gtsam/gtsam/discrete/tests/testDiscreteBayesNet.cpp

205 lines
6.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* testDiscreteBayesNet.cpp
*
* @date Feb 27, 2011
* @author Frank Dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Vector.h>
#include <gtsam/base/debug.h>
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iostream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
static const DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2),
LungCancer(6, 2), Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
using ADT = AlgebraicDecisionTree<Key>;
// Function to construct the Asia example
DiscreteBayesNet constructAsiaExample() {
DiscreteBayesNet asia;
asia.add(Asia, "99/1");
asia.add(Smoking % "50/50"); // Signature version
asia.add(Tuberculosis | Asia = "99/1 95/5");
asia.add(LungCancer | Smoking = "99/1 90/10");
asia.add(Bronchitis | Smoking = "70/30 40/60");
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
asia.add(XRay | Either = "95/5 2/98");
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
return asia;
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, bayesNet) {
DiscreteBayesNet bayesNet;
DiscreteKey Parent(0, 2), Child(1, 2);
auto prior = std::make_shared<DiscreteConditional>(Parent % "6/4");
CHECK(assert_equal(ADT({Parent}, "0.6 0.4"), (ADT)*prior));
bayesNet.push_back(prior);
auto conditional =
std::make_shared<DiscreteConditional>(Child | Parent = "7/3 8/2");
EXPECT_LONGS_EQUAL(1, *(conditional->beginFrontals()));
ADT expected(Child & Parent, "0.7 0.8 0.3 0.2");
CHECK(assert_equal(expected, (ADT)*conditional));
bayesNet.push_back(conditional);
DiscreteFactorGraph fg(bayesNet);
LONGS_EQUAL(2, fg.back()->size());
// Check the marginals
const double expectedMarginal[2]{0.4, 0.6 * 0.3 + 0.4 * 0.2};
DiscreteMarginals marginals(fg);
for (size_t j = 0; j < 2; j++) {
Vector FT = marginals.marginalProbabilities(DiscreteKey(j, 2));
EXPECT_DOUBLES_EQUAL(expectedMarginal[j], FT[1], 1e-3);
EXPECT_DOUBLES_EQUAL(FT[0], 1.0 - FT[1], 1e-9);
}
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia) {
DiscreteBayesNet asia = constructAsiaExample();
// Convert to factor graph
DiscreteFactorGraph fg(asia);
LONGS_EQUAL(3, fg.back()->size());
// Check the marginals we know (of the parent-less nodes)
DiscreteMarginals marginals(fg);
Vector2 va(0.99, 0.01), vs(0.5, 0.5);
EXPECT(assert_equal(va, marginals.marginalProbabilities(Asia)));
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
// Create solver and eliminate
const Ordering ordering{0, 1, 2, 3, 4, 5, 6, 7};
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
DiscreteConditional expected2(Bronchitis % "11/9");
EXPECT(assert_equal(expected2, *chordal->back()));
// Check evaluate and logProbability
auto result = fg.optimize();
EXPECT_DOUBLES_EQUAL(asia.logProbability(result),
std::log(asia.evaluate(result)), 1e-9);
// add evidence, we were in Asia and we have dyspnea
fg.add(Asia, "0 1");
fg.add(Dyspnea, "0 1");
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
EXPECT(assert_equal(expected2, *chordal->back()));
// now sample from it
DiscreteValues expectedSample{{Asia.first, 1}, {Dyspnea.first, 1},
{XRay.first, 1}, {Tuberculosis.first, 0},
{Smoking.first, 1}, {Either.first, 1},
{LungCancer.first, 1}, {Bronchitis.first, 0}};
SETDEBUG("DiscreteConditional::sample", false);
auto actualSample = chordal2->sample();
EXPECT(assert_equal(expectedSample, actualSample));
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, Sugar) {
DiscreteKey T(0, 2), L(1, 2), E(2, 2), C(8, 3), S(7, 2);
DiscreteBayesNet bn;
// try logic
bn.add((E | T, L) = "OR");
bn.add((E | T, L) = "AND");
// try multivalued
bn.add(C % "1/1/2");
bn.add(C | S = "1/1/2 5/2/3");
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, Dot) {
DiscreteBayesNet fragment;
fragment.add(Asia % "99/1");
fragment.add(Smoking % "50/50");
fragment.add(Tuberculosis | Asia = "99/1 95/5");
fragment.add(LungCancer | Smoking = "99/1 90/10");
fragment.add((Either | Tuberculosis, LungCancer) = "F T T T");
string actual = fragment.dot();
EXPECT(actual ==
"digraph {\n"
" size=\"5,5\";\n"
"\n"
" var0[label=\"0\"];\n"
" var3[label=\"3\"];\n"
" var4[label=\"4\"];\n"
" var5[label=\"5\"];\n"
" var6[label=\"6\"];\n"
"\n"
" var3->var5\n"
" var6->var5\n"
" var4->var6\n"
" var0->var3\n"
"}");
}
/* ************************************************************************* */
// Check markdown representation looks as expected.
TEST(DiscreteBayesNet, markdown) {
DiscreteBayesNet fragment;
fragment.add(Asia % "99/1");
fragment.add(Smoking | Asia = "8/2 7/3");
string expected =
"`DiscreteBayesNet` of size 2\n"
"\n"
" *P(Asia):*\n\n"
"|Asia|value|\n"
"|:-:|:-:|\n"
"|0|0.99|\n"
"|1|0.01|\n"
"\n"
" *P(Smoking|Asia):*\n\n"
"|*Asia*|0|1|\n"
"|:-:|:-:|:-:|\n"
"|0|0.8|0.2|\n"
"|1|0.7|0.3|\n\n";
auto formatter = [](Key key) { return key == 0 ? "Asia" : "Smoking"; };
string actual = fragment.markdown(formatter);
EXPECT(actual == expected);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */