mpc_python_learn/mpc_pybullet_demo/mpcpy/utils.py

125 lines
3.6 KiB
Python
Raw Normal View History

2019-12-17 18:37:32 +08:00
import numpy as np
from scipy.interpolate import interp1d
2021-07-08 19:54:48 +08:00
from .mpc_config import Params
P=Params()
2019-12-17 18:37:32 +08:00
def compute_path_from_wp(start_xp, start_yp, step = 0.1):
"""
Computes a reference path given a set of waypoints
2019-12-17 18:37:32 +08:00
"""
2019-12-17 18:37:32 +08:00
final_xp=[]
final_yp=[]
delta = step #[m]
for idx in range(len(start_xp)-1):
section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))
2020-01-13 20:25:26 +08:00
interp_range = np.linspace(0,1,np.floor(section_len/delta).astype(int))
2019-12-17 18:37:32 +08:00
fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)
fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)
# watch out to duplicate points!
final_xp=np.append(final_xp,fx(interp_range)[1:])
final_yp=np.append(final_yp,fy(interp_range)[1:])
dx = np.append(0, np.diff(final_xp))
dy = np.append(0, np.diff(final_yp))
theta = np.arctan2(dy, dx)
return np.vstack((final_xp,final_yp,theta))
2020-01-13 20:25:26 +08:00
2020-07-01 00:21:27 +08:00
def get_nn_idx(state,path):
"""
Computes the index of the waypoint closest to vehicle
2020-07-01 00:21:27 +08:00
"""
2020-07-01 00:21:27 +08:00
dx = state[0]-path[0,:]
dy = state[1]-path[1,:]
dist = np.hypot(dx,dy)
2020-07-01 00:21:27 +08:00
nn_idx = np.argmin(dist)
try:
v = [path[0,nn_idx+1] - path[0,nn_idx],
path[1,nn_idx+1] - path[1,nn_idx]]
2020-07-01 00:21:27 +08:00
v /= np.linalg.norm(v)
d = [path[0,nn_idx] - state[0],
path[1,nn_idx] - state[1]]
if np.dot(d,v) > 0:
target_idx = nn_idx
else:
target_idx = nn_idx+1
except IndexError as e:
target_idx = nn_idx
return target_idx
def normalize_angle(angle):
"""
Normalize an angle to [-pi, pi]
"""
while angle > np.pi:
angle -= 2.0 * np.pi
while angle < -np.pi:
angle += 2.0 * np.pi
return angle
def get_ref_trajectory(state, path, target_v):
2020-07-01 00:21:27 +08:00
"""
For each step in the time horizon
modified reference in robot frame
2020-07-01 00:21:27 +08:00
"""
xref = np.zeros((P.N, P.T+1))
dref = np.zeros((1, P.T+1))
#sp = np.ones((1,T +1))*target_v #speed profile
ncourse = path.shape[1]
ind = get_nn_idx(state, path)
dx=path[0,ind] - state[0]
dy=path[1,ind] - state[1]
xref[0, 0] = dx * np.cos(-state[3]) - dy * np.sin(-state[3]) #X
xref[1, 0] = dy * np.cos(-state[3]) + dx * np.sin(-state[3]) #Y
xref[2, 0] = target_v #V
xref[3, 0] = normalize_angle(path[2,ind]- state[3]) #Theta
dref[0, 0] = 0.0 # steer operational point should be 0
dl = 0.05 # Waypoints spacing [m]
travel = 0.0
for i in range(1, P.T+1):
travel += abs(target_v) * P.dt #current V or target V?
dind = int(round(travel / dl))
if (ind + dind) < ncourse:
dx=path[0,ind + dind] - state[0]
dy=path[1,ind + dind] - state[1]
xref[0, i] = dx * np.cos(-state[3]) - dy * np.sin(-state[3])
xref[1, i] = dy * np.cos(-state[3]) + dx * np.sin(-state[3])
xref[2, i] = target_v #sp[ind + dind]
xref[3, i] = normalize_angle(path[2,ind + dind] - state[3])
dref[0, i] = 0.0
else:
dx=path[0,ncourse - 1] - state[0]
dy=path[1,ncourse - 1] - state[1]
xref[0, i] = dx * np.cos(-state[3]) - dy * np.sin(-state[3])
xref[1, i] = dy * np.cos(-state[3]) + dx * np.sin(-state[3])
xref[2, i] = 0.0 #stop? #sp[ncourse - 1]
xref[3, i] = normalize_angle(path[2,ncourse - 1] - state[3])
dref[0, i] = 0.0
2020-07-01 00:21:27 +08:00
return xref, dref