200 lines
6.4 KiB
C++
200 lines
6.4 KiB
C++
/*
|
|
* testNoiseModel.cpp
|
|
*
|
|
* Created on: Jan 13, 2010
|
|
* Author: Richard Roberts
|
|
* Author: Frank Dellaert
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <iostream>
|
|
#include "NoiseModel.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace noiseModel;
|
|
|
|
static double sigma = 2, s_1=1.0/sigma, var = sigma*sigma, prc = 1.0/var;
|
|
static Matrix R = Matrix_(3, 3,
|
|
s_1, 0.0, 0.0,
|
|
0.0, s_1, 0.0,
|
|
0.0, 0.0, s_1);
|
|
static Matrix Sigma = Matrix_(3, 3,
|
|
var, 0.0, 0.0,
|
|
0.0, var, 0.0,
|
|
0.0, 0.0, var);
|
|
static Matrix Q = Matrix_(3, 3,
|
|
prc, 0.0, 0.0,
|
|
0.0, prc, 0.0,
|
|
0.0, 0.0, prc);
|
|
|
|
static double inf = std::numeric_limits<double>::infinity();
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, constructors)
|
|
{
|
|
Vector whitened = Vector_(3,5.0,10.0,15.0);
|
|
Vector unwhitened = Vector_(3,10.0,20.0,30.0);
|
|
|
|
// Construct noise models
|
|
vector<Gaussian::shared_ptr> m;
|
|
m.push_back(Gaussian::SqrtInformation(R));
|
|
m.push_back(Gaussian::Covariance(Sigma));
|
|
m.push_back(Gaussian::Information(Q));
|
|
m.push_back(Diagonal::Sigmas(Vector_(3, sigma, sigma, sigma)));
|
|
m.push_back(Diagonal::Variances(Vector_(3, var, var, var)));
|
|
m.push_back(Diagonal::Precisions(Vector_(3, prc, prc, prc)));
|
|
m.push_back(Isotropic::Sigma(3, sigma));
|
|
m.push_back(Isotropic::Variance(3, var));
|
|
m.push_back(Isotropic::Precision(3, prc));
|
|
|
|
// test whiten
|
|
int i=0;
|
|
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
|
|
CHECK(assert_equal(whitened,mi->whiten(unwhitened)));
|
|
|
|
// test unwhiten
|
|
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
|
|
CHECK(assert_equal(unwhitened,mi->unwhiten(whitened)));
|
|
|
|
// test Mahalanobis distance
|
|
double distance = 5*5+10*10+15*15;
|
|
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
|
|
DOUBLES_EQUAL(distance,mi->Mahalanobis(unwhitened),1e-9);
|
|
|
|
// test R matrix
|
|
Matrix expectedR(Matrix_(3, 3,
|
|
s_1, 0.0, 0.0,
|
|
0.0, s_1, 0.0,
|
|
0.0, 0.0, s_1));
|
|
|
|
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
|
|
CHECK(assert_equal(expectedR,mi->R()));
|
|
|
|
// test Whiten operator
|
|
Matrix H(Matrix_(3, 4,
|
|
0.0, 0.0, 1.0, 1.0,
|
|
0.0, 1.0, 0.0, 1.0,
|
|
1.0, 0.0, 0.0, 1.0));
|
|
|
|
Matrix expected(Matrix_(3, 4,
|
|
0.0, 0.0, s_1, s_1,
|
|
0.0, s_1, 0.0, s_1,
|
|
s_1, 0.0, 0.0, s_1));
|
|
|
|
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
|
|
CHECK(assert_equal(expected,mi->Whiten(H)));
|
|
|
|
// can only test inplace version once :-)
|
|
m[0]->WhitenInPlace(H);
|
|
CHECK(assert_equal(expected,H));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, Unit) {
|
|
Vector v = Vector_(3,5.0,10.0,15.0);
|
|
Gaussian::shared_ptr u(Unit::Create(3));
|
|
CHECK(assert_equal(v,u->whiten(v)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, equals)
|
|
{
|
|
Gaussian::shared_ptr g = Gaussian::SqrtInformation(R);
|
|
Diagonal::shared_ptr d = Diagonal::Sigmas(Vector_(3, sigma, sigma, sigma));
|
|
Isotropic::shared_ptr i = Isotropic::Sigma(3, sigma);
|
|
CHECK(assert_equal(*g,*g));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, ConstrainedMixed )
|
|
{
|
|
Vector feasible = Vector_(3, 1.0, 0.0, 1.0),
|
|
infeasible = Vector_(3, 1.0, 1.0, 1.0);
|
|
Constrained::shared_ptr d = Constrained::Mixed(Vector_(3, sigma, 0.0, sigma));
|
|
CHECK(assert_equal(Vector_(3, 0.5, inf, 0.5),d->whiten(infeasible)));
|
|
CHECK(assert_equal(Vector_(3, 0.5, 0.0, 0.5),d->whiten(feasible)));
|
|
DOUBLES_EQUAL(inf,d->Mahalanobis(infeasible),1e-9);
|
|
DOUBLES_EQUAL(0.5,d->Mahalanobis(feasible),1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, ConstrainedAll )
|
|
{
|
|
Vector feasible = Vector_(3, 0.0, 0.0, 0.0),
|
|
infeasible = Vector_(3, 1.0, 1.0, 1.0);
|
|
|
|
Constrained::shared_ptr i = Constrained::All(3);
|
|
CHECK(assert_equal(Vector_(3, inf, inf, inf),i->whiten(infeasible)));
|
|
CHECK(assert_equal(Vector_(3, 0.0, 0.0, 0.0),i->whiten(feasible)));
|
|
DOUBLES_EQUAL(inf,i->Mahalanobis(infeasible),1e-9);
|
|
DOUBLES_EQUAL(0.0,i->Mahalanobis(feasible),1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( NoiseModel, QR )
|
|
{
|
|
// create a matrix to eliminate
|
|
Matrix Ab1 = Matrix_(4, 6+1,
|
|
-1., 0., 1., 0., 0., 0., -0.2,
|
|
0., -1., 0., 1., 0., 0., 0.3,
|
|
1., 0., 0., 0., -1., 0., 0.2,
|
|
0., 1., 0., 0., 0., -1., -0.1);
|
|
Matrix Ab2 = Ab1; // otherwise overwritten !
|
|
Vector sigmas = Vector_(4, 0.2, 0.2, 0.1, 0.1);
|
|
|
|
// Expected result
|
|
Vector expectedSigmas = Vector_(4, 0.0894427, 0.0894427, 0.223607, 0.223607);
|
|
sharedDiagonal expectedModel = noiseModel::Diagonal::Sigmas(expectedSigmas);
|
|
|
|
// Call Gaussian version
|
|
sharedDiagonal diagonal = noiseModel::Diagonal::Sigmas(sigmas);
|
|
sharedDiagonal actual1 = diagonal->QR(Ab1);
|
|
sharedDiagonal expected = noiseModel::Unit::Create(4);
|
|
CHECK(assert_equal(*expected,*actual1));
|
|
Matrix expectedRd1 = Matrix_(4, 6+1,
|
|
11.1803, 0.0, -2.23607, 0.0, -8.94427, 0.0, 2.23607,
|
|
0.0, 11.1803, 0.0, -2.23607, 0.0, -8.94427,-1.56525,
|
|
-0.618034, 0.0, 4.47214, 0.0, -4.47214, 0.0, 0.0,
|
|
0.0, -0.618034, 0.0, 4.47214, 0.0, -4.47214, 0.894427);
|
|
CHECK(assert_equal(expectedRd1,Ab1,1e-4)); // Ab was modified in place !!!
|
|
|
|
// Call Constrained version
|
|
sharedDiagonal constrained = noiseModel::Constrained::Mixed(sigmas);
|
|
sharedDiagonal actual2 = constrained->QR(Ab2);
|
|
CHECK(assert_equal(*expectedModel,*actual2));
|
|
Matrix expectedRd2 = Matrix_(4, 6+1,
|
|
1., 0., -0.2, 0., -0.8, 0., 0.2,
|
|
0., 1., 0.,-0.2, 0., -0.8,-0.14,
|
|
0., 0., 1., 0., -1., 0., 0.0,
|
|
0., 0., 0., 1., 0., -1., 0.2);
|
|
CHECK(assert_equal(expectedRd2,Ab2,1e-6)); // Ab was modified in place !!!
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, SmartCovariance )
|
|
{
|
|
bool smart = true;
|
|
sharedGaussian expected = Unit::Create(3);
|
|
sharedGaussian actual = Gaussian::Covariance(eye(3), smart);
|
|
CHECK(assert_equal(*expected,*actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NoiseModel, ScalarOrVector )
|
|
{
|
|
bool smart = true;
|
|
sharedGaussian expected = Unit::Create(3);
|
|
sharedGaussian actual = Gaussian::Covariance(eye(3), smart);
|
|
CHECK(assert_equal(*expected,*actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|