145 lines
4.7 KiB
C++
145 lines
4.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file iterative-inl.h
|
|
* @brief Iterative methods, template implementation
|
|
* @author Frank Dellaert
|
|
* @date Dec 28, 2009
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam_unstable/linear/iterative.h>
|
|
#include <gtsam/linear/ConjugateGradientSolver.h>
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
// state for CG method
|
|
template<class S, class V, class E>
|
|
struct CGState {
|
|
|
|
typedef ConjugateGradientParameters Parameters;
|
|
const Parameters ¶meters_;
|
|
|
|
int k; ///< iteration
|
|
bool steepest; ///< flag to indicate we are doing steepest descent
|
|
V g, d; ///< gradient g and search direction d for CG
|
|
double gamma, threshold; ///< gamma (squared L2 norm of g) and convergence threshold
|
|
E Ad;
|
|
|
|
/* ************************************************************************* */
|
|
// Constructor
|
|
CGState(const S& Ab, const V& x, const Parameters ¶meters, bool steep):
|
|
parameters_(parameters),k(0),steepest(steep) {
|
|
|
|
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
|
// i.e., first step is in direction of negative gradient
|
|
g = gradient(Ab,x);
|
|
d = g; // instead of negating gradient, alpha will be negated
|
|
|
|
// init gamma and calculate threshold
|
|
gamma = dot(g,g) ;
|
|
threshold = std::max(parameters_.epsilon_abs(), parameters_.epsilon() * parameters_.epsilon() * gamma);
|
|
|
|
// Allocate and calculate A*d for first iteration
|
|
if (gamma > parameters_.epsilon_abs()) Ad = Ab * d;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// print
|
|
void print(const V& x) {
|
|
std::cout << "iteration = " << k << std::endl;
|
|
gtsam::print(x,"x");
|
|
gtsam::print(g, "g");
|
|
std::cout << "dotg = " << gamma << std::endl;
|
|
gtsam::print(d, "d");
|
|
gtsam::print(Ad, "Ad");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// step the solution
|
|
double takeOptimalStep(V& x) {
|
|
// TODO: can we use gamma instead of dot(d,g) ????? Answer not trivial
|
|
double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size
|
|
axpy(alpha, d, x); // // do step in new search direction, x += alpha*d
|
|
return alpha;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// take a step, return true if converged
|
|
bool step(const S& Ab, V& x) {
|
|
if ((++k) >= ((int)parameters_.maxIterations())) return true;
|
|
|
|
//---------------------------------->
|
|
double alpha = takeOptimalStep(x);
|
|
|
|
// update gradient (or re-calculate at reset time)
|
|
if (k % parameters_.reset() == 0) g = gradient(Ab,x);
|
|
// axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad)
|
|
else transposeMultiplyAdd(Ab, alpha, Ad, g);
|
|
|
|
// check for convergence
|
|
double new_gamma = dot(g, g);
|
|
if (parameters_.verbosity() != ConjugateGradientParameters::SILENT)
|
|
std::cout << "iteration " << k << ": alpha = " << alpha
|
|
<< ", dotg = " << new_gamma << std::endl;
|
|
if (new_gamma < threshold) return true;
|
|
|
|
// calculate new search direction
|
|
if (steepest) d = g;
|
|
else {
|
|
double beta = new_gamma / gamma;
|
|
// d = g + d*beta;
|
|
scal(beta, d);
|
|
axpy(1.0, g, d);
|
|
}
|
|
|
|
gamma = new_gamma;
|
|
|
|
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
|
|
multiplyInPlace(Ab, d, Ad);
|
|
return false;
|
|
}
|
|
|
|
}; // CGState Class
|
|
|
|
/* ************************************************************************* */
|
|
// conjugate gradient method.
|
|
// S: linear system, V: step vector, E: errors
|
|
template<class S, class V, class E>
|
|
V conjugateGradients(const S& Ab, V x, const ConjugateGradientParameters ¶meters, bool steepest = false) {
|
|
|
|
CGState<S, V, E> state(Ab, x, parameters, steepest);
|
|
|
|
if (parameters.verbosity() != ConjugateGradientParameters::SILENT)
|
|
std::cout << "CG: epsilon = " << parameters.epsilon()
|
|
<< ", maxIterations = " << parameters.maxIterations()
|
|
<< ", ||g0||^2 = " << state.gamma
|
|
<< ", threshold = " << state.threshold << std::endl;
|
|
|
|
if ( state.gamma < state.threshold ) {
|
|
if (parameters.verbosity() != ConjugateGradientParameters::SILENT)
|
|
std::cout << "||g0||^2 < threshold, exiting immediately !" << std::endl;
|
|
|
|
return x;
|
|
}
|
|
|
|
// loop maxIterations times
|
|
while (!state.step(Ab, x)) {}
|
|
return x;
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|