhJTFbYb+6Q56a/SJFR0vbvZF//VwAKBYJbSLVzaY+qqipVVVXVPzfGKCIiov5xqKqrPZTHAIQC7jUgMLjXgMDgXgMCg3sNQLCoX1R08LA2fU0yg4fKnH2x7FMPyq5eITt9lozP10lVAsGvy4foK1as0NKlS+ufp6amauHChUpI6BqrDCclJbldAtAtcK8BgcG9BgQG9xoQGNxrAFz333WSJDN0ZJtfaiZNl135nFSwV/ajt2Umz+jo6oCQ4XqIvmTJkkYhd3MWLFigoUOHtuv8s2fP1qxZs+qf1/3ULScnR9Uh3NPJGKOkpCRlZWXJWut2OUCXxb0GBAb3GhAY3GtAYHCvobvxer1dZrJiV2ArKmQ/eFOmT4Lshs8kSWb0EW0+j/F6ZU44RXbF07IfviURoqMbcz1EnzlzpiZPnnzAYw7lC7HP55OvhV836Qr/mbHWdolxAMGOew0IDO41IDC414DA4F4D4Ab70j9l/71M9V99ekZIqQdeVLQl5ojjZFc8LW3aIFu+T6ZnRIfVCYQS10P06OhoRUdHu10GAAAAAAAAENKsv0b2gzcbbTNjj5bxhLXvhP36SwlJUk6W9N8vpfETO6BKIPR43C6gLXJzc5WRkaHc3Fz5/X5lZGQoIyND5eXlbpcGAAAAAAAAuOu/66SCPKlXb3lue1Bm5lkyZ1zY7tMZY2RGHylJshs+76gqgZDj+kz0tli8eLHWrl1b//z666+XJN1yyy0aNWqUW2UBAAAAAAAArrPra3ugHzFJpn+KzFk/PfSTDh8lvfmy7LbvDv1cQIgKqRB9/vz5mj9/vttlAAAAAAAAAEHH7tjiPBh6WIed0wxKdfqr78qQ9de0vzUMEMJCqp0LAAAAAAAAgKastdJ2J0Q3KUM77sSJSVJ4D6myUtqT2XHnBUIIIToAAAAAAAAQ6nL3SPtKJa9XSh7UYac1njBp4BBJ+810B7oZQnQAAAAAAAAg1G2v7Vk+YIiMt2M7OJuBqc6DnVs79LxAqCBEBwAAAAAAAEKYraqUf/ULkiQzeFjHX2CQE6LbHYTo6J4I0QEAAAAAAIAQZt96VdryjRQZJXPyGR1+flMbomtHRoefGwgFhOgAAAAAAABAKNu6SZJkTp4tk9i/488/YLBkjFSYJ1tU0PHnB4IcIToAAAAAAAAQwuzu7ZIkM2BIp5zf9IyQEpKdJ/RFRzdEiA4AAAAAAACEKFtTI+3Z5TzpP6jzLjRoiHM9+qKjGyJEBwAAAAAAAEJVdqZUXS2F95D6JnbaZcygNOfB9i2ddg0gWBGiAwAAAAAAAKGqtpWLkgfJeDov6jOpwyVJtrb/OtCdEKIDAAAAAAAAIcrucGaGm/4pnXuhIenO4qI5WSwuim6HEB0AAAAAAAAIUXb9p86DEWM69TomspeUNNB5wmx0dDOE6AAAAAAAAEAIsnm50vbvJGNkxhzZ6dczaSOc6275ptOvBQQTQnQAAAAAAAAgBNn1nzgP0kbIRMd2/gWH1PZF3/5d518LCCJetwsAAAAAAAAAQtWqVau0cuVKFRQUaODAgbr44os1cuTIwFx8V4YkyaSPCsjlzMAhspK0c1tArgcEC2aiAwAAAAAAAO3w/vvva9GiRTrzzDO1cOFCjRw5Unfffbdyc3MDcn2bV3udvv0Ccj0NGOx8LNgrW1oSmGsCQYCZ6AAAAAAAAAgZH374YbteN2bMGEVGRnZoLS+99JKmT5+uGTNmSJIuvvhiffnll1q9erXOP//8Dr1Ws/ZmS5JMn4TOv5YkExEp9U10rrsrQ0ofHZDrAm4jRAcAAAAAAEDIuO+++9r1ugULFigtLa3D6qiurtaWLVt0xhlnNNo+duxYffNN8wtvVlVVqaqqqv65MUYRERH1j1tSt6/JMXk5zvb4xAO+viOZAYNl92ZLu7bJjBjTttd+bxy2qlJ23ScyaSNk4vp2eK2dpcX3I8QwjtYjRAcAAAAAAEBIufTSSzVw4MBWHVtTU6M777yzw2soKiqS3+9XTExMo+0xMTEqKCho9jUrVqzQ0qVL65+npqZq4cKFSkho3UzypKSk+sf+shLtKit1th8+Rp6Ijp1l35KCw0areN3HisjNUp/k5HadIykpSZVbNin3zmvl37NbpkcPxV11o3pNP6WDq+1c+78foYxxHBwhOgAAAAAAAEJKWlqahg0b1qpj/X5/p9bS3OzXlmbEzp49W7NmzWpyXE5Ojqqrqw94jaSkJGVlZclaK0myu2oX9+zVW3sKCqWCwvYOoU38SYMkSaUfv6fy3bvbNPu3bhyZX36m6ruvlUqKJEm2okJ5D9ypwj79ZPr175S6O1Jz70co6k7j8Hq9rf5hVbOvb/crAQAAAAAAgABbuHCh+vdvfdDq8Xi0cOFCDRgwoEPriI6OlsfjaTLrvLCwsMns9Do+n08+n6/Zfa0JMa21DSF67h5nY9+EwAagI8ZI4T2k/FzZbd9Jg4e26eW2pkbVj/3ZCdAHD5Pn17fL/38LpG/Wq2b5kwq78vedVHjH2//9CGWM4+A8nXJWAAAAAAAAoBMMGTJE4eHhbX5NS+F1e3m9XqWlpWndunWNtq9bt04jRozo0Gs1x9b2Q1eAFhWtY8J7SKMmODV88UGbX1/yr8XSlm+kiEh5fnGDTK8oec651Nn55cey+8o6slygQxCiAwAAAAAAAO0wa9Ysvf7663rjjTe0c+dOLVq0SLm5uTrxxBM7/+K52ZIk0zex86/1PebIyZIk+85q2arKVr/O5u9V4TOPOOc4+2cyfWt/ADAoVUoeJFVXyX7xYYfXCxwq2rkAAAAAAAAgZDz88MOtPtYYo1/84hedVstxxx2n4uJiLVu2TPn5+Ro0aJBuuOGGQ+q93Fo2J9N5kNC+xT0PhTlysuzyJ6W8XNn335CZOrNVr/MvedyZaZ42QmZKww8ajDEyR02R/ddzsp+9L006obNKB9qFEB0AAAAAAAAhY8OGDY2el5WVqaysTB6PR71791ZxcbH8fr8iIyPVq1evTq/n5JNP1sknn9zp12ki2wnRTaILIbrXK3Pi6bKLH5ddtkh25LiD1mG/+ED243ckj0dhF86TPI0bZJhRE2T/9Zy0+WtZa9u0YCnQ2QjRAQAAAAAAEDIeeuih+sebN2/Wn//8Z1166aU67rjj5PF45Pf79f777+uZZ57Rr371K/cK7UTW2voQXS6E6JJkpp0q+8l70nf/lf9/bpTniutlhh7W7LH2m/XyP3afJCnq9PNUnpLWdAHIlKGS1+ssOJqTKSW2fvFYoLMRogMAAAAAACAkPf300zrttNM0ZcqU+m0ej0dTpkxRQUGBnnzySd1xxx0uVthJCvOlygrJeKS+gV1YtI7xeuW54nfy33ezlLVT/nuulw4bK3PYWJmUNCk6VsrfK/vfdbJvviz5/TIjxyv24quVlZPT9Hw+nxOkb/lG9rtvZAjREUQI0QEAAAAAABCStmzZorPPPrvZfSkpKVq8eHGAKwqQulnofRNkvD7XyjBxfeX5/UKnrcsHb0r/XeeE5s0dO/EEeS6aJ+NtOY40aYfJbvlG2vJf+qIjqBCiAwAAAAAAICRFRERo/fr1GjNmTJN969evV0REhAtVdb76RUVdauWyP9Ort8wlv5L98XnOoqDbvpPdtU0qKZZi4mQSk2WOmyEz5siD9zlPHS5Jstu3BKByoPUI0QEAAAAAABCSfvCDH2jlypWqqanRlClTFBsbq4KCAr3zzjt65ZVXNGvWLLdL7Bw5WZIkk5DkciENTHw/mZNmH9o5Bgx2ZrHv3s7ioggqhOgAAAAAAAAISeedd54KCwv10ksv6aWXXmq07/jjj9d5553nUmWdrKjA+Rjbx9UyOly//lJYmFS+T8rLda3fO/B9hOgAAAAAAAAISWFhYZo/f75mz56tr776SiUlJYqKitKoUaM0YMAAt8vrNLYuRO8d62YZHc54fVJifylzh7R7OyE6ggYhOgAAAAAAAEJa//791b9/f7fLCJziQkmSiY51t45OYAYMls3cIbt7m8yYI90uB5BEiA4AAAAAAIAuoKioSJWVlU22x8fHu1BNJ6ufiR7jahmdon+K83HXNnfrAPZDiA4AAAAAAICQtWzZMr366qsqLi5udv/ixYsDXFEA1M5EV3TXC9FN/xRZSTZrl9ulAPU8bhcAAAAAAAAAtMcbb7yhF154QT/60Y8kSbNnz9bs2bPVt29fJScn68orr3S5wo5nK8qlinLnSRds56Kk2l72WTtlrXW3FqAWIToAAAAAAABC0qpVq+qDc0k65phjNGfOHN1///2KiIhocXZ6SKtr5eILl3pEuFpKp0hMloxH2lcmFea7XQ0giRAdAAAAAAAAISorK0vp6ekyxkiSqqurJUnh4eGaNWuW1qxZ42Z5naO+lUts/bi7EuMLl+ITnSd7aOmC4ECIDgAAAAAAgJAUFhYmSTLGKCIiQnl5efX7evfu3eh5l9GVFxWtkzRQkmQzd7pcCOAgRAcAAAAAAEBISk5OVm5uriRp6NChev3111VdXS2/3681a9YoISHB5Qo7nq2bid6FQ3SzX190IBgQogMAAAAAACAkjR8/Xl9//bUkZ1HRr776Sj/72c/0s5/9TB9++KFOP/10lyvsBLUz0U1XXFS0Tt1MdNq5IEh43S4AAAAAAAAAaI+f/OQn9Y9Hjx6tO+64Q++//74k6YgjjtDo0aPdKq3z5Dkz7xXbx906OpFJGigrSbRzQZAgRAcAAAAAAEDIqays1Ntvv63DDjtMAwc6M5eHDRumYcOGuVxZ57K5Wc6DhGR3C+lMyc77qbwc2coKmfAe7taDbo92LgAAAAAAAAg54eHheuKJJ1RUVOR2KYGV44ToJqGfy4V0oqhoKTJKslbK3u12NQAhOgAAAAAAAEJTYmKiCgoK3C4jYGxNjZSX4zzpwjPRjTH1s9FtJn3R4T5CdAAAAAAAAISkU045RS+88ILKysrcLiUw8nKkmhrJ65Ni4tyuplOZpAHOgyz6osN99EQHAAAAAABASNqxY4eKi4s1f/58jR49WnFxjYNlY4x+9rOfuVRdx7O5e5wH8f1kPF18bmy/2r7ohOgIAoToAAAAAAAACEmrVq2qf/zRRx81e0xXCtHr+qErIcndOgLAJA+QlWSzaOcC9xGiAwAAAAAAICQtXrzY7RICyu5xFtk08V14UdE6SQ0z0a3f3/Vn3iOo8dkHAAAAAAAAhIJdGc7H/imulhEQ8UlSWJhUWSEV7HW7GnRzhOgAAAAAAABACLC7tkmSzMAh7hYSAMbrbWhbQ0sXuIwQHQAAAAAAACHj2muv1fbt21t9vN/v17XXXqudOzt2gcrly5frpptu0oUXXqiLL764Q8/dHH9xkZRfOyN7wOBOv15QqG3pYllcFC4jRAcAAAAAAEDI2LFjhyorKzv9NQdTXV2tiRMn6qSTTurQ87akcttm50HfRJmIyIBc021mv77ogJtYWBQAAAAAAAAh5d5775XP53O1hnPOOUeS9NZbbwXkelVbv3UedJdZ6JKUXDsTfUeGu3Wg2yNEBwAAAAAAQMiYOnVqu14XHR3dwZUEVvmn/5EkmcHDXK4kcMyww2Ulaesm2YoKmR493C4J3RQhOgAAAAAAAELGvHnz3C6h3aqqqlRVVVX/3BijiIiI+sctKimqD9E9xxx/4GODWF3dra4/MVmKi5fyc6Wt38iMHNeJ1bVem8cRpBhH6xGiAwAAAAAAAJKWLFmipUuXHvCYBQsWaOjQoe06/4oVKxqdPzU1VQsXLlRCQkKLr6nakaGCZx5Wtb9GvmEjlXTEMe26djBJSkpq9bF7xx+tsjdfVdSurYqZPrMTq2q7towjmDGOgyNEBwAAAAAAACTNnDlTkydPPuAxBwq8D2b27NmaNWtW/fO6mbM5OTmqrq5u9jU1j90v+8l7kjHyn3i6MjMz2319txljlJSUpKysLFlrW/Ua/+Dhkl5V0duvqXTG6UExa7o94whG3WkcXq/3kO5dQnQAAAAAAABATt/0zuyd7vP5WlwQtaXwz/z4fKm6Sok//7X29ugV0mFnHWtt68cxYaL0j0ek3dtlN2+Uhh3eucW1QZvGEcQYx8F5OuWsAAAAAAAAQBeWm5urjIwM5ebmyu/3KyMjQxkZGSovL+/Q65jkgQq76iaFD+k+C4ruz0RGyRx9vCTJv+qFVr3GVlbI/85q+Rc/Jv/af8uW7+vECtEdMBMdAAAAAAAAaKPFixdr7dq19c+vv/56SdItt9yiUaNGuVVWl2R++GPZ/7wpffGB/O+9Ls/kGc0eZ62VPntf/uefkPZmN2x/Z7U8v7tHxhceqJLRxRCiAwAAAAAAAG00f/58zZ8/3+0yugUzMFXm1HNk//VP2Sf/V/6dW2WmnCQlD5CspOIC2Q1fyL6/Rtq0wXlRXLzMuKOd8H3bZtkXnpX5yc9cHQdCFyE6AAAAAAAAQtru3buVl5enyspKRUdHq3///oqMjHS7LHQgc+q5UnGR7FuvyK5ZKbtmpWQ8kvU3PtAXLnPymTIzz5Lp0UN25Dj5/+8e2f+8IXvWT2U8dLdG2xGiAwAAAAAAIORs2rRJr732mr744gsVFRU12ufxeDRkyBAdf/zxmjZtGoF6F2DCwmQuuFJ23NHyr1kpfbtBqqxsOGBQqsz4Y2Um/1Cmb2LD9rFHSz0ipOJCaccWaXD37C2PQ0OIDgAAAAAAgJCRkZGhRYsW6euvv9aAAQN07LHHKi0tTdHR0QoPD1dJSYn27Nmjb7/9Vs8995wWL16s2bNna9asWfJ6icJCnRl9pMJGHynr90tFBVJYmBQRKeP1NX+81ycdPk76/APZ9Z/KEKKjHfjKAQAAAAAAgJDxhz/8QVOmTNHcuXOVlpZ2wGPLy8v1/vvv68UXX1RNTY3OOuusAFWJzmY8Him2T+uOHX2k7OcfyH79hTTr3M4tDF0SIToAAAAAAABCxp///GclJye36tiePXtq+vTpmjZtmnJzczu5MgQrM3SkrCRt2yLr99MXHW3GZwwAAAAAAABCRmsD9P15PB4lJiYe/EB0TckDpPAeUsU+ac9ut6tBCCJEBwAAAAAAQEi66qqrlJGR0ey+7du366qrrgpsQQhKxhMmDUqVJNltm12uBqGIEB0AAAAAAAAhKScnR9XV1c3uq6qqUk5OToArQrCqX1B023fuFoKQRIgOAAAAAACALmfPnj2KiIhwuwwEi8FDJUl2OyE62o6FRQEAAAAAABAy3nrrLa1du7b++WOPPdYkLK+srNS2bdt0+OGHB7o8BCmTPMhZXJSe6GgHQnQAAAAAAACEjMrKShUVFdU/Ly0tVVVVVaNjfD6fjjvuOJ1zzjmBLg/BKrG/87EwT7Z8n0xPfksBrUeIDgAAAAAAgJBx0kkn6aSTTpIkzZ8/X7/97W81ZMgQd4tC0DO9oqSo3lJJsZSdKaWkuV0SQgg90QEAAAAAABCSHnroIQJ0tF7dbPRsWrqgbQjRAQAAAAAAEDJyc3Pb9bq8vLwOrgShxtSG6Ja+6GgjQnQAAAAAAACEjGuuuUZPPPGEsrKyDnpsdXW1/vOf/+i6667TG2+8EYDqENT6JTsfszPdrQMhh57oAAAAAAAACBk33XSTnnzySf373//WsGHDNGrUKKWmpiomJkY+n08lJSXas2ePNm3apC+//FLl5eU65ZRTNGvWLLdLh9vqZqIToqONCNEBAAAAAAAQMkaOHKl77rlHn3/+uV577TW9+uqrqqysbHJcYmKiTj75ZJ144omKi4tzoVIEG9M3UVaS8rLdLgUhhhAdAAAAAAAAIWfChAmaMGGCqqurlZGRofz8fFVWVqp3794aOHCg+vTp43aJCDZ9E5yP+Xmy1dUyXqJRtA6fKQAAAAAAAAhZXq9Xw4YNc7sMhILoOMnrlaqrpYK9Unw/tytCiGBhUQAAAAAAAABdnvF4pLh450lejrvFIKQwEx0AAAAAAAAhKzMzU6+99pp27drVpDe6MUZ//OMfXaoMQalvopSTJbs3R8btWhAyCNEBAAAAAAAQkrZv364bb7xRffr0UVZWlgYPHqzi4mLl5eWpb9++6tePdh1ozPRNcBYX3cviomg92rkAAAAAAAAgJD333HMaN26c7rvvPknSlVdeqf/7v//T7373O1VVVWnOnDkuV4ig06d2cVHauaANCNEBAAAAAAAQkrZu3app06bJGKcxh7VWknTEEUfotNNO0z/+8Q83y0Mw6psoSbLMREcbEKIDAAAAAAAgJJWWlioqKkoej0dhYWEqLS2t35eWlqatW7e6WB2Ckambib6XmehoPUJ0AAAAAAAAhKQ+ffqoqKhIkpSUlKSNGzfW79u+fbt69uzpVmkIVrUz0ZWXU/+bC8DBsLAoAAAAAAAAQtKIESO0adMmHXPMMZoyZYqef/55FRQUyOv16q233tLxxx/vdokINnHxkjFSVaVUXChFx7pdEUIAIToAAAAAAABC0plnnqn8/HxJ0hlnnKGCggK9++67MsZo0qRJuuiiizrlutnZ2Vq2bJm++uorFRQUqE+fPjr++ON15plnyuslbgtmxueTouOkwjynpQshOlqBuxoAAAAAAAAhKSkpSUlJSZIkj8ejSy65RJdcckmnX3f37t2y1uryyy9XUlKSduzYoUcffVTl5eWaO3dup18fh6hvghOi52VLqcPdrgYhgJ7oAAAAAAAACEkPP/ywsrOzm92Xk5Ojhx9+uFOuO378eM2bN0/jxo1Tv379dNRRR+m0007TRx991CnXQ8cytX3R7d7mP3eA72MmOgAAAAAAAELS2rVrddJJJykxMbHJvuLiYq1du1bz5s0LSC1lZWWKioo64DFVVVWqqqqqf26MUURERP3jltTtO9AxoSBoxlG3uOjenHbVEjTjOESMo/UI0QEAAAAAANDllJSUyOfzBeRaWVlZevXVVw/aymXFihVaunRp/fPU1FQtXLhQCQkJrbpOXeuaUOf2OIpTh6lAUo/SIiUkJ7f7PG6Po6MwjoMjRAcAAAAAAEDI2LhxozZu3Fj//PXXX9cXX3zR6JjKykp9/PHHGjhwYJvOvWTJkkYhd3MWLFigoUOH1j/Py8vT3XffrUmTJmnGjBkHfO3s2bM1a9as+ud1M2dzcnJUXV3d4uuMMUpKSlJWVpasta0ZSlAKlnH4veGSpPLMncrMzGzz64NlHIeqO43D6/W2+odVzb6+3a8EAAAAAAAAAmzDhg2Ngu433nij2ePi4+N16aWXtuncM2fO1OTJkw94zP5BXF5enm677Talp6fr8ssvP+j5fT5fi7PjWxNiWmtDOuys4/o4Yvo4HwvzD6kO18fRQRjHwRGiAwAAAAAAIGScfvrpmjlzpqy1+vnPf64bb7xRqampjY7x+Xzq2bNnm88dHR2t6OjoVh1bF6CnpqZq3rx58ng8bb4eXBJbG6IXFcjW1MiEhblbD4IeIToAAAAAAABCRnh4uMLDnXYcDz74oOLi4uT1BjbiysvL06233qr4+HjNnTtXRUVF9ftiY2MDWgvaoXe0ZDyS9UvFBVJsX7crQpALmRA9Oztby5Yt01dffaWCggL16dNHxx9/vM4888yAf6EEAAAAAACA++paq+zatUsbN25UcXGxpk+frtjYWOXl5SkqKqo+cO9I69atU1ZWlrKysnTllVc22rdkyZIOvx46lvGESTGxUkGe84cQHQcRMunz7t27Za3V5ZdfrqSkJO3YsUOPPvqoysvLD7ryMQAAAAAAALoev9+vRx99VG+99Vb9tvHjxys2NlZ//etflZqaqnPPPbfDrztt2jRNmzatw8+LAIrp0xCiAwcRMs2axo8fr3nz5mncuHHq16+fjjrqKJ122mn66KOP3C4NAAAAAAAALli+fLneffddXXTRRfrzn//caN+ECRP0xRdfuFMYgl9tX3RLiI5WCJmZ6M0pKytTVFSU22UAAAAAAADABW+99ZbOOusszZo1S36/v9G+xMREZWdnu1QZgp2J7SMrSYWE6Di4kA3Rs7Ky9Oqrrx60lUtVVZWqqqrqnxtjFBERUf84VNXVHspjAEIB9xoQGNxrQGBwrwGBwb0GBE5eXp7S09Ob3efz+VReXh7gihAyamei084FreF6iL5kyRItXbr0gMcsWLBAQ4cOrX+el5enu+++W5MmTdKMGTMO+NoVK1Y0On9qaqoWLlxYv/BEqEtKSnK7BKBb4F4DAoN7DQgM7jUgMLjXgM4XExPT4mzz3bt3q0+fPgGuCCEjpq6dy16XC0EocD1EnzlzpiZPnnzAY/YPvPPy8nTbbbcpPT1dl19++UHPP3v2bM2aNav+ed1MgJycHFVXV7ezavcZY5SUlKSsrCxZa90uB+iyuNeAwOBeAwKDew0IDO41dDder9e1yYoTJkzQ8uXL6xcTlZx7sKysTK+++qqOPPJIV+pC8DN9Epx2Lntz3C4FIcD1ED06OlrR0dGtOrYuQE9NTdW8efPk8Rx8XVSfzyefz9fsvq7wnxlrbZcYBxDsuNeAwOBeAwKDew0IDO41oPOdc845+vzzz/XrX/9ao0aNkiQ999xz2rFjh8LCwnT22We7XCGCVmKy8zEnU9ZfI+MJc7ceBLWDp9BBIi8vT7feeqv69u2ruXPnqqioSAUFBSooKHC7NAAAAAAAALggNjZWCxYs0OTJk7V161Z5PB5t27ZN48eP15133qmoqCi3S0Sw6psgeb1SdbWUl+t2NQhyrs9Eb61169YpKytLWVlZuvLKKxvtW7JkiUtVAQAAAAAAwE2xsbGtavkL7M94wqT4JClrp5S9W4rv53ZJCGIhE6JPmzZN06ZNc7sMAAAAAAAAAF1Bv/5S1k7ZPZkyh09wuxoEsZAJ0QEAAAAAAIDv++9//6t3331XOTk5qqysbLTPGKM//vGPLlWGYGcSk53FRbN3u10KghwhOgAAAAAAAELSm2++qUceeURRUVFKTk6Wz+drtJ/FfXFAif0lSXYPIToOjBAdAAAAAAAAIWnlypWaNGmS5s+f3yRABw7GDEp1ZqJv/UbW75fxeNwuCUGKzwwAAAAAAACEpJycHE2fPp0AHe0zeJjUI0IqKZZ2bnW7GgQxQnQAAAAAAACEpAEDBqiwsNDtMhCijNcrpY+SJNmv17lcDYIZIToAAAAAAABC0nnnnacXXnhBeXl5bpeCEGVGjpMk2fWfuFwJghk90QEAAAAAABAyFi5c2Oh5WVmZrrnmGg0ZMkRRUVGN9hljdP311weyPIQYM2Gi7PNPSN+sl92+RSYlrVOvZ62VdmyRqqqkAYNlekZ06vXQMQjRAQAAAAAAEDK2b9/e6LnH41F0dLTy8vKYkY42M/H9ZI6aLPvxO/K/8Iw8V93U4QuMWmulXdtkP/uP7AdvSjlZzo6eETKnny/PD0/v0Ouh4xGiAwAAAAAAIGQ89NBDbpeALsac8hPZz/4jrf9E9u9/kU6/QIqJk/x+qbREKiqQigtkiwqk4kKpskIFPXuqprBAqq6SqqudPzXVsjV1j2ukmmpnf262lJ/bcMHwcKlnpFRUILv4cfmjYuSZOM2dwaNVCNEBAAAAAAAQkjZu3Ki0tDT17Nmzyb7y8nJt2bJFhx9+uAuVIZSYgUNkLv6l7OP3yX64VvbDtQd9TXFbL+L1SaMmyBw5WeaISVJ4D9llT8quWi679AnZY46X8YS1q350PkJ0AAAAAAAAhKTbbrtNd911l4YNG9Zk3+7du3Xbbbdp8eLFLlSGUOOZOE22T4L8LzwtffdfZxa6JIV5pehYqXeMFB0r0zta6hmpXjExKi2vkLxe5xivt+Fx/Z8wKcwrExMnpaQ17X9+xgWy774mFeZLmzZIh40N+LjROoToAAAAAAAA6HKqq6vl6eDe1ujaTPoohV1/j2xVldOKxXik8HAZYxofZ4zikpNVnpnp9Dtv7/W8PpkjJsm+s1r243dkCNGDFiE6AAAAAAAAQkZZWZnKysrqnxcUFCg3N7fRMZWVlVq7dq1iY2MDXB26AuPzST5fYK511BQnRP/iQ9kL5zUJ7BEcCNEBAAAAAAAQMl5++WUtXbq0/vm9997b4rGzZ88ORElA+w0f5Sw0WlQgZe6Q+qe4XRGaQYgOAAAAAACAkDFu3Dj17NlT1lo9++yzmjlzpuLj4xsd4/P5lJKSwqKiCHrG55OGHS5t/EL263UyhOhBiRAdAAAAAAAAISM9PV3p6emSpIqKCs2YMUN9+vRxuSqg/cxhY2U3fiH733XSjFlul4NmEKIDAAAAAAAgJP3kJz9xuwTgkJn00bKS9N3XstbSFz0IEaIDAAAAAAAAbbRw4UJlZGSoqKhIvXr10pgxY3TBBRcwKx5tNyhV8nik4kKpIE+K6+t2Rfgej9sFAAAAAAAAAKFm1KhR+vWvf637779fv/3tb7Vnzx7dd999bpeFEGTCe0jJg5wn279ztxg0ixAdAAAAAAAAaKNZs2YpPT1dCQkJGjFihM444wx9++23qq6udrs0hCCTkiZJstsI0YMR7VwAAAAAAACAQ1BSUqJ33nlH6enp8npbjtuqqqpUVVVV/9wYo4iIiPrHLanbF+q9shnHAc45eJjsf96UdmwJ2N8P70frEaIDAAAAAAAA7fDMM89o1apVqqio0PDhw/X73//+gMevWLFCS5curX+empqqhQsXKiEhoVXXS0pKOqR6gwXjaKp8wtHK+eff5Nm1TcnJyR123tbg/Tg4QnQAAAAAAABA0pIlSxqF3M1ZsGCBhg4dKkn68Y9/rOnTpys3N1fPP/+8HnzwQf3+979vcUbs7NmzNWvWrPrndcfl5OQcsA2MMUZJSUnKysqStbatwwoajKNltkcvSVJNTpZ2b90i0zOiQ857IN3p/fB6va3+YVWzr2/3KwEAAAAAAIAuZObMmZo8efIBj9k/iIuOjlZ0dLT69++vAQMG6Be/+IW+/fZbpaenN/tan88nn8/X7L7WhJjW2pAOO+swjmb06i1Fx0pFBbKZO6QhwzvmvK3A+3FwhOgAAAAAAACAGkLx9qgL7/bveQ60SfIgJ0TfvUMmgCE6Do4QHQAAAAAAAGiDzZs3a/PmzTrssMPUq1cv7dmzR0uWLFG/fv1anIUOHIzpP0j2m/VS5g63S8H3EKIDAAAAAAAAbRAeHq4PP/xQS5YsUUVFhWJjYzV+/Hj96le/arFdC3BQySmS5LRzQVAhRAcAAAAAAADaICUlRbfccovbZaCLMf0HyUrS7u1ul4Lv8bhdAAAAAAAAAAB0e8mDnI+5e2QrKtytBY0QogMAAAAAAACA23rHSFG9JWulPTvdrgb7IUQHAAAAAAAAAJcZY+pno9vd9EUPJoToAAAAAAAAABAETO3iomJx0aDCwqIAAAAAAAAAEAz6uzcT3Vorffa+7Mfvyu7aJpWXyVnp1Aa8lrayT77cqecnRAcAAAAAAACAIGCSBzqRdYBnotuqSvkfWSit+zig1w0VhOgAAAAAAAAAEAwS+zsfc/fI+mtkPGGdfklrrezTDzsButcnM+M0mcPHSb2iJSNJRjKm9nHwMTJSWOfG3IToAAAAAAAAABAM+sQ7gXBNtZS/V+qb2OmXtP9dJ/ufNyTjkeeXf5QZOa7Tr9mRjDEyns5d+pOFRQEAAAAAAAAgCBhPWENwnp0ZkGvaV5Y61542M+QC9EAhRAcAAAAAAACAYJGYJEmyOVmdfqnKjM2yX38heTwyJ83u9OuFKkJ0AAAAAAAAAAgSJsEJ0RWAEL3szVedB2OPkYnv1+nXC1WE6AAAAAAAAAAQLBKSJUk2p3PbuVi/X2Vv/VuS5Jk0rVOvFeoI0QEAAAAAAAAgSNTPRO/knuh20wbV5O6RIntJY47q1GuFOkJ0AAAAAAAAAAgWA4c4H3dvl62o6LTL2A/elCSZo6bI+MI77TpdASE6AAAAAAAAAASLvolSbF+ppkbK2NQpl7BVlbKfvidJ8kyc1inX6EoI0QEAAAAAAAAgSBhjZIYfLkmy327snIus+1jaV6awhCRp2OGdc40uhBAdAAAAAAAAAILJsJGSOi9E93/wliQpctpMGQ8R8cHwNwQAAAAAAAAAQcSMGOM82PSVbFlJh57bFhdJ6z+VJPU64Ucdeu6uihAdAAAAAAAAAIJJ/xTnT3WV7Kfvd+ip7XuvSTXVUspQ+QYP7dBzd1WE6AAAAAAAAAAQRIwxMhNPkCTZd1bLWtsh57X+Gtm3XpUkeabP6pBzdgeE6AAAAAAAAAAQZMykaVJ4uLR1k+zH73TIOe1H70h7s6Wo3jLHHN8h5+wOCNEBAAAAAAAAIMiY2L4yPzpbkmSf/T/Z7VsO6Xy2ukr2pcXOuX94ukx4j0OusbsgRAcAAAAAAACAIGROPlMaephUVir/PdfLv/QJ2W83yhbsla0ol62qkq2okN1XJltaIltd1ex5bHWV7N/vl/bskqKiZWbQyqUtvG4XAAAAAAAAAABoyvjC5fnlH+V/9E/Sxi9kV62QXbXiwC+KiJR69Zaiop3APDJKNuNbKXu3FBYmz2W/lekZGZgBdBGE6AAAAAAAAAAQpExklDy/uk36/AP5P1orffeNVJQv+f3Nv2BfmfMnd48kqX5J0l695bnkVzKjJgSk7q6EEB0AAAAAAAAAgpgxRjpiksKOmCRJstZKFfucIN0TJnk8kvFIleVScZFU4vyxpcXO4+g4mdFHyvSOdnkkoYkQHQAAAAAAAGinqqoq/eEPf9C2bdv0pz/9SUOGDHG7JHQDxhipuZYsPp/TykUDnOMCW1aXxcKiAAAAAAAAQDs988wz6tOnj9tlAOhEhOgAAAAAAABAO3z++edat26dLrroIrdLAdCJCNEBAAAAAACANiooKNCjjz6qq666SuHh4W6XA6AT0RMdAAAAAAAAaANrrR5++GGdeOKJGjp0qLKzs1v1uqqqKlVVVdU/N8YoIiKi/nFL6vYd6JhQwDiCC+NoPUJ0AAAAAAAAQNKSJUu0dOnSAx6zYMECffPNN9q3b59mz57dpvOvWLGi0flTU1O1cOFCJSQktOr1SUlJbbpesGIcwYVxHJyx1tpOO3sQy8nJafSTv1BjjFFycrIyMzPVTd9CICC414DA4F4DAoN7DQgM7jV0Nz6fr9UhcLArKipScXHxAY9JSEjQ/fffr08//bTRzFe/3y+Px6MpU6boqquuava1Lc1Ez8nJUXV1dYvXNMYoKSlJWVlZIf11hXEEl+40Dq/Xe0hfp7rtTHSvt2sMvauMAwh23GtAYHCvAYHBvQYEBvcauouu9LkeHR2t6Ojogx53ySWXaM6cOfXP8/Pzddddd+lXv/qVhg8f3uLrfD6ffD5fk+2t/TsMCwtr1XHBjnEEl+4wjkP9OtVtZ6IDAAAAAAAAHSE7O1tXXXWV/vSnP2nIkCFulwOgg3ncLgDts2/fPv3ud7/Tvn373C4F6NK414DA4F4DAoN7DQgM7jUAHa2rfF1hHMGFcbRe1/l9m27GWqutW7eGdL8iIBRwrwGBwb0GBAb3GhAY3GtA95OYmKglS5Z02vm7ytcVxhFcGEfrMRMdAAAAAAAAAIAWEKIDAAAAAAAAANACQvQQ5fP5dPbZZze7ojOAjsO9BgQG9xoQGNxrQGBwrwHoaF3l6wrjCC6Mo/WMDfWmNwAAAAAAAAAAdBJmogMAAAAAAAAA0AJCdAAAAAAAAAAAWkCIDgAAAAAAAABAC7xuF4D2WbVqlVauXKmCggINHDhQF198sUaOHOl2WUCXsWLFCn300UfatWuXwsPDlZ6ergsvvFD9+/d3uzSgS1uxYoWee+45nXLKKbr44ovdLgfoUvLy8vTMM8/oiy++UGVlpZKTk/WLX/xCaWlpbpcGdBk1NTV6/vnn9c4776igoEBxcXGaNm2azjzzTHk8zGED0D6hlgEtWbJES5cubbQtJiZGf/vb3yRJ1lo9//zzev3111VSUqLhw4fr0ksv1aBBg9wot97GjRu1cuVKbd26Vfn5+br22mt1zDHH1O9vTd1VVVV6+umn9d5776myslKjR4/WZZddpr59+wbNOB566CGtXbu20WuGDx+uu+66K6jG0ZpcJpDvCf+Kh6D3339fixYt0plnnqmFCxdq5MiRuvvuu5Wbm+t2aUCXsXHjRp188sm66667dNNNN8nv9+vOO+9UeXm526UBXdbmzZu1Zs0aDR482O1SgC6npKREN998s7xer/7whz/ovvvu09y5cxUZGel2aUCX8uKLL+q1117TpZdeqr/85S+68MILtXLlSv373/92uzQAISpUM6BBgwbpr3/9a/2fP//5z/X7XnzxRb388su65JJLtGDBAsXGxurOO+/Uvn37XKxYqqio0JAhQ3TJJZc0u781dS9atEgfffSRrrnmGt1+++0qLy/XPffcI7/fH6hhHHQckjR+/PhG788NN9zQaH8wjKM1uUwg3xNC9BD00ksvafr06ZoxY0b9TyDj4+O1evVqt0sDuowbb7xR06ZN06BBgzRkyBDNmzdPubm52rJli9ulAV1SeXm5HnjgAV1xxRXq1auX2+UAXc6LL76ovn37at68eRo2bJgSExM1ZswYJSUluV0a0KVs2rRJRx11lI444gglJiZq4sSJGjt2rL777ju3SwMQokI1A/J4PIqNja3/Ex0dLcmZOfzKK69o9uzZOvbYY5WSkqL58+eroqJC7777rqs1T5gwQXPmzNGxxx7bZF9r6i4rK9Mbb7yhuXPnauzYsUpNTdXVV1+t7du3a926dUExjjper7fR+xMVFVW/L1jGcbBcJtDvCSF6iKmurtaWLVs0bty4RtvHjh2rb775xqWqgK6vrKxMkhr9wwKg4zz22GOaMGGCxo4d63YpQJf0ySefKC0tTffdd58uu+wyXX/99VqzZo3bZQFdzmGHHaavvvpKu3fvliRlZGTom2++0YQJE1yuDEAoCuUMKCsrS1dccYXmz5+v+++/X3v27JEkZWdnq6CgoNGYfD6fDj/88KAeU2vq3rJli2pqahp9T9OnTx+lpKRo06ZNAa/5QDZu3KjLLrtM11xzjR555BEVFhbW7wvWcXw/lwn0e0JP9BBTVFQkv9+vmJiYRttjYmJUUFDgTlFAF2et1ZNPPqnDDjtMKSkpbpcDdDnvvfeetm7dqgULFrhdCtBlZWdn67XXXtOpp56q2bNna/PmzXriiSfk8/k0depUt8sDuozTTz9dZWVl+vWvfy2PxyO/3685c+ZoypQpbpcGIASFagY0fPhwzZ8/X/3791dBQYGWL1+um266Sffdd1993c2NKZhb1LSm7oKCAnm93iaT74Lt/ZowYYImTZqk+Ph4ZWdna/Hixbr99tt1zz33yOfzBeU4mstlAv2eEKKHKGNMq7YBOHSPP/64tm/frttvv93tUoAuJzc3V4sWLdKNN96o8PBwt8sBuiy/36+hQ4fq/PPPlySlpqZqx44dWr16NSE60IHef/99vfPOO/rlL3+pQYMGKSMjQ4sWLapfYBQA2iPUMqD9f/smJSVF6enpuvrqq7V27VoNHz5cUtP6rbUBrbG92lN3sI3tuOOOq3+ckpKioUOHat68efrss88O2ALGzXEcKJcJ1HtCO5cQEx0dLY/H0+SnJYWFhU1+8gLg0P3973/Xp59+qltuuSWgq1AD3cWWLVtUWFio3//+95ozZ47mzJmjjRs36tVXX9WcOXMCunAN0JXFxcVp4MCBjbYNHDgwqGd8AaHomWee0emnn67JkycrJSVFP/jBD3TqqafqhRdecLs0ACGoq2RAPXv2VEpKijIzMxUbGytJTcZUVFQU1GNqTd2xsbGqrq5WSUlJk2PqXh+M4uLilJCQoMzMTEnBN46WcplAvyeE6CHG6/UqLS2tSfP7devWacSIES5VBXQ91lo9/vjj+vDDD/XHP/5RiYmJbpcEdEljxozR//zP/+hPf/pT/Z+hQ4dqypQp+tOf/iSPh/+qAB1hxIgR9T2a6+zevVsJCQkuVQR0TRUVFU3+7fJ4PEE3CxFAaOgqGVBVVZV27dqluLg4JSYmKjY2ttGYqqurtXHjxqAeU2vqTktLU1hYWKNj8vPztX37dqWnpwe85tYqLi7W3r17FRcXJyl4xnGwXCbQ7wntXELQrFmz9MADDygtLU3p6elas2aNcnNzdeKJJ7pdGtBlPP7443r33Xd1/fXXKyIiov4nm5GRkbScADpQREREk7UGevTood69e7MGAdCBTj31VN18881avny5jjvuOG3evFmvv/66Lr/8crdLA7qUI488UsuXL1d8fLwGDhyojIwMvfTSSzrhhBPcLg1AiArFDOipp57SUUcdpfj4eBUWFmrZsmXat2+fpk6dKmOMTjnlFK1YsULJyclKSkrSihUr1KNHD9fXjygvL1dWVlb98+zsbGVkZCgqKkrx8fEHrTsyMlLTp0/X008/rd69eysqKkpPP/20UlJSGi1s6eY4oqKitGTJEk2cOFGxsbHKycnRc889p969e+uYY44JqnEcLJdpzedSR47FWH4kHpJWrVqllStXKj8/X4MGDdJPf/pTHX744W6XBXQZ55xzTrPb582bRz9LoJPdeuutGjJkiC6++GK3SwG6lE8//VT/+Mc/lJWVpcTERJ166qn64Q9/6HZZQJeyb98+LV68WB999JEKCwvVp08fTZ48WWeffba8XuawAWifUMuA7r//fn399dcqKipSdHS0hg8frjlz5tS3lrPW6vnnn9eaNWtUWlqqYcOG6dJLL3V9Es2GDRt02223Ndk+depUzZ8/v1V1V1ZW6plnntG7776ryspKjR49Wpdddpni4+ODYhw///nPde+992rr1q0qLS1VXFycRo0apXPPPbdRjcEwjtbkMoF8TwjRAQAAAAAAAABoAY1GAQAAAAAAAABoASE6AAAAAAAAAAAtIEQHAAAAAAAAAKAFhOgAAAAAAAAAALSAEB0AAAAAAAAAgBYQogMAAAAAAAAA0AJCdAAAAAAAAAAAWkCIDgAAAAAAAABACwjRAQAAAAAAAABoASE6AAAAAAAAAAAtIEQHAAAAAAAAAKAFhOgAAABBorKyUtdff72uvvpqlZWV1W8vKCjQz3/+c916663y+/0uVggAAAAA3Q8hOgAAQJAIDw/Xr3/9axUVFenhhx+WJPn9fv3v//6vJOmaa66Rx8N/3wAAAAAgkPguDAAAIIgkJyfriiuu0EcffaRXXnlFS5cu1YYNG3T11VcrLi7O7fIAAAAAoNvxul0AAAAAGjvuuOO0ceNGPf300/L7/Zo9e7bGjh3rdlkAAAAA0C0xEx0AACAInXDCCaqpqVFYWJhOOeUUt8sBAAAAgG6LEB0AACDIlJeX68EHH1RycrLCw8P1yCOPuF0SAAAAAHRbhOgAAABB5m9/+5tyc3N17bXX6sorr9Qnn3yil156ye2yAAAAAKBbIkQHAAAIIq+//rreeecdXXrppRo0aJAmTpyomTNn6tlnn9XmzZvdLg8AAAAAuh1CdAAAgCCxfft2PfHEE5o6daqmTZtWv/2iiy7S4MGD9Ze//EWlpaXuFQgAAAAA3ZCx1lq3iwAAAAAAAAAAIBgxEx0AAAAAAAAAgBYQogMAAAAAAAAA0AJCdAAAAAAAAAAAWkCIDgAAAAAAAABACwjRAQAAAAAAAABoASE6AAAAAAAAAAAtIEQHAAAAAAAAAKAFhOgAAAAAAAAAALSAEB0AAAAAAAAAgBYQogMAAAAAAAAA0AJCdAAAAAAAAAAAWkCIDgAAAAAAAABAC/4/tol4k3EOa+MAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" @@ -696,8 +794,8 @@ "plt.figure(figsize=(15, 10))\n", "\n", "plt.subplot(grid[0:4, 0:4])\n", - "plt.plot(track[0, :], track[1, :], \"b+\")\n", - "plt.plot(x_sim[0, :], x_sim[1, :])\n", + "plt.plot(track[0, 0:200], track[1, 0:200], \"b+\")\n", + "plt.plot(x_sim[0, 0:50], x_sim[1, 0:50])\n", "plt.axis(\"equal\")\n", "plt.ylabel(\"y\")\n", "plt.xlabel(\"x\")\n", @@ -721,13 +819,22 @@ "plt.tight_layout()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false + } } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:.conda-jupyter] *", + "name": "python3", "language": "python", - "name": "conda-env-.conda-jupyter-py" + "display_name": "Python 3 (ipykernel)" }, "language_info": { "codemirror_mode": {