gtsam/gtsam_unstable/examples/SmartRangeExample_plaza1.cpp

266 lines
9.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartRangeExample_plaza1.cpp
* @brief A 2D Range SLAM example
* @date June 20, 2013
* @author FRank Dellaert
*/
// Both relative poses and recovered trajectory poses will be stored as Pose2 objects
#include <gtsam/geometry/Pose2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// We want to use iSAM2 to solve the range-SLAM problem incrementally
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// We will use a non-liear solver to batch-inituialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/sam/RangeFactor.h>
#include <gtsam_unstable/slam/SmartRangeFactor.h>
// To find data files, we can use `findExampleDataFile`, declared here:
#include <gtsam/slam/dataset.h>
// Standard headers, added last, so we know headers above work on their own
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
namespace NM = gtsam::noiseModel;
// data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
// Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
// load the odometry
// DR: Odometry Input (delta distance traveled and delta heading change)
// Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
typedef pair<double, Pose2> TimedOdometry;
list<TimedOdometry> readOdometry() {
list<TimedOdometry> odometryList;
string drFile = findExampleDataFile("Plaza1_DR.txt");
ifstream is(drFile);
if (!is) throw runtime_error("Plaza1_DR.txt file not found");
while (is) {
double t, distance_traveled, delta_heading;
is >> t >> distance_traveled >> delta_heading;
odometryList.push_back(
TimedOdometry(t, Pose2(distance_traveled, 0, delta_heading)));
}
is.clear(); /* clears the end-of-file and error flags */
return odometryList;
}
// load the ranges from TD
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
typedef boost::tuple<double, size_t, double> RangeTriple;
vector<RangeTriple> readTriples() {
vector<RangeTriple> triples;
string tdFile = findExampleDataFile("Plaza1_TD.txt");
ifstream is(tdFile);
if (!is) throw runtime_error("Plaza1_TD.txt file not found");
while (is) {
double t, sender, receiver, range;
is >> t >> sender >> receiver >> range;
triples.push_back(RangeTriple(t, receiver, range));
}
is.clear(); /* clears the end-of-file and error flags */
return triples;
}
// main
int main(int argc, char** argv) {
// load Plaza1 data
list<TimedOdometry> odometry = readOdometry();
vector<RangeTriple> triples = readTriples();
size_t K = triples.size();
// parameters
size_t start = 220, end=3000;
size_t minK = 100; // first batch of smart factors
size_t incK = 50; // minimum number of range measurements to process after
bool robust = true;
bool smart = true;
// Set Noise parameters
Vector priorSigmas = Vector3(1, 1, M_PI);
Vector odoSigmas = Vector3(0.05, 0.01, 0.1);
auto odoNoise = NM::Diagonal::Sigmas(odoSigmas);
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust
rangeNoise = robust ? tukey : gaussian;
// Initialize iSAM
ISAM2 isam;
// Add prior on first pose
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120,
M_PI - 2.02108900000000);
NonlinearFactorGraph newFactors;
newFactors.push_back(PriorFactor<Pose2>(0, pose0, priorNoise));
ofstream os2("rangeResultLM.txt");
ofstream os3("rangeResultSR.txt");
// initialize points (Gaussian)
Values initial;
if (!smart) {
initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778));
initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278));
initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678));
initial.insert(symbol('L', 5), Point2(1.7095, -5.8122));
}
Values landmarkEstimates = initial; // copy landmarks
initial.insert(0, pose0);
// initialize smart range factors
size_t ids[] = { 1, 6, 0, 5 };
typedef boost::shared_ptr<SmartRangeFactor> SmartPtr;
map<size_t, SmartPtr> smartFactors;
if (smart) {
for(size_t jj: ids) {
smartFactors[jj] = SmartPtr(new SmartRangeFactor(sigmaR));
newFactors.push_back(smartFactors[jj]);
}
}
// set some loop variables
size_t i = 1; // step counter
size_t k = 0; // range measurement counter
Pose2 lastPose = pose0;
size_t countK = 0, totalCount=0;
// Loop over odometry
gttic_(iSAM);
for(const TimedOdometry& timedOdometry: odometry) {
//--------------------------------- odometry loop -----------------------------------------
double t;
Pose2 odometry;
boost::tie(t, odometry) = timedOdometry;
printf("step %d, time = %g\n",(int)i,t);
// add odometry factor
newFactors.push_back(
BetweenFactor<Pose2>(i - 1, i, odometry, odoNoise));
// predict pose and add as initial estimate
Pose2 predictedPose = lastPose.compose(odometry);
lastPose = predictedPose;
initial.insert(i, predictedPose);
landmarkEstimates.insert(i, predictedPose);
// Check if there are range factors to be added
while (k < K && t >= boost::get<0>(triples[k])) {
size_t j = boost::get<1>(triples[k]);
double range = boost::get<2>(triples[k]);
if (i > start) {
if (smart && totalCount < minK) {
try {
smartFactors[j]->addRange(i, range);
printf("adding range %g for %d",range,(int)j);
} catch (const invalid_argument& e) {
printf("warning: omitting duplicate range %g for %d",range,(int)j);
}
cout << endl;
}
else {
RangeFactor<Pose2, Point2> factor(i, symbol('L', j), range,
rangeNoise);
// Throw out obvious outliers based on current landmark estimates
Vector error = factor.unwhitenedError(landmarkEstimates);
if (k <= 200 || std::abs(error[0]) < 5)
newFactors.push_back(factor);
}
totalCount += 1;
}
k = k + 1;
countK = countK + 1;
}
// Check whether to update iSAM 2
if (k >= minK && countK >= incK) {
gttic_(update);
isam.update(newFactors, initial);
gttoc_(update);
gttic_(calculateEstimate);
Values result = isam.calculateEstimate();
gttoc_(calculateEstimate);
lastPose = result.at<Pose2>(i);
bool hasLandmarks = result.exists(symbol('L', ids[0]));
if (hasLandmarks) {
// update landmark estimates
landmarkEstimates = Values();
for(size_t jj: ids)
landmarkEstimates.insert(symbol('L', jj), result.at(symbol('L', jj)));
}
newFactors = NonlinearFactorGraph();
initial = Values();
if (smart && !hasLandmarks) {
cout << "initialize from smart landmarks" << endl;
for(size_t jj: ids) {
Point2 landmark = smartFactors[jj]->triangulate(result);
initial.insert(symbol('L', jj), landmark);
landmarkEstimates.insert(symbol('L', jj), landmark);
}
}
countK = 0;
for(const Values::ConstFiltered<Point2>::KeyValuePair& it: result.filter<Point2>())
os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1"
<< endl;
if (smart) {
for(size_t jj: ids) {
Point2 landmark = smartFactors[jj]->triangulate(result);
os3 << jj << "\t" << landmark.x() << "\t" << landmark.y() << "\t1"
<< endl;
}
}
}
i += 1;
if (i>end) break;
//--------------------------------- odometry loop -----------------------------------------
} // end for
gttoc_(iSAM);
// Print timings
tictoc_print_();
// Write result to file
Values result = isam.calculateEstimate();
ofstream os("rangeResult.txt");
for(const Values::ConstFiltered<Pose2>::KeyValuePair& it: result.filter<Pose2>())
os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t"
<< it.value.theta() << endl;
exit(0);
}