mpc_python_learn/notebooks/MPC_racecar_tracking.ipynb

1159 lines
183 KiB
Plaintext
Raw Normal View History

2020-07-01 00:21:27 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy.integrate import odeint\n",
"from scipy.interpolate import interp1d\n",
"import cvxpy as cp\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.style.use(\"ggplot\")\n",
"\n",
"import time"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### kinematics model equations\n",
"\n",
"The variables of the model are:\n",
"\n",
"* $x$ coordinate of the robot\n",
"* $y$ coordinate of the robot\n",
"* $v$ velocity of the robot\n",
"* $\\theta$ heading of the robot\n",
"\n",
"The inputs of the model are:\n",
"\n",
2020-08-06 17:21:47 +08:00
"* $a$ acceleration of the robot\n",
2020-07-01 00:21:27 +08:00
"* $\\delta$ angular velocity of the robot\n",
"\n",
"These are the differential equations f(x,u) of the model:\n",
"\n",
"$\\dot{x} = f(x,u)$\n",
"\n",
"* $\\dot{x} = v\\cos{\\theta}$ \n",
"* $\\dot{y} = v\\sin{\\theta}$\n",
"* $\\dot{v} = a$\n",
"* $\\dot{\\theta} = \\frac{v\\tan{\\delta}}{L}$\n",
"\n",
"Discretize with forward Euler Integration for time step dt:\n",
"\n",
"${x_{t+1}} = x_{t} + f(x,u)dt$\n",
"\n",
"* ${x_{t+1}} = x_{t} + v_t\\cos{\\theta}dt$\n",
"* ${y_{t+1}} = y_{t} + v_t\\sin{\\theta}dt$\n",
"* ${v_{t+1}} = v_{t} + a_tdt$\n",
"* ${\\theta_{t+1}} = \\theta_{t} + \\frac{v\\tan{\\delta}}{L} dt$\n",
"\n",
"----------------------\n",
"\n",
"The Model is **non-linear** and **time variant**, but the Numerical Optimizer requires a Linear sets of equations. To approximate the equivalent **LTI** State space model, the **Taylor's series expansion** is used around $\\bar{x}$ and $\\bar{u}$ (at each time step):\n",
"\n",
"$ f(x,u) \\approx f(\\bar{x},\\bar{u}) + \\frac{\\partial f(x,u)}{\\partial x}|_{x=\\bar{x},u=\\bar{u}}(x-\\bar{x}) + \\frac{\\partial f(x,u)}{\\partial u}|_{x=\\bar{x},u=\\bar{u}}(u-\\bar{u})$\n",
"\n",
"This can be rewritten usibg the State Space model form Ax+Bu :\n",
"\n",
"$ f(\\bar{x},\\bar{u}) + A|_{x=\\bar{x},u=\\bar{u}}(x-\\bar{x}) + B|_{x=\\bar{x},u=\\bar{u}}(u-\\bar{u})$\n",
"\n",
"Where:\n",
"\n",
"$\n",
"A =\n",
"\\quad\n",
"\\begin{bmatrix}\n",
2020-07-01 21:33:16 +08:00
"\\frac{\\partial f(x,u)}{\\partial x} & \\frac{\\partial f(x,u)}{\\partial y} & \\frac{\\partial f(x,u)}{\\partial v} & \\frac{\\partial f(x,u)}{\\partial \\theta} \\\\\n",
2020-07-01 00:21:27 +08:00
"\\end{bmatrix}\n",
"\\quad\n",
"=\n",
2020-07-01 21:33:16 +08:00
"\\displaystyle \\left[\\begin{matrix}0 & 0 & \\cos{\\left(\\theta \\right)} & - v \\sin{\\left(\\theta \\right)}\\\\0 & 0 & \\sin{\\left(\\theta \\right)} & v \\cos{\\left(\\theta \\right)}\\\\0 & 0 & 0 & 0\\\\0 & 0 & \\frac{\\tan{\\left(\\delta \\right)}}{L} & 0\\end{matrix}\\right]\n",
2020-07-01 00:21:27 +08:00
"$\n",
"\n",
"and\n",
"\n",
"$\n",
"B = \n",
"\\quad\n",
"\\begin{bmatrix}\n",
2020-07-01 21:33:16 +08:00
"\\frac{\\partial f(x,u)}{\\partial a} & \\frac{\\partial f(x,u)}{\\partial \\delta} \\\\\n",
2020-07-01 00:21:27 +08:00
"\\end{bmatrix}\n",
"\\quad\n",
"= \n",
2020-07-01 21:33:16 +08:00
"\\displaystyle \\left[\\begin{matrix}0 & 0\\\\0 & 0\\\\1 & 0\\\\0 & \\frac{v \\left(\\tan^{2}{\\left(\\delta \\right)} + 1\\right)}{L}\\end{matrix}\\right]\n",
2020-07-01 00:21:27 +08:00
"$\n",
"\n",
"are the *Jacobians*.\n",
"\n",
"\n",
"\n",
"So the discretized model is given by:\n",
"\n",
"$ x_{t+1} = x_t + (f(\\bar{x},\\bar{u}) + A|_{x=\\bar{x}}(x_t-\\bar{x}) + B|_{u=\\bar{u}}(u_t-\\bar{u}) )dt $\n",
"\n",
"$ x_{t+1} = (I+dtA)x_t + dtBu_t +dt(f(\\bar{x},\\bar{u}) - A\\bar{x} - B\\bar{u}))$\n",
"\n",
"The LTI-equivalent kinematics model is:\n",
"\n",
"$ x_{t+1} = A'x_t + B' u_t + C' $\n",
"\n",
"with:\n",
"\n",
"$ A' = I+dtA|_{x=\\bar{x},u=\\bar{u}} $\n",
"\n",
"$ B' = dtB|_{x=\\bar{x},u=\\bar{u}} $\n",
"\n",
"$ C' = dt(f(\\bar{x},\\bar{u}) - A|_{x=\\bar{x},u=\\bar{u}}\\bar{x} - B|_{x=\\bar{x},u=\\bar{u}}\\bar{u}) $"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"-----------------\n",
"[About Taylor Series Expansion](https://courses.engr.illinois.edu/ece486/fa2017/documents/lecture_notes/state_space_p2.pdf):\n",
"\n",
"In order to linearize general nonlinear systems, we will use the Taylor Series expansion of functions.\n",
"\n",
"Typically it is possible to assume that the system is operating about some nominal\n",
"state solution $\\bar{x}$ (possibly requires a nominal input $\\bar{u}$) called **equilibrium point**.\n",
"\n",
"Recall that the Taylor Series expansion of f(x) around the\n",
"point $\\bar{x}$ is given by:\n",
"\n",
"$f(x)=f(\\bar{x}) + \\frac{df(x)}{dx}|_{x=\\bar{x}}(x-\\bar{x})$ + higher order terms...\n",
"\n",
"For x sufficiently close to $\\bar{x}$, these higher order terms will be very close to zero, and so we can drop them.\n",
"\n",
"The extension to functions of multiple states and inputs is very similar to the above procedure.Suppose the evolution of state x\n",
"is given by:\n",
"\n",
"$\\dot{x} = f(x1, x2, . . . , xn, u1, u2, . . . , um) = Ax+Bu$\n",
"\n",
"Where:\n",
"\n",
"$ A =\n",
"\\quad\n",
"\\begin{bmatrix}\n",
"\\frac{\\partial f(x,u)}{\\partial x1} & ... & \\frac{\\partial f(x,u)}{\\partial xn} \\\\\n",
"\\end{bmatrix}\n",
"\\quad\n",
"$ and $ B = \\quad\n",
"\\begin{bmatrix}\n",
"\\frac{\\partial f(x,u)}{\\partial u1} & ... & \\frac{\\partial f(x,u)}{\\partial um} \\\\\n",
"\\end{bmatrix}\n",
"\\quad $\n",
"\n",
"Then:\n",
"\n",
"$f(x,u)=f(\\bar{x},\\bar{u}) + \\frac{df(x,u)}{dx}|_{x=\\bar{x}}(x-\\bar{x}) + \\frac{df(x,u)}{du}|_{u=\\bar{u}}(u-\\bar{u}) = f(\\bar{x},\\bar{u}) + A_{x=\\bar{x}}(x-\\bar{x}) + B_{u=\\bar{u}}(u-\\bar{u})$\n",
"\n",
"-----------------"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Kinematics Model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
2020-10-06 17:13:11 +08:00
"\"\"\"\n",
"Control problem statement.\n",
"\"\"\"\n",
2020-07-01 00:21:27 +08:00
"\n",
"N = 4 #number of state variables\n",
"M = 2 #number of control variables\n",
"T = 20 #Prediction Horizon\n",
"dt = 0.25 #discretization step"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def get_linear_model(x_bar,u_bar):\n",
" \"\"\"\n",
2020-10-06 17:13:11 +08:00
" Computes the LTI approximated state space model x' = Ax + Bu + C\n",
2020-07-01 00:21:27 +08:00
" \"\"\"\n",
2020-10-06 17:13:11 +08:00
" \n",
" L=0.3 #vehicle wheelbase\n",
2020-07-01 00:21:27 +08:00
" \n",
" x = x_bar[0]\n",
" y = x_bar[1]\n",
" v = x_bar[2]\n",
" theta = x_bar[3]\n",
" \n",
" a = u_bar[0]\n",
" delta = u_bar[1]\n",
" \n",
" A = np.zeros((N,N))\n",
" A[0,2]=np.cos(theta)\n",
" A[0,3]=-v*np.sin(theta)\n",
2020-07-01 17:04:01 +08:00
" A[1,2]=np.sin(theta)\n",
2020-07-01 00:21:27 +08:00
" A[1,3]=v*np.cos(theta)\n",
" A[3,2]=v*np.tan(delta)/L\n",
" A_lin=np.eye(N)+dt*A\n",
" \n",
" B = np.zeros((N,M))\n",
" B[2,0]=1\n",
2020-07-01 17:04:01 +08:00
" B[3,1]=v/(L*np.cos(delta)**2)\n",
2020-07-01 00:21:27 +08:00
" B_lin=dt*B\n",
" \n",
" f_xu=np.array([v*np.cos(theta), v*np.sin(theta), a,v*np.tan(delta)/L]).reshape(N,1)\n",
" C_lin = dt*(f_xu - np.dot(A,x_bar.reshape(N,1)) - np.dot(B,u_bar.reshape(M,1)))\n",
" \n",
" return np.round(A_lin,4), np.round(B_lin,4), np.round(C_lin,4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Motion Prediction: using scipy intergration"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Define process model\n",
"# This uses the continuous model \n",
"def kinematics_model(x,t,u):\n",
" \"\"\"\n",
2020-10-06 17:13:11 +08:00
" Returns the set of ODE of the vehicle model.\n",
2020-07-01 00:21:27 +08:00
" \"\"\"\n",
" \n",
2020-10-06 17:13:11 +08:00
" L=0.3 #vehicle wheelbase\n",
2020-07-01 00:21:27 +08:00
" dxdt = x[2]*np.cos(x[3])\n",
" dydt = x[2]*np.sin(x[3])\n",
" dvdt = u[0]\n",
" dthetadt = x[2]*np.tan(u[1])/L\n",
"\n",
" dqdt = [dxdt,\n",
" dydt,\n",
" dvdt,\n",
" dthetadt]\n",
"\n",
" return dqdt\n",
"\n",
"def predict(x0,u):\n",
" \"\"\"\n",
" \"\"\"\n",
" \n",
2020-10-06 17:13:11 +08:00
" x_ = np.zeros((N,T+1))\n",
2020-07-01 00:21:27 +08:00
" \n",
2020-10-06 17:13:11 +08:00
" x_[:,0] = x0\n",
2020-07-01 00:21:27 +08:00
" \n",
" # solve ODE\n",
" for t in range(1,T+1):\n",
"\n",
" tspan = [0,dt]\n",
" x_next = odeint(kinematics_model,\n",
" x0,\n",
" tspan,\n",
" args=(u[:,t-1],))\n",
"\n",
" x0 = x_next[1]\n",
2020-10-06 17:13:11 +08:00
" x_[:,t]=x_next[1]\n",
2020-07-01 00:21:27 +08:00
" \n",
2020-10-06 17:13:11 +08:00
" return x_"
2020-07-01 00:21:27 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Validate the model, here the status w.r.t a straight line with constant heading 0"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2020-07-01 17:45:08 +08:00
"CPU times: user 3.66 ms, sys: 83 µs, total: 3.74 ms\n",
"Wall time: 3.22 ms\n"
2020-07-01 00:21:27 +08:00
]
}
],
"source": [
"%%time\n",
"\n",
"u_bar = np.zeros((M,T))\n",
"u_bar[0,:] = 0.2 #m/ss\n",
"u_bar[1,:] = np.radians(-np.pi/4) #rad\n",
"\n",
"x0 = np.zeros(N)\n",
"x0[0] = 0\n",
"x0[1] = 1\n",
"x0[2] = 0\n",
"x0[3] = np.radians(0)\n",
"\n",
"x_bar=predict(x0,u_bar)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check the model prediction"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAChCAYAAACSyiu8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1xVdb7/8dfaIAIisAXUxDQxrfRYqZBNZZSgv1Iz6jiO9yEtJ0kpLUvPaUzHLKeJofDaFKkxNaNlUjZO46CJTuYjFG9BaTpolheEzUVuclnf3x975EiAXGTvtTZ8no8HDzd7rb32e6/Hcn9Y37W+36+mlFIIIYQQJmMxOoAQQghRFylQQgghTEkKlBBCCFOSAiWEEMKUpEAJIYQwJSlQQgghTMnd6ABCiOYrLi5mzZo1nD59Gk3TmDlzJt26dSM+Pp4LFy4QFBTEnDlz8PHxMTqqEE2mST8oIVzXihUruOWWW4iIiKCyspJLly6xefNmfHx8iIqKIjk5maKiIiZPnmx0VCGaTJr4hHBRJSUlfPvttwwbNgwAd3d3OnToQFpaGuHh4QCEh4eTlpZmZEwhmk2a+IRwUdnZ2fj6+rJq1SpOnTpFSEgI0dHRFBQUYLVaAbBarRQWFhqcVIjmMdUZlK7rPP/88yxbtszoKEKYXlVVFVlZWYwYMYLXXnuN9u3bk5yc3OjXp6SkMH/+fObPn+/AlEI0n6nOoLZu3UpwcDClpaWNWv/MmTN1Ph8YGEhOTk5LRrtmZsskeRp2tUzdunVzcpraAgICCAgIoE+fPgDceeedJCcn4+fnR15eHlarlby8PHx9fet8fWRkJJGRkdW/u8r/J7PlAfNlcrU89f1/Ms0ZVG5uLunp6URERBgdRQiX4O/vT0BAQHVhOXLkCN27dyc0NJTU1FQAUlNTCQsLMzKmEM1mmjOodevWMXny5KuePaWkpJCSkgLAsmXLCAwMrHM9d3f3epcZxWyZJE/DzJjp56ZNm0ZCQgKVlZV07tyZmJgYlFLEx8ezY8cOAgMDmTt3rtExRRunlxQ363WmKFD79+/Hz8+PkJAQMjIy6l3v500S9Z0ymu30FsyXSfI0zOxNfAA33HBDnddsFy5caEAaIWpSFRWoLX8hd892+O0baH7WJr3eFAXq6NGj7Nu3jwMHDlBeXk5paSkJCQnExsYaHU0IIUQzqNNZ6O/Gw48naT9sFOXtPJq8DVMUqIkTJzJx4kQAMjIy2LJlixQnIYRwQaqqCvX5JtSWv0IHHyyzXsQvYmSzWkhMUaCEEEK4PnXuR/R334CsY2ih96BNehLNp+67SBvDdAWqf//+9O/f3+gYQgghGknpOmrHZ6iP3wOP9mgz5mEJG3rN2zVdgRJCCOE6VM559HUJcPQIDAjFMnUWmn+nFtm2FCghhBBNppRC/eufqA2JoIH269lod0eiaVqLvYcUKCGEEE2i8nPR31sJR/bBTQOwPPY0WkDnFn8fKVBCCCEaRSmFStuNen8NVJajjZ+Bdv9INItjBiWSAiWEEKJB6mIh6v3VqP1fQshNWB57Bq1rsEPfUwqUEE6k63qj1tM0rUXb8oW4FurQ1+jvrYDiIrRHp6KNeATNzc3h7ysFSggnmjBhQqPW8/DwICkpycFphLg6VVKM2vAOas926N4Ly5zFaN17Oe39pUAJ4UQeHh788Y9/vOo6Simef/55JyUSom7q20Po696EPBvayHFoD/0Kzb2dUzNIgRLCiR566CGCgoIaXG/06NFOSCNEbepSGWrTOtQXW6FrMJb5v0cLucmQLFKghHCicePGNWq9sWPHOjiJELWp49+ir30Dss+iRY5Be2QKmkd7w/JIgRLCIOfPn6/z+Xbt2uHv74/FQbfuCvFzqqIc9ckHqG3J0CkQy3NL0W4aYHQsKVBCGOVqI/ZbLBYGDx7M448/jr+/vxNTibZGnTphnxbjzA9oQ0egjZuG5ultdCxACpQQhvnNb35DZmYmY8eOrZ4c8aOPPuKmm26iX79+vP/++yQmJvLss88aHVW0QqqyEvX3j1B/2wA+flhiF6INCDU6Vg3ShiCEQTZu3MiMGTPo2rUr7u7udO3alSeeeIJNmzYRHBxMTEwMmZmZRscUrZA68wP6sudRn36ANvgeLIuXm644gZxBCWEYpRQXLlwgOPj/euPn5ORUd+b19PSkqqrKqHiiFVJ6FSplC2pzEnh6YnnyBbTBdxsdq15SoIQwyMiRI/nd737HfffdR0BAADabjS+++IKRI0cCkJ6eTt++fQ1OKVoLdeGc/Q697zPhtjuwTH0KzddqdKyrkgIlhEEefvhhevbsyVdffUVWVhb+/v7MnDmT22+/HYA77riDO+64w+CUwtUppVC7/oH68F2wWNAeexrtF8NcYigtKVBCGOj222+vLkhCtDRly0FfvxwyD8Att2GJjkXr1HBHcbOQAiWEQSoqKvjoo4/48ssvuXjxIuvXr+fQoUOcPXuWBx54wOh4woUppdD3foH64E9QVYk26Um08Add4qzpSnIXnxAGWb9+PadPnyY2Nrb6i+P6669n27ZtBicTrkwV5lPw2v+iEuMhuAeWl97Ect9IlytOYJIzqJycHFauXEl+fj6aphEZGVl9oViI1urrr78mISEBT0/P6i+PTp06YbPZDE4mXJVK/wr9z6u4VFqCNvYxtOFj0CyOnxbDUUxRoNzc3JgyZQohISGUlpYyf/58br31Vrp37250NCEcxt3dvdb8UIWFhXTs2NGgRMJVqeIi1F//hNq7E3r0JuDlxeR7+xod65qZokBZrVasVvvtjl5eXgQHB2Oz2aRAiVbtzjvvZMWKFURHRwOQl5fHunXruOuuuxq9DV3XmT9/Pp06dWL+/PkUFRURHx/PhQsXCAoKYs6cOfj4+DjoEwgzUN+k22+EKMxDe2g82shxuHftCjk5Rke7Zqa7BpWdnU1WVhY33nij0VGEcKiJEyfSuXNnnn32WUpKSoiNjcVqtfLLX/6y0dvYunVrjY6+ycnJDBgwgISEBAYMGEBycrIjogsTUGWl6Emr0N9cBF7eWBb8AcuYiWjupjjvaBGm+iRlZWXExcURHR2Nt3ftwQpTUlJISUkBYNmyZQQGBta5HXd393qXGcVsmSRPwxydyd3dnejoaKKjo6ub9ppyITs3N5f09HQeffRRPvvsMwDS0tJYtGgRAOHh4SxatIjJkyc7Ir4wkDqWYe90m5ttn349ahJaOw+jY7U40xSoyspK4uLiGDp0KEOGDKlzncjISCIjI6t/z6nnFPbywJtmYrZMkqdhV8vUrVu3Zm2zvik2AEpLS6sfd+nSpcFtrVu3jsmTJ9d4XUFBQXVzudVqpbCwsFk5hTmpinJU8p9R//wEArtgee4VtL79jY7lMKYoUEop1qxZQ3BwsMwkKlq1q02xcaUNGzZcdfn+/fvx8/MjJCSEjIyMZmVx1RYJs+UB52SqOP4tBW8uQf/xJF4PPILP1KeweNU9LYbZ9lFz85iiQB09epRdu3bRo0cP5s2bB8CECRMYNGiQwcmEaFlXFp4vvviCI0eO8Mtf/pKgoCAuXLjARx99xIABDU8Ud/ToUfbt28eBAwcoLy+ntLSUhIQE/Pz8yMvLw2q1kpeXh69v/XdyuWqLhNnygGMzqcoK1N8+RG3dCL5WLM8sprz/QGzFJVBc4vQ8zdFQnvpaJExRoG6++WY2btxodAwhnGrDhg0kJCTg4WG/dnDdddcxY8YMnn76ae67776rvnbixIlMnDgRgIyMDLZs2UJsbCxJSUmkpqYSFRVFamoqYWFhjv4YwoHUT6fskwn+8G+0X9yPNv4JNO+2c1emKQqUEG2RUors7Owa3SkuXLhQq29UU0RFRREfH8+OHTsIDAxk7ty5LRFVOJnSq1DbklGfvA9eHbDE/A/awDuNjuV0UqCEMMioUaOqp9u43ASSmprKqFGjmrSd/v3707+//UJ5x44dWbhwoSPiCidR58/Y79A78R0M+gWWyTFoHf2MjmUIKVBCGGTMmDH06NGDr776ipMnT9aabkO0LUrXUal
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot trajectory\n",
"plt.subplot(2, 2, 1)\n",
"plt.plot(x_bar[0,:],x_bar[1,:])\n",
"plt.plot(np.linspace(0,10,T+1),np.zeros(T+1),\"b-\")\n",
"plt.axis('equal')\n",
"plt.ylabel('y')\n",
"plt.xlabel('x')\n",
"\n",
"plt.subplot(2, 2, 2)\n",
"plt.plot(np.degrees(x_bar[2,:]))\n",
"plt.ylabel('theta(t) [deg]')\n",
"#plt.xlabel('time')\n",
"\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Motion Prediction: using the state space model"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2020-07-01 17:45:08 +08:00
"CPU times: user 1.95 ms, sys: 4.06 ms, total: 6.01 ms\n",
"Wall time: 1.77 ms\n"
2020-07-01 00:21:27 +08:00
]
}
],
"source": [
"%%time\n",
"\n",
"u_bar = np.zeros((M,T))\n",
"u_bar[0,:] = 0.2 #m/s\n",
"u_bar[1,:] = np.radians(-np.pi/4) #rad\n",
"\n",
"x0 = np.zeros(N)\n",
"x0[0] = 0\n",
"x0[1] = 1\n",
"x0[2] = 0\n",
"x0[3] = np.radians(0)\n",
"\n",
"x_bar=np.zeros((N,T+1))\n",
"x_bar[:,0]=x0\n",
"\n",
"for t in range (1,T+1):\n",
" xt=x_bar[:,t-1].reshape(N,1)\n",
" ut=u_bar[:,t-1].reshape(M,1)\n",
" \n",
" A,B,C=get_linear_model(xt,ut)\n",
" \n",
" xt_plus_one = np.dot(A,xt)+np.dot(B,ut)+C\n",
" \n",
" x_bar[:,t]= np.squeeze(xt_plus_one)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
2020-07-01 17:45:08 +08:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAChCAYAAACSyiu8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5dn/8c99spCEkGRIgkgQJIAKFC2YlLpgCgk8imCj9UFBQAiWKgIVWir0p4gPRtGaRsPqEtnUR7BIFEutjZSA5aENm0BQtiKiCCE72chy7t8fU1JoErKQmXMmud6vV15m5pw5853jYa6c7b6U1lojhBBC2IxhdQAhhBCiLlKghBBC2JIUKCGEELYkBUoIIYQtSYESQghhS1KghBBC2JK31QGEEM1XUlLC8uXLOXnyJEopHnvsMbp06UJycjJnz54lPDycmTNnEhgYaHVUIZpMyX1QQniuxYsX06dPH2JjY6mqquL8+fNs2LCBwMBA4uPjSUtLo7i4mHHjxlkdVYgmk0N8Qnio0tJSvvzyS4YOHQqAt7c37du3JzMzk5iYGABiYmLIzMy0MqYQzSaH+ITwUNnZ2QQFBbF06VJOnDhBZGQkEydOpLCwEIfDAYDD4aCoqMjipEI0j632oEzT5De/+Q0LFy60OooQtlddXc3x48cZPnw4L730Eu3atSMtLa3Rr09PT2fOnDnMmTPHhSmFaD5b7UFt2rSJiIgIysrKGjX/qVOn6nw+LCyMnJyclox2xeyWSfI07HKZunTp4uY0tYWGhhIaGkrv3r0B+PGPf0xaWhrBwcHk5+fjcDjIz88nKCioztfHxcURFxdX89hT/j3ZLQ/YL5On5anv35Nt9qByc3PZvXs3sbGxVkcRwiOEhIQQGhpaU1j2799P165diYqKIiMjA4CMjAyio6OtjClEs9lmD2rlypWMGzfusntP6enppKenA7Bw4ULCwsLqnM/b27veaVaxWybJ0zA7ZvpPCQkJpKSkUFVVRadOnZg6dSpaa5KTk9m8eTNhYWHMmjXL6piijTNLS5r1OlsUqF27dhEcHExkZCRZWVn1zvefhyTq22W02+4t2C+T5GmY3Q/xAVx77bV1nrOdN2+eBWmEuJSurERv/F9yt38GT7+CCnY06fW2KFCHDh1i586d7Nmzh4qKCsrKykhJSWHGjBlWRxNCCNEM+uRxzLeS4duvaTf0bip8fJu8DFsUqLFjxzJ27FgAsrKy2LhxoxQnIYTwQLq6Gv3JevTG96B9IMa0pwiOHdGsIyS2KFBCCCE8nz79LeZbr8Dxw6io21EPPYoKrPsq0sawXYHq168f/fr1szqGEEKIRtKmid78MfqD1eDbDjVlNkb04Cteru0KlBBCCM+hc85grkyBQ/uhfxTGhGmokI4tsmwpUEIIIZpMa43+/C/otamgQD08HXVbHEqpFnsPKVBCCCGaRBfkYq5eAvt3wvX9MSb9EhXaqcXfRwqUEEKIRtFaozO3od9ZDlUVqAenoIaMQBmuGZRICpQQQogG6XNF6HeWoXf9DSKvx5j0BKpzhEvfUwqUEEKIy9J7/465ejGUlqDum4Aafi/Ky8vl7ysFSgghRJ10aQl67Zvo7Z9B12sxZv4P6poebnt/KVBCCCFq0Qf3Yq5Kgfw81IjRqFEPoLx93JpBCpQQQoga+nw5ev1K9F83QecIjDkvoiKvtySLFCghhBAA6KMHnUMVnT2NirsHde94lG87y/JIgRJCiDZOV1agP3wX/ekG6BiO8etE1PX9rY4lBUoIIdoyfeKYsy3GqW9Qg4ejRieg/AKsjgVIgRJCiDZJV1Wh//QH9B/XQmAwxoxnUP1vtjrWJaRACSFEG6NPfeM813TiKGpQDGrMFFT7DlbHqkUKlBBCtBHarEanb0RvWAN+fhiPPom6+TarY9VLCpQQQrQB+uxpzBWvwJGDcNOPMCY8jgpyWB3rsqRACSFEK6a1Rm/9M/r9t8AwUJOeQN0ypEXbYriKFCghhGildF4O5qpFcHAP9LkJY+IMVMdwq2M1mhQoIYRoZbTWmDv+in73daiuQj30KCrmLo/Ya7qYFCghhGhFdFEBham/R+/YAr36OJsJdupidaxmsUWBysnJYcmSJRQUFKCUIi4ujhEjRlgdSwghPIre/X+Yby/lfFkp6v5JqGH3oAzXt8VwFVsUKC8vL8aPH09kZCRlZWXMmTOHG2+8ka5du1odTQghbE+XFKPfe92519StJ6HPPUtBQJDVsa6YLQqUw+HA4XBe7ujv709ERAR5eXlSoIRogGmazJkzh44dOzJnzhyKi4tJTk7m7NmzhIeHM3PmTAIDA62OKVxIH9jtvBCiKB816kHUiNF4d+4MOTlWR7tirmkkfwWys7M5fvw4vXr1sjqKELa3adMmIiL+3XY7LS2N/v37k5KSQv/+/UlLS7MwnXAlXV6G+fZSzFfng38Axm9fxrhnLMrbFvsdLcJWn6S8vJykpCQmTpxIQEDtwQrT09NJT08HYOHChYSFhdW5HG9v73qnWcVumSRPw+yY6WK5ubns3r2b++67j48//hiAzMxM5s+fD0BMTAzz589n3LhxFqYUrqAPZ2GufBVyzjjbr8c/hPLxtTpWi7NNgaqqqiIpKYnBgwczaNCgOueJi4sjLi6u5nFOPbuwYWFh9U6zit0ySZ6GXS5Tly7NvyqqqKiIrVu3snv3bk6cOEFpaSkBAQF0796dH/7wh/zkJz8hKKjh8wcrV65k3LhxlJWV1TxXWFhYc7jc4XBQVFTU7JzCfnRlBTrtbfRfPoSwqzBmv4Dq3dfqWC5jiwKltWb58uVEREQwcuRIq+MI4TLvvvsu27ZtY8CAAQwdOpSIiAj8/f0pKyvju+++4+DBgzz55JPcfvvtPPTQQ/UuZ9euXQQHBxMZGUlWVlazsnjqEQm75QH3ZKo8+iWFry7A/PZr/O+8l8AJj2P4190Ww27rqLl5bFGgDh06xNatW+nWrRuzZ88GYMyYMQwcONDiZEK0LIfDQUpKCj4+PrWm9ejRg9tvv52Kigo2b9582eUcOnSInTt3smfPHioqKigrKyMlJYXg4GDy8/NxOBzk5+dfdk/MU49I2C0PuDaTrqpC/3EdetM6CHJgPPEsFf0GkFdSCiWlbs/THA3lqe+IhC0K1A033MC6deusjiGEy9111101vxcUFBASElJrntLSUu68887LLmfs2LGMHTsWgKysLDZu3MiMGTNYs2YNGRkZxMfHk5GRQXR0dMt+AOFW+rsTzmaC3/zTOX7egz9HBbSdqzJtdxWfEG3FL3/5yzqfnzlzZrOXGR8fz759+5gxYwb79u0jPj6+2csS1tFmNeYn6zGfmwn5uRhTf4uRMLNNFSewyR6UEG2R1rrWc6WlpRhG0/5u7NevH/369QOgQ4cOzJs3r0XyCWvo7FPOZoLHvoKBt2CMm4rqEGx1LEtIgRLCzR577DEAKioqan6/oLi4mNtus28DOeE62jTRGX9C/2EleHujHvkV6kd3eNwAry1JCpQQbjZ9+nS01rzwwgtMnz79kmkhISFXdAm78Ew69yzmqhT48gv4wUCMCdNRjlCrY1lOCpQQbta3r/O+ldTUVNq1a2dxGmElrTV6+2b02jfA1Kjxj6MGD2/Te00Xk4skhHCjTZs2UVlZCVBvcaqsrGTTpk3ujCUsoAvzMZckole+CtdEYjzzKsYd/yXF6SKyByWEGxUUFDBjxgwGDBhA37596dKlC35+fpSXl3Pq1CkOHjzInj17iImJsTqqcCG983PMd5bB+fOoByajho5CNfHimLZACpQQbjR27FhGjhzJli1b2Lx5M9988w0lJSUEBgbSrVs3BgwYwJgxY+jQoYPVUYUL6JJz6HeWozO3QY/rMCY9gbpaujbUp9UVKPP//kpB1i6qKyqcTyjD+ZeJYYDhBV5e4O0N3j7OHx9f8PEBX1/wbQft/FHtnP/FLwD8/cG/PQS0b5WDMQr3CwoK4p577uGee+6xOopwI70vE3P1YiguQsWPQ935M5SX5zYTdIdWV6AoKaL69Hd
2020-07-01 00:21:27 +08:00
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#plot trajectory\n",
"plt.subplot(2, 2, 1)\n",
"plt.plot(x_bar[0,:],x_bar[1,:])\n",
"plt.plot(np.linspace(0,10,T+1),np.zeros(T+1),\"b-\")\n",
"plt.axis('equal')\n",
"plt.ylabel('y')\n",
"plt.xlabel('x')\n",
"\n",
"plt.subplot(2, 2, 2)\n",
"plt.plot(np.degrees(x_bar[2,:]))\n",
"plt.ylabel('theta(t)')\n",
"#plt.xlabel('time')\n",
"\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The results are the same as expected, so the linearized model is equivalent as expected."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PRELIMINARIES"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def compute_path_from_wp(start_xp, start_yp, step = 0.1):\n",
2020-10-06 17:13:11 +08:00
" \"\"\"\n",
" Computes a reference path given a set of waypoints\n",
" \"\"\"\n",
" \n",
2020-07-01 00:21:27 +08:00
" final_xp=[]\n",
" final_yp=[]\n",
" delta = step #[m]\n",
"\n",
" for idx in range(len(start_xp)-1):\n",
" section_len = np.sum(np.sqrt(np.power(np.diff(start_xp[idx:idx+2]),2)+np.power(np.diff(start_yp[idx:idx+2]),2)))\n",
"\n",
" interp_range = np.linspace(0,1,np.floor(section_len/delta).astype(int))\n",
" \n",
" fx=interp1d(np.linspace(0,1,2),start_xp[idx:idx+2],kind=1)\n",
" fy=interp1d(np.linspace(0,1,2),start_yp[idx:idx+2],kind=1)\n",
" \n",
" final_xp=np.append(final_xp,fx(interp_range))\n",
" final_yp=np.append(final_yp,fy(interp_range))\n",
"\n",
" return np.vstack((final_xp,final_yp))\n",
"\n",
"def get_nn_idx(state,path):\n",
2020-10-06 17:13:11 +08:00
" \"\"\"\n",
" Computes the index of the waypoint closest to vehicle\n",
" \"\"\"\n",
2020-07-01 00:21:27 +08:00
"\n",
" dx = state[0]-path[0,:]\n",
" dy = state[1]-path[1,:]\n",
" dist = np.sqrt(dx**2 + dy**2)\n",
" nn_idx = np.argmin(dist)\n",
"\n",
" try:\n",
" v = [path[0,nn_idx+1] - path[0,nn_idx],\n",
" path[1,nn_idx+1] - path[1,nn_idx]] \n",
" v /= np.linalg.norm(v)\n",
"\n",
" d = [path[0,nn_idx] - state[0],\n",
" path[1,nn_idx] - state[1]]\n",
"\n",
" if np.dot(d,v) > 0:\n",
" target_idx = nn_idx\n",
" else:\n",
" target_idx = nn_idx+1\n",
"\n",
" except IndexError as e:\n",
" target_idx = nn_idx\n",
"\n",
" return target_idx\n",
"\n",
"def get_course(state, path):\n",
2020-10-06 17:13:11 +08:00
" \"\"\"\n",
" \"\"\"\n",
" "
2020-07-01 00:21:27 +08:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### MPC Problem formulation\n",
"\n",
"**Model Predictive Control** refers to the control approach of **numerically** solving a optimization problem at each time step. \n",
"\n",
"The controller generates a control signal over a fixed lenght T (Horizon) at each time step."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![mpc](img/mpc_block_diagram.png)\n",
"\n",
"![mpc](img/mpc_t.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Linear MPC Formulation\n",
"\n",
"Linear MPC makes use of the **LTI** (Linear time invariant) discrete state space model, wich represents a motion model used for Prediction.\n",
"\n",
"$x_{t+1} = Ax_t + Bu_t$\n",
"\n",
"The LTI formulation means that **future states** are linearly related to the current state and actuator signal. Hence, the MPC seeks to find a **control policy** U over a finite lenght horizon.\n",
"\n",
"$U={u_{t|t}, u_{t+1|t}, ...,u_{t+T|t}}$\n",
"\n",
"The objective function used minimize (drive the state to 0) is:\n",
"\n",
"$\n",
"\\begin{equation}\n",
"\\begin{aligned}\n",
"\\min_{} \\quad & \\sum^{t+T-1}_{j=t} x^T_{j|t}Qx_{j|t} + u^T_{j|t}Ru_{j|t}\\\\\n",
"\\textrm{s.t.} \\quad & x(0) = x0\\\\\n",
" & x_{j+1|t} = Ax_{j|t}+Bu_{j|t}) \\quad \\textrm{for} \\quad t<j<t+T-1 \\\\\n",
"\\end{aligned}\n",
"\\end{equation}\n",
"$\n",
"\n",
"Other linear constrains may be applied,for instance on the control variable:\n",
"\n",
"$ U_{MIN} < u_{j|t} < U_{MAX} \\quad \\textrm{for} \\quad t<j<t+T-1 $\n",
"\n",
"The objective fuction accounts for quadratic error on deviation from 0 of the state and the control inputs sequences. Q and R are the **weight matrices** and are used to tune the response.\n",
"\n",
"Because the goal is tracking a **reference signal** such as a trajectory, the objective function is rewritten as:\n",
"\n",
"$\n",
"\\begin{equation}\n",
"\\begin{aligned}\n",
"\\min_{} \\quad & \\sum^{t+T-1}_{j=t} \\delta x^T_{j|t}Q\\delta x_{j|t} + u^T_{j|t}Ru_{j|t}\n",
"\\end{aligned}\n",
"\\end{equation}\n",
"$\n",
"\n",
"where the error w.r.t desired state is accounted for:\n",
"\n",
"$ \\delta x = x_{j,t,ref} - x_{j,t} $"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem Formulation: Study case\n",
"\n",
"In this case, the objective function to minimize is given by:\n",
"\n",
"https://www.notion.so/Academic-Papers-65e231322112442d80e32c617826b69e#feb1ff08484d43c0b20797c855356e5b\n",
2020-07-01 00:21:27 +08:00
"\n",
"$\n",
"\\begin{equation}\n",
"\\begin{aligned}\n",
2020-07-01 21:33:16 +08:00
"\\min_{} \\quad & \\sum^{t+T-1}_{j=t} cte_{j|t,ref}^TQcte_{j,t,ref} + \\psi_{j|t,ref}^TP\\psi_{j|t,ref} + (v_{j|t} - v_{j|t,ref})^TK(v_{j|t} - v_{j|t,ref}) + u^T_{j|t}Ru_{j|t} \\\\\n",
2020-07-01 00:21:27 +08:00
"\\textrm{s.t.} \\quad & x(0) = x0\\\\\n",
" & x_{j+1|t} = Ax_{j|t}+Bu_{j|t} \\quad \\textrm{for} \\quad t<j<t+T-1 \\\\\n",
2020-07-01 21:33:16 +08:00
" & a_{MIN} < a_{j|t} < a_{MAX} \\quad \\textrm{for} \\quad t<j<t+T-1 \\\\\n",
" & \\delta_{MIN} < \\delta_{j|t} < \\delta_{MAX} \\quad \\textrm{for} \\quad t<j<t+T-1 \\\\\n",
2020-07-01 00:21:27 +08:00
"\\end{aligned}\n",
"\\end{equation}\n",
"$\n",
"\n",
"\n",
"Where R,P,K,Q are the cost matrices used to tune the response.\n"
2020-07-01 00:21:27 +08:00
]
},
{
"cell_type": "code",
2020-07-01 17:04:01 +08:00
"execution_count": 10,
2020-07-01 00:21:27 +08:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------------------------------------------\n",
" OSQP v0.6.0 - Operator Splitting QP Solver\n",
" (c) Bartolomeo Stellato, Goran Banjac\n",
" University of Oxford - Stanford University 2019\n",
"-----------------------------------------------------------------\n",
2020-07-01 17:04:01 +08:00
"problem: variables n = 282, constraints m = 343\n",
2020-07-01 17:45:08 +08:00
" nnz(P) + nnz(A) = 910\n",
2020-07-01 00:21:27 +08:00
"settings: linear system solver = qdldl,\n",
" eps_abs = 1.0e-04, eps_rel = 1.0e-04,\n",
" eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04,\n",
" rho = 1.00e-01 (adaptive),\n",
" sigma = 1.00e-06, alpha = 1.60, max_iter = 10000\n",
" check_termination: on (interval 25),\n",
" scaling: on, scaled_termination: off\n",
" warm start: on, polish: on, time_limit: off\n",
"\n",
"iter objective pri res dua res rho time\n",
2020-07-01 17:45:08 +08:00
" 1 0.0000e+00 1.04e+00 1.04e+02 1.00e-01 3.23e-04s\n",
" 50 3.3426e+00 2.85e-07 4.93e-08 1.00e-01 6.84e-04s\n",
2020-07-01 00:21:27 +08:00
"\n",
"status: solved\n",
"solution polish: unsuccessful\n",
2020-07-01 17:45:08 +08:00
"number of iterations: 50\n",
"optimal objective: 3.3426\n",
"run time: 9.06e-04s\n",
"optimal rho estimate: 1.76e-01\n",
2020-07-01 00:21:27 +08:00
"\n",
2020-07-01 17:45:08 +08:00
"CPU times: user 226 ms, sys: 5.12 ms, total: 231 ms\n",
"Wall time: 234 ms\n"
2020-07-01 00:21:27 +08:00
]
}
],
"source": [
"%%time\n",
"\n",
"MAX_SPEED = 1.25\n",
"MIN_SPEED = 0.75\n",
"MAX_STEER = 1.57\n",
"MAX_ACC = 1.0\n",
2020-07-01 17:04:01 +08:00
"REF_VEL=1.0\n",
2020-07-01 00:21:27 +08:00
"\n",
2020-07-01 17:04:01 +08:00
"track = compute_path_from_wp([0,3,6],\n",
" [0,0,0],0.05)\n",
2020-07-01 00:21:27 +08:00
"\n",
"# Starting Condition\n",
"x0 = np.zeros(N)\n",
"x0[0] = 0\n",
"x0[1] = -0.25\n",
2020-07-01 17:04:01 +08:00
"x0[2] = 0.0\n",
2020-07-01 00:21:27 +08:00
"x0[3] = np.radians(-0)\n",
" \n",
"#starting guess\n",
"u_bar = np.zeros((M,T))\n",
2020-07-01 17:04:01 +08:00
"u_bar[0,:]=0.5\n",
"u_bar[1,:]=0.1\n",
2020-07-01 00:21:27 +08:00
"\n",
"# dynamics starting state w.r.t world frame\n",
2020-07-01 00:21:27 +08:00
"x_bar=np.zeros((N,T+1))\n",
"x_bar[:,0]=x0\n",
"\n",
2020-07-01 00:21:27 +08:00
"#prediction for linearization of costrains\n",
"for t in range (1,T+1):\n",
" xt=x_bar[:,t-1].reshape(N,1)\n",
" ut=u_bar[:,t-1].reshape(M,1)\n",
" A,B,C=get_linear_model(xt,ut)\n",
" xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)\n",
" x_bar[:,t]= xt_plus_one\n",
"\n",
"x = cp.Variable((N, T+1))\n",
"u = cp.Variable((M, T))\n",
"\n",
"#CVXPY Linear MPC problem statement\n",
"cost = 0\n",
"constr = []\n",
"\n",
" #Prediction Horizon\n",
" for t in range(T):\n",
"\n",
" cost += 30*cp.sum_squares(x[3,t]-np.arctan(df(x_bar[0,t],K))) # psi\n",
" cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte\n",
" cost += 10*cp.sum_squares(1.-x[2,t]) # desired v\n",
"\n",
" # Actuation rate of change\n",
" if t < (T - 1):\n",
" cost += cp.quad_form(u[:, t + 1] - u[:, t], 10*np.eye(M))\n",
" \n",
" # Actuation effort\n",
" cost += cp.quad_form( u[:, t],10*np.eye(M))\n",
" \n",
" # Kinrmatics Constrains (Linearized model)\n",
" A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])\n",
" constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]\n",
"\n",
" # sums problem objectives and concatenates constraints.\n",
" constr += [x[:,0] == x_bar[:,0]]\n",
" constr += [x[2, :] <= MAX_SPEED]\n",
" constr += [x[2, :] >= 0.0]\n",
" constr += [cp.abs(u[0, :]) <= MAX_ACC]\n",
" constr += [cp.abs(u[1, :]) <= MAX_STEER]\n",
2020-07-01 00:21:27 +08:00
"\n",
"prob = cp.Problem(cp.Minimize(cost), constr)\n",
"solution = prob.solve(solver=cp.OSQP, verbose=True)"
]
},
{
"cell_type": "code",
2020-07-01 17:04:01 +08:00
"execution_count": 11,
2020-07-01 00:21:27 +08:00
"metadata": {},
"outputs": [
{
"data": {
2020-07-01 17:45:08 +08:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhU1f3H8fe52fdlJoCslU3BFSSCCAYkUKvUorUqWhURKWXfbIWioojikkJR0FoQ0dZWrIra2p800gKKlGBABFQSZJPFkI3s6z2/P4YEQvZt7p3J9/U888x278yHYW6+c8+59xyltdYIIYQQNmNYHUAIIYSoiRQoIYQQtiQFSgghhC1JgRJCCGFLUqCEEELYkhQoIYQQtuRrdYDmOn78eJX7TqeT9PR0i9I0nyfn9+TsUHP+jh07WpTGXs7fzirY8f/cbpkkT/1q285kD0oIIYQtSYESQghhS7Zq4ktPT2fFihVkZ2ejlCI+Pp4bb7zR6lhCiBqYH79L9pEDmMqAgEDwD4SAgLO3g4JQUU5wxEBUDMrPz+rIwsPYqkD5+Phwzz330L17dwoLC3n44Ye5/PLL6dy5s9XRhBDnK8inPO0EOj8PiouguBhKiuCc0dOqjKMWEQXRMajoGFfR6toD1auv674QNbBVgYqKiiIqKgqAoKAgOnXqRGZmphQoIWzIuOUeHA/OqtLhrrWG0hJXwSrMh8x0dOYpyDgFmafQmafQ3x+C3UlQWuIqYNExqJ59oVcf13XHrihDeh+EzQrUudLS0jh48CA9e/as8nhiYiKJiYkALFmyBKfTWeV5X1/fao95Ek/O78nZwfPz24FSCvwDXJewCGjXEVXDcrq8HI4dQqd8Dan70N9+Bds3uQpWUAjqkn6oISOhzxVSrNowWxaooqIiEhISGDduHMHBwVWei4+PJz4+vvL++YdL2vEQysbw5PyenB3kMHN3Uj4+ria+rj1gxGjXnlf6D+jUryFlL3rn5+gdn4KjHeraeNS1I6QpsA2yXYEqKysjISGBoUOHMnDgQKvjCCHcQCkFMR1QMR3gmuHosb9C7/of+tMN6A/eRH/4V7ikH8aQUXBFLMpXDrhoC2xVoLTWvPzyy3Tq1InRo0dbHUcIYRHl54eKHQKxQ9DpP6A/+wT9WSLmy0sgIho15m7U4BHS/OflbFWgvv32WzZv3kzXrl156KGHABg7diz9+/e3OJkQwirK2R71s7vQP70D9u7E/Oc69NoX0P/5COPOB1G9+lodUbQSWxWoiy++mHXr1lkdQwhhQ8rwgcsGYFx6FXr7ZvQ7azGffRg1YAjqtnEoRzurI4oWZqsCJYQQ9VFKoQbGoa8ciP74Xdfly+2oUWNQP7nN6niiBUkDrhDCI6mAQIyb78JY9BKq3zXof67DXPBrindttzqaaCFSoIQQHk1Fx2A8OAfj4WchOITsJ2a5+qlM0+poopmkQAkhvILqcTHG/OcJvG4Uev2fMV98Ep2fa3Us0QxSoITwIrt27WLGjBlMmzaN9evX17pcamoqd9xxB9u2bXNjutanAgIJn/Eo6u5JsG8X5qJZ6MOpVscSTSQFSggvYZomq1evZv78+SxdupTPPvuM77//vsbl/vKXv3DllVdakLL1KaUwht2I8dsloE3MJb/F3LLBNVqF8ChSoITwEqmpqXTo0IH27dvj6+vL4MGDSUpKqrbcv/71LwYOHEh4eLgFKd1HXdgbY8Ey6H0p+vUX0WuXo0uKrY4lGkEOMxfCS2RmZuJwOCrvOxwOUlJSqi2zfft2HnvsMV566aVaX6u+QZkr2HGA3SqZnE70E8vJX7eG/HWv4puRRuSCBIyQUGvy2IDd8tRFCpQQXqKmJiylqo4l/tprr3H33Xdj1DNEUH2DMlew4wDBNWYaOQYjuh2lf3qOUwumYMx8HOWmImW3z8hueaD2QZmlQAnhJRwOBxkZGZX3MzIyKudXq3DgwAH+8Ic/AJCTk8POnTsxDIOrr77arVmtoK4ajOE7D/PlJZgJv8OYtQgV5t3NnJ5O+qCE8BI9evTgxIkTpKWlUVZWxtatWxkwYECVZVasWFF5GTRoEBMmTGgTxamCuuJqjCkL4OQxzITfoXOyrI4k6iAFSggv4ePjw/jx41m8eDGzZs3immuuoUuXLmzYsIENGzZYHc821KX9MaY9AqdOYj73O3R2Rv0rCUso7eHHXh4/frzKfTu2rzaGJ+f35OwgExbW5fztrIId/88bmknv34u5/AmIiMSY82SrTYhot8/Ibnmg9u1M9qCEEG2S6n0JxqzHITcH89l56FMnrY4kziMFSgjRZqkeF2PMWQSFBZgJC9DZmVZHEuewVYFauXIlEyZMYM6cOVZHEUK0EapbT4zZT0Bejmv8vuIiqyOJM2xVoIYNG8b8+fOtjiGEaGNUt54YDz4ER77D/NPzaLPc6kgCmxWovn37EhrqvjO8hRCigroiFjX2QfhyO3rdq1bHEXjgibr1DcHiScN41MST83tydvD8/KL5jOE3YZ46if73+5jO9hjxN1sdqU3zuAJV3xAsdjyEsjE8Ob8nZwc5zFy4qNvuR6f/gF63Gu1oh+o3yOpIbZatmviEEMJqyjAwHpgDP+qFuep59MGU+lcSrUIKlBBCnEcFBGBM/R2ERWK+8AQ6/QerI7VJtipQy5YtY8GCBRw/fpxJkyaxceNGqyMJIdooFR6FMeMxKC/DXP4EuiDf6khtjq36oGbOnGl1BCGEqKQu6ILx63mYSx/FXLscY9LD1aYwEa3HVntQQghhN+riy1E/vw+SP0cnfmB1nDZFCpQQQtRDjRwDVw5Cv/MaOvVrq+O0GVKghBCiHkopjPunQ3QM5h+fReeetjpSmyAFSrQ4GSZGeCMVHIox6beuMftWJcj33A2kQIkWo8vLMP+5zjUqdLlsvML7qK49UHf9CvbtQv/jLavjeD0pUKJF6LQTZC2Ygl7/Z1RENJSWWB1JiFahhoxEXXM9+h9voffutDqOV5MCJZpFa425ZQPmEzMoO3IQNWEOxsSHUIFBVkcTolUopVB3/xo6dnWNNJF5yupIXstW50EJz6JzsjFffxG+3A4XX45jzuNk4WN1LI9VVlZGSkoKhw8fJj8/n5CQELp160avXr3w9ZVN1U5UQADGpN9iPjkH85XnMOYuRvn6WR3L68i3XjSaNk30tv+g//4aFBag7ngAdf1P8XG2Aw8eLNYqOTk5rF+/nk2bNhEaGkqnTp0IDAykqKiIf/3rX+Tl5REXF8eYMWMIDw+3Oq44Q3XojLpvGvqVZ9Hv/Rn1i/utjuR1pECJRtEHUzD/+kc4uB8u7I1x3zRUp25Wx/Jojz32GMOHD+e5554jOjq62vOZmZl8+umnPPbYYyxdutSChKI2RuwQzG93oze8h76kH6rvlVZH8ipSoESD6Jws9LtvoD9LhIgo1P0zUYOGoQzpxmyu5557rs4mvOjoaG6++WZuvPFGN6YSDaV+8QD62z2Ya5ZhPLYcFSp7uS1F/rqIOumSYswN6zEX/Bq97b+oH9+CsegljMHXS3FqIecWp1dfrXkm19dee036oWxKBQRgPDgHcnMwX38RrbXVkbyG/IURNdK5OZgf/g3ztw+g334VelyMsXA5xm33o4KCrY7ntTZt2lTj45s3b3ZzEtEYqmsP1C33wM5t6E//bXUcr9Gon2Rr164lLi6OH/3oR60UR1hNnzqJ/vd6V1NeSQlcHovx41ug1yUyinMrqphapry8vNo0M2lpaYSFhVkRSzSCGvkz9J4v0H/7E7rXJagOnayO5PEaVaDKy8tZvHgx4eHhDB06lKFDh+JwOForm3ATbZqwfw9688foHZ+BYaAGxaFG3YLq2NXqeG3Cli1bANeh5hW3K0RERDBlyhQrYolGUIaBMX4W5sJpmKsSMB5+FiXNss3is3DhwoUNXbhfv36MHj2amJgYdu/ezWuvvcaePXsA6NChQ7PbyHft2sXTTz/NRx99RElJCRdffHG96+Tm5la5n5AQRmxs4ycWS0gIY/Dgxo9+0NT1als3ODiYgoKCVnn
2020-07-01 00:21:27 +08:00
"text/plain": [
2020-07-01 17:04:01 +08:00
"<Figure size 432x288 with 4 Axes>"
2020-07-01 00:21:27 +08:00
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x_mpc=np.array(x.value[0, :]).flatten()\n",
"y_mpc=np.array(x.value[1, :]).flatten()\n",
2020-07-01 17:04:01 +08:00
"v_mpc=np.array(x.value[2, :]).flatten()\n",
"theta_mpc=np.array(x.value[3, :]).flatten()\n",
"a_mpc=np.array(u.value[0, :]).flatten()\n",
2020-07-01 00:21:27 +08:00
"w_mpc=np.array(u.value[1, :]).flatten()\n",
"\n",
"#simulate robot state trajectory for optimized U\n",
2020-07-01 17:04:01 +08:00
"x_traj=predict(x0, np.vstack((a_mpc,w_mpc)))\n",
2020-07-01 00:21:27 +08:00
"\n",
"#plt.figure(figsize=(15,10))\n",
"#plot trajectory\n",
"plt.subplot(2, 2, 1)\n",
"plt.plot(track[0,:],track[1,:],\"b+\")\n",
"plt.plot(x_traj[0,:],x_traj[1,:])\n",
"plt.axis(\"equal\")\n",
"plt.ylabel('y')\n",
"plt.xlabel('x')\n",
"\n",
"#plot v(t)\n",
"plt.subplot(2, 2, 2)\n",
2020-07-01 17:04:01 +08:00
"plt.plot(a_mpc)\n",
"plt.ylabel('a(t)')\n",
2020-07-01 00:21:27 +08:00
"#plt.xlabel('time')\n",
"\n",
"\n",
2020-07-01 17:04:01 +08:00
"plt.subplot(2, 2, 4)\n",
"plt.plot(theta_mpc)\n",
"plt.ylabel('theta(t)')\n",
2020-07-01 00:21:27 +08:00
"\n",
2020-07-01 17:04:01 +08:00
"plt.subplot(2, 2, 3)\n",
"plt.plot(v_mpc)\n",
"plt.ylabel('v(t)')\n",
2020-07-01 00:21:27 +08:00
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"full track demo"
]
},
{
"cell_type": "code",
2020-07-01 22:59:13 +08:00
"execution_count": 50,
2020-07-01 00:21:27 +08:00
"metadata": {},
2020-07-01 17:04:01 +08:00
"outputs": [
2020-07-01 17:45:08 +08:00
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-9-526b0e6cd302>:29: RuntimeWarning: invalid value encountered in true_divide\n",
" v /= np.linalg.norm(v)\n",
2020-07-01 22:59:13 +08:00
"<ipython-input-50-8fcc0dfd7424>:34: RankWarning: Polyfit may be poorly conditioned\n",
2020-07-01 17:45:08 +08:00
" K=road_curve(x_sim[:,sim_time],track)\n"
]
},
2020-07-01 17:04:01 +08:00
{
"name": "stdout",
"output_type": "stream",
"text": [
2020-07-01 22:59:13 +08:00
"CVXPY Optimization Time: Avrg: 0.2259s Max: 0.3524s Min: 0.2046s\n"
2020-07-01 17:04:01 +08:00
]
}
],
2020-07-01 00:21:27 +08:00
"source": [
2020-07-01 22:59:13 +08:00
"track = compute_path_from_wp([0,3,4,6,10,12,14,6,1,0],\n",
" [0,0,2,4,3,3,-2,-6,-2,-2],0.5)\n",
2020-07-01 00:21:27 +08:00
"\n",
"# track = compute_path_from_wp([0,5,7.5,10,12,13,13,10],\n",
"# [0,0,2.5,2.5,0,0,5,10],0.5)\n",
"\n",
2020-07-01 22:59:13 +08:00
"sim_duration = 175 #time steps\n",
2020-07-01 00:21:27 +08:00
"opt_time=[]\n",
"\n",
"x_sim = np.zeros((N,sim_duration))\n",
"u_sim = np.zeros((M,sim_duration-1))\n",
"\n",
"MAX_SPEED = 1.25\n",
"MIN_SPEED = 0.75\n",
2020-07-01 17:45:08 +08:00
"MAX_STEER = 1.57/2\n",
2020-07-01 00:21:27 +08:00
"MAX_ACC = 1.0\n",
"\n",
"# Starting Condition\n",
"x0 = np.zeros(N)\n",
"x0[0] = 0\n",
"x0[1] = -0.25\n",
2020-07-01 17:04:01 +08:00
"x0[2] = 0\n",
"x0[3] = np.radians(-0)\n",
2020-07-01 00:21:27 +08:00
"x_sim[:,0]=x0\n",
" \n",
"#starting guess\n",
"u_bar = np.zeros((M,T))\n",
2020-07-01 17:04:01 +08:00
"u_bar[0,:]=0.5\n",
"u_bar[1,:]=0.01\n",
2020-07-01 00:21:27 +08:00
"\n",
"for sim_time in range(sim_duration-1):\n",
" \n",
" iter_start=time.time()\n",
" K=road_curve(x_sim[:,sim_time],track)\n",
" \n",
" # dynamics starting state w.r.t vehicle frame\n",
" x_bar=np.zeros((N,T+1))\n",
2020-07-01 17:04:01 +08:00
" x_bar[2,0]=x_sim[2,sim_time]\n",
2020-07-01 00:21:27 +08:00
" \n",
" #prediction for linearization of costrains\n",
" for t in range (1,T+1):\n",
" xt=x_bar[:,t-1].reshape(N,1)\n",
" ut=u_bar[:,t-1].reshape(M,1)\n",
" A,B,C=get_linear_model(xt,ut)\n",
" xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)\n",
" x_bar[:,t]= xt_plus_one\n",
" \n",
" #CVXPY Linear MPC problem statement\n",
" cost = 0\n",
" constr = []\n",
" x = cp.Variable((N, T+1))\n",
" u = cp.Variable((M, T))\n",
" \n",
" #Prediction Horizon\n",
" for t in range(T):\n",
"\n",
2020-07-01 21:33:16 +08:00
" cost += 30*cp.sum_squares(x[3,t]-np.arctan(df(x_bar[0,t],K))) # psi\n",
2020-07-01 00:21:27 +08:00
" cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte\n",
2020-07-01 17:45:08 +08:00
" cost += 10*cp.sum_squares(1.-x[2,t]) # desired v\n",
2020-07-01 00:21:27 +08:00
"\n",
" # Actuation rate of change\n",
" if t < (T - 1):\n",
2020-07-01 17:45:08 +08:00
" cost += cp.quad_form(u[:, t + 1] - u[:, t], 10*np.eye(M))\n",
2020-07-01 00:21:27 +08:00
" \n",
" # Actuation effort\n",
2020-07-01 17:45:08 +08:00
" cost += cp.quad_form( u[:, t],10*np.eye(M))\n",
2020-07-01 00:21:27 +08:00
" \n",
" # Kinrmatics Constrains (Linearized model)\n",
" A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])\n",
" constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]\n",
"\n",
" # sums problem objectives and concatenates constraints.\n",
" constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition\n",
2020-07-01 17:04:01 +08:00
" constr += [x[2, :] <= MAX_SPEED]\n",
" constr += [x[2, :] >= 0.0]\n",
" constr += [cp.abs(u[0, :]) <= MAX_ACC]\n",
" constr += [cp.abs(u[1, :]) <= MAX_STEER]\n",
2020-07-01 00:21:27 +08:00
" \n",
" # Solve\n",
" prob = cp.Problem(cp.Minimize(cost), constr)\n",
" solution = prob.solve(solver=cp.OSQP, verbose=False)\n",
" \n",
" #retrieved optimized U and assign to u_bar to linearize in next step\n",
" u_bar=np.vstack((np.array(u.value[0, :]).flatten(),\n",
" (np.array(u.value[1, :]).flatten())))\n",
" \n",
" u_sim[:,sim_time] = u_bar[:,0]\n",
" \n",
" # Measure elpased time to get results from cvxpy\n",
" opt_time.append(time.time()-iter_start)\n",
" \n",
" # move simulation to t+1\n",
" tspan = [0,dt]\n",
" x_sim[:,sim_time+1] = odeint(kinematics_model,\n",
" x_sim[:,sim_time],\n",
" tspan,\n",
" args=(u_bar[:,0],))[1]\n",
" \n",
"print(\"CVXPY Optimization Time: Avrg: {:.4f}s Max: {:.4f}s Min: {:.4f}s\".format(np.mean(opt_time),\n",
" np.max(opt_time),\n",
" np.min(opt_time))) "
]
},
{
"cell_type": "code",
2020-07-01 22:59:13 +08:00
"execution_count": 51,
2020-07-01 00:21:27 +08:00
"metadata": {},
2020-07-01 17:04:01 +08:00
"outputs": [
{
"data": {
2020-07-01 22:59:13 +08:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAALICAYAAACJhQBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXycZb3//9d1T/Y2SbN0S/emdKEUaGmRvQVKRUEo5yiHwwFF5PhV9IdQXKjCqYpgj9iiiCg7xxVEpYiC1rKUSlkKLXt3utGFNnvarDP39fvjnplMkkmaSWZL+34+Hnlklnvu+5oZaOb+zGcx1lqLiIiIiIiIiEgac1K9ABERERERERGRw1EAQ0RERERERETSngIYIiIiIiIiIpL2FMAQERERERERkbSnAIaIiIiIiIiIpD0FMEREREREREQk7WWkegF9sWfPnpQev7S0lIqKipSuQbqn9yj96T1Kb3p/0p/eo/Sn9yj96T1Kb+n6/pSVlaV6CUnV1blXur4/kbTG+EnWOrv6/0sZGCIiIiIiIiKS9hTAEBEREREREZG0169LSERERERERMRzzz33sHbtWgoLC1myZEmn+621PPzww6xbt47s7GyuvfZaxo8fn4KVivSOMjBERERERESOAHPmzOHb3/52l/evW7eOffv2cdddd/HFL36RBx54IImrE+k7BTBERERERESOAMceeywDBw7s8v7XX3+ds846C2MMEydO5NChQ1RXVydxhYlhrcV99H7snp2pXkrM3Cd+jd26IdXL6DdUQiIiIiIiInIUqKqqorS0NHy9pKSEqqoqioqKOm27YsUKVqxYAcDixYvbPS5SRkZGl/clS6DiIyqefQrz1muU3v9Ep/vTYY1d+eiZP5Kbm0vG6XPSdo2RUv1aKoAhIiIiIiJyFLDWdrrNGBN127lz5zJ37tzw9a5GZ6bD+E9bUwuA29QQdS3psMZorOuCtTQePEi+35+Wa+xIY1RFREREREQk4UpKStqdfFZWVkbNvuh3QoGZVn9q1xEr1/V+Wze16+hHFMAQERERERE5CsycOZMXX3wRay2bNm0iLy/vyAhguAHvt78lteuIVShw4SqA0VMqIRERERERETkC/OQnP+H999+nvr6eL33pS1x66aX4/V5Wwrx585g+fTpr167luuuuIysri2uvvTbFK46TQKD97/4itF4FMHpMAQwREREREZEjwPXXX9/t/cYYrrnmmiStJoncfha4CHGVgRErlZCIiIiIiIhI/xXopwEAVxkYsVIAQ0RERERERPqv/p6BoSaePaYAhoiIiIiIiPRf/TaAEWj/Ww5LAQwRERERERHpv/pb884Q9cCImQIYIiIiIiIi0n/11wwGTSGJmQIYIiIiIiIi0n/11yaeVhkYsVIAQ0RERERERGJmt22m6dUXU72MdhkY1t+awoXEKKAARqwUwBAREREREZGY2Reepv7+paleRvseGM3NqVtHrIKBC6spJD2mAIaIiIiIiIjEblAxbnUlNtUZBJE9MJobU7eOWLnqgRErBTBEREREREQkdoOKvZPwg7WpXUe7AEZT6tYRKwUwYqYAhoiIiIiIiMTMFBZ7F2qqUruQyBKSpv4UwFAPjFgpgCEiIiIiIiKxG5QeAQwb6KclJBqjGjMFMERERERERCR2wQCGTXUGRmQJSWQwI92FAhdq4tljCmCIiIiIiIhI7AqKvN+pDmAEIgIA/SmbQT0wYqYAhoiIiIiIiMTMZGTgFBZBbRplYLjKwDiSKYAhIiIiIiIiveIUl6a+hCTQX0tIlIERKwUwREREREREpFecolKorU7tIiKzLvpTNoOmkMRMAQwRERERERHpFae4NPU9MCICGFYZGEc0BTBERERERESkV3xFpVBXk9rAQb9t4qkMjFgpgCEiIiIiIiK94hSXemUb9TWpW0Q/beJpA+kZwLDW4q5ajm1sSPVSOlEAQ0RERERERHrFKS71LqSyjKS/N/FMt74d2zZhf3U39tc/T/VKOlEAQ0RERERERHrF18sAhvv047gvPRufRaiJZ3z5WwGw1ZUpXkhnGalegIiIiIiIiPRPoQwMW1OFieFx9olfexdOP7fvi4jsgRFIs2BAd9I1gOELhgkC/tSuIwplYIiIiIiIiEivOIVFYByoTWEJST/tgdE2hSTN1pwRCmCk2bpQBoaIiIiIiMgR48033+Thhx/GdV3OPfdc5s+f3+7+9957jx/96EcMGTIEgI997GN8+tOf7vXxjC8DCgqhtrpP6+6TdgGMNMtm6E4gTceommCeQ7oFVlAAQ0RERERE5Ijgui4PPvggN998MyUlJSxcuJCZM2cycuTIdttNmTKFm266KX4HLhiETXUTT8fxAgFpeNLdpVC/jrTr22G9X2mYgaESEhERERERkSPAli1bGDZsGEOHDiUjI4PTTjuNNWvWJP7AhcUxZWDYYJPIuAkEIDPLu5xu2QzdSdcMjNB60rAHhjIwREREREREjgBVVVWUlJSEr5eUlLB58+ZO223atIlvfOMbFBUVceWVVzJq1KhO26xYsYIVK1YAsHjxYkpLS6MeMyMjg5yhw2nZvaPLbTpy6+s4ELzc08d0py4rk6asbGxzE3k52QzssM+MjIy4HCfeDuXmchAvqyCd1thatZ8qwLG205pSvU4FMERERERERI4A1tpOtxnTfjbIuHHjuOeee8jJyWHt2rXccccd3HXXXZ0eN3fuXObOnRu+XlFREfWYpaWlNGfnYWuqOLD/I4zjO/w6Kw+EL3e131i4hw5hfd5xG+rraeqwz9LS0rgcJ97c+jrvt9+P3+9PmzXaaq8cyG1t6bSmZL2WZWVlUW9XCYmIiIiIiMgRoKSkhMrKyvD1yspKioqK2m2Tl5dHTk4OADNmzCAQCFBXV9e3Aw8q8vo4HOzhfpob+3a8jtyAN/rTOOlXjtGddB2jGi4hUQ8MERERERERSYDy8nL27t3L/v378fv9rF69mpkzZ7bbpqamJpypsWXLFlzXJT8/v0/HNQXBIElND/tgNDf16XidBFzw+YKNPNPvpLtLobWmWxPPNA5gqIREREREREQkQZ577rkebefz+Zg9e3afjuXz+bj66qu57bbbcF2Xs88+m1GjRrF8+XIA5s2bxyuvvMLy5cvx+XxkZWVx/fXXdyoziVlhMIDR00aeTV1nYNidH8CwEZis7J4f3w2A4wOf4wUzksxu2wxZWZgRY2J7YNpmYAQDFwpgiIiIiIiIHD3uu+8+pkyZctjttmzZ0ucABnhlITNmzGh327x588KXzz//fM4///w+H6edIq9xqK2uoEehkC4yMGzDIdxbr8fMOhPzxW/0+PDWDQQzMHwpCQa4t98IgO/+v8T2wECaBjBCvVQ0hUREREREROTokZWVxaJFiw673ec///kkrCZBCou9/hNVBw6/LWC7KiGpr/Xuf/v12I4fCHjlI/2thMSmewlJ+gUw1ANDREREREQkQf73f/+3R9v98Ic/TPBKEsdkZEBRMVT2LIDRZRPP+pru7++K63rZFynIwIic/GLrY2yG2kUGhm1swH1gCbauhyU58RYKqESZapNqCmCIiIiIiIgkyPDhw3u03bBhwxK8kgQrHoLtYQYGTV1lYPRyGkogWELi8yU/A6Olue3y3l2xPbarHhg7tmBfXYl987W+ra230q2kJYICGCIiIiIiIknw17/+le3btwOwadMmvvzlL/PVr36VTZs2pXZhcWBKBkPl/p5tHCoh8fna3WyDJSQANpaT6FATT+Mkv/HkwfrwRbsv1gBG21rbPd+GQ97vHVv7srLeS3AAw657BRt6jjFSAENERERERCQJ/va3vzFkyBAAfv/733PhhRfyb//2bzzyyCOpXVg8FA+GmkqvoebhhEpEXIvd+UHbyXtEAKPHE03ACwSEMzCSnD1wKCJrZPfO2B4budaIy7bRO7m3O7b0ZWUxsxUfYTe9l9CeHHbPTtx7bsf+5p5ePV4BDBERERERkSRoaGggLy+PxsZGtm/fzic+8QnOOecc9uzZk+ql9V3JEC/7oabq8Nu
2020-07-01 17:04:01 +08:00
"text/plain": [
2020-07-01 17:45:08 +08:00
"<Figure size 1080x720 with 5 Axes>"
2020-07-01 17:04:01 +08:00
]
},
"metadata": {},
"output_type": "display_data"
}
],
2020-07-01 00:21:27 +08:00
"source": [
"#plot trajectory\n",
2020-07-01 17:45:08 +08:00
"grid = plt.GridSpec(4, 5)\n",
2020-07-01 00:21:27 +08:00
"\n",
"plt.figure(figsize=(15,10))\n",
"\n",
2020-07-01 17:45:08 +08:00
"plt.subplot(grid[0:4, 0:4])\n",
2020-07-01 00:21:27 +08:00
"plt.plot(track[0,:],track[1,:],\"b+\")\n",
"plt.plot(x_sim[0,:],x_sim[1,:])\n",
"plt.axis(\"equal\")\n",
"plt.ylabel('y')\n",
"plt.xlabel('x')\n",
"\n",
2020-07-01 17:45:08 +08:00
"plt.subplot(grid[0, 4])\n",
2020-07-01 00:21:27 +08:00
"plt.plot(u_sim[0,:])\n",
2020-07-01 17:45:08 +08:00
"plt.ylabel('a(t) [m/ss]')\n",
"\n",
"plt.subplot(grid[1, 4])\n",
"plt.plot(x_sim[2,:])\n",
2020-07-01 00:21:27 +08:00
"plt.ylabel('v(t) [m/s]')\n",
"\n",
2020-07-01 17:45:08 +08:00
"plt.subplot(grid[2, 4])\n",
2020-07-01 00:21:27 +08:00
"plt.plot(np.degrees(u_sim[1,:]))\n",
2020-07-01 17:45:08 +08:00
"plt.ylabel('delta(t) [deg/s]')\n",
"\n",
"plt.subplot(grid[3, 4])\n",
"plt.plot(x_sim[3,:])\n",
"plt.ylabel('theta(t) [m/s]')\n",
2020-07-01 00:21:27 +08:00
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OBSTACLE AVOIDANCE\n",
"see dccp paper for reference"
]
},
{
2020-07-01 17:45:08 +08:00
"cell_type": "markdown",
2020-07-01 00:21:27 +08:00
"metadata": {},
"source": [
"import dccp\n",
"track = compute_path_from_wp([0,3,4,6,10,13],\n",
" [0,0,2,4,3,3],0.25)\n",
"\n",
"obstacles=np.array([[4,6],[2,4]])\n",
"obstacle_radius=0.5\n",
"\n",
"def to_vehic_frame(pt,pos_x,pos_y,theta):\n",
" dx = pt[0] - pos_x\n",
" dy = pt[1] - pos_y\n",
"\n",
" return [dx * np.cos(-theta) - dy * np.sin(-theta),\n",
" dy * np.cos(-theta) + dx * np.sin(-theta)]\n",
" \n",
"# track = compute_path_from_wp([0,5,7.5,10,12,13,13,10],\n",
"# [0,0,2.5,2.5,0,0,5,10],0.5)\n",
"\n",
"sim_duration = 80 #time steps\n",
"opt_time=[]\n",
"\n",
"x_sim = np.zeros((N,sim_duration))\n",
"u_sim = np.zeros((M,sim_duration-1))\n",
"\n",
"MAX_SPEED = 1.25\n",
"MIN_SPEED = 0.75\n",
"MAX_STEER_SPEED = 1.57\n",
"\n",
"# Starting Condition\n",
"x0 = np.zeros(N)\n",
"x0[0] = 0\n",
"x0[1] = -0.25\n",
"x0[2] = np.radians(-0)\n",
"x_sim[:,0]=x0\n",
" \n",
"#starting guess\n",
"u_bar = np.zeros((M,T))\n",
"u_bar[0,:]=0.5*(MAX_SPEED+MIN_SPEED)\n",
"u_bar[1,:]=0.00\n",
"\n",
"for sim_time in range(sim_duration-1):\n",
" \n",
" iter_start=time.time()\n",
" \n",
" #compute coefficients\n",
" K=road_curve(x_sim[:,sim_time],track)\n",
" \n",
" #compute opstacles in ref frame\n",
" o_=[]\n",
" for j in range(2):\n",
" o_.append(to_vehic_frame(obstacles[:,j],x_sim[0,sim_time],x_sim[1,sim_time],x_sim[2,sim_time]) )\n",
" \n",
" # dynamics starting state w.r.t vehicle frame\n",
" x_bar=np.zeros((N,T+1))\n",
" \n",
" #prediction for linearization of costrains\n",
" for t in range (1,T+1):\n",
" xt=x_bar[:,t-1].reshape(N,1)\n",
" ut=u_bar[:,t-1].reshape(M,1)\n",
" A,B,C=get_linear_model(xt,ut)\n",
" xt_plus_one = np.squeeze(np.dot(A,xt)+np.dot(B,ut)+C)\n",
" x_bar[:,t]= xt_plus_one\n",
" \n",
" #CVXPY Linear MPC problem statement\n",
" cost = 0\n",
" constr = []\n",
" x = cp.Variable((N, T+1))\n",
" u = cp.Variable((M, T))\n",
" \n",
" #Prediction Horizon\n",
" for t in range(T):\n",
"\n",
" #cost += 30*cp.sum_squares(x[2,t]-np.arctan(df(x_bar[0,t],K))) # psi\n",
" cost += 50*cp.sum_squares(x[2,t]-np.arctan2(df(x_bar[0,t],K),x_bar[0,t])) # psi\n",
" cost += 20*cp.sum_squares(f(x_bar[0,t],K)-x[1,t]) # cte\n",
"\n",
" # Actuation rate of change\n",
" if t < (T - 1):\n",
" cost += cp.quad_form(u[:, t + 1] - u[:, t], 100*np.eye(M))\n",
" \n",
" # Actuation effort\n",
" cost += cp.quad_form( u[:, t],1*np.eye(M))\n",
" \n",
" # Kinrmatics Constrains (Linearized model)\n",
" A,B,C=get_linear_model(x_bar[:,t],u_bar[:,t])\n",
" constr += [x[:,t+1] == A@x[:,t] + B@u[:,t] + C.flatten()]\n",
" \n",
" # Obstacle Avoidance Contrains\n",
" for j in range(2):\n",
" constr += [ cp.norm(x[0:2,t]-o_[j],2) >= obstacle_radius ]\n",
"\n",
" # sums problem objectives and concatenates constraints.\n",
" constr += [x[:,0] == x_bar[:,0]] #<--watch out the start condition\n",
" constr += [u[0, :] <= MAX_SPEED]\n",
" constr += [u[0, :] >= MIN_SPEED]\n",
" constr += [cp.abs(u[1, :]) <= MAX_STEER_SPEED]\n",
" \n",
" # Solve\n",
" prob = cp.Problem(cp.Minimize(cost), constr)\n",
" solution = prob.solve(method=\"dccp\", verbose=False)\n",
" \n",
" #retrieved optimized U and assign to u_bar to linearize in next step\n",
" u_bar=np.vstack((np.array(u.value[0, :]).flatten(),\n",
" (np.array(u.value[1, :]).flatten())))\n",
" \n",
" u_sim[:,sim_time] = u_bar[:,0]\n",
" \n",
" # Measure elpased time to get results from cvxpy\n",
" opt_time.append(time.time()-iter_start)\n",
" \n",
" # move simulation to t+1\n",
" tspan = [0,dt]\n",
" x_sim[:,sim_time+1] = odeint(kinematics_model,\n",
" x_sim[:,sim_time],\n",
" tspan,\n",
" args=(u_bar[:,0],))[1]\n",
" \n",
"print(\"CVXPY Optimization Time: Avrg: {:.4f}s Max: {:.4f}s Min: {:.4f}s\".format(np.mean(opt_time),\n",
" np.max(opt_time),\n",
" np.min(opt_time))) "
]
},
{
2020-07-01 17:45:08 +08:00
"cell_type": "markdown",
2020-07-01 00:21:27 +08:00
"metadata": {},
"source": [
"#plot trajectory\n",
"grid = plt.GridSpec(2, 3)\n",
"\n",
"plt.figure(figsize=(15,10))\n",
"\n",
"ax=plt.subplot(grid[0:2, 0:2])\n",
"plt.plot(track[0,:],track[1,:],\"b+\")\n",
"plt.plot(x_sim[0,:],x_sim[1,:])\n",
"#obstacles\n",
"circle1=plt.Circle((obstacles[0,0], obstacles[1,0]), obstacle_radius, color='r')\n",
"circle2=plt.Circle((obstacles[0,1], obstacles[1,1]), obstacle_radius, color='r')\n",
"plt.axis(\"equal\")\n",
"plt.ylabel('y')\n",
"plt.xlabel('x')\n",
"\n",
"ax.add_artist(circle1)\n",
"ax.add_artist(circle2)\n",
"\n",
"plt.subplot(grid[0, 2])\n",
"plt.plot(u_sim[0,:])\n",
"plt.ylabel('v(t) [m/s]')\n",
"\n",
"plt.subplot(grid[1, 2])\n",
"plt.plot(np.degrees(u_sim[1,:]))\n",
"plt.ylabel('w(t) [deg/s]')\n",
"\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
2020-07-01 00:21:27 +08:00
"language": "python",
"name": "python3"
2020-07-01 00:21:27 +08:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.4"
2020-07-01 00:21:27 +08:00
}
},
"nbformat": 4,
"nbformat_minor": 4
}