gtsam/gtsam_unstable/dynamics/IMUFactor.h

106 lines
3.5 KiB
C++

/**
* @file IMUFactor.h
* @brief Factor to express an IMU measurement between dynamic poses
* @author Alex Cunningham
*/
#pragma once
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam_unstable/dynamics/PoseRTV.h>
namespace gtsam {
/**
* Class that represents integrating IMU measurements over time for dynamic systems
* Templated to allow for different key types, but variables all
* assumed to be PoseRTV
*/
template<class POSE>
class IMUFactor : public NoiseModelFactor2<POSE, POSE> {
public:
typedef NoiseModelFactor2<POSE, POSE> Base;
typedef IMUFactor<POSE> This;
protected:
/** measurements from the IMU */
Vector3 accel_, gyro_;
double dt_; /// time between measurements
public:
/** Standard constructor */
IMUFactor(const Vector3& accel, const Vector3& gyro,
double dt, const Key& key1, const Key& key2, const SharedNoiseModel& model)
: Base(model, key1, key2), accel_(accel), gyro_(gyro), dt_(dt) {}
/** Full IMU vector specification */
IMUFactor(const Vector6& imu_vector,
double dt, const Key& key1, const Key& key2, const SharedNoiseModel& model)
: Base(model, key1, key2), accel_(imu_vector.head(3)), gyro_(imu_vector.tail(3)), dt_(dt) {}
virtual ~IMUFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/** Check if two factors are equal */
virtual bool equals(const NonlinearFactor& e, double tol = 1e-9) const {
const This* const f = dynamic_cast<const This*>(&e);
return f && Base::equals(e) &&
equal_with_abs_tol(accel_, f->accel_, tol) &&
equal_with_abs_tol(gyro_, f->gyro_, tol) &&
std::abs(dt_ - f->dt_) < tol;
}
void print(const std::string& s="", const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const {
std::string a = "IMUFactor: " + s;
Base::print(a, formatter);
gtsam::print((Vector)accel_, "accel");
gtsam::print((Vector)gyro_, "gyro");
std::cout << "dt: " << dt_ << std::endl;
}
// access
const Vector3& gyro() const { return gyro_; }
const Vector3& accel() const { return accel_; }
Vector6 z() const { return (Vector6() << accel_, gyro_).finished(); }
/**
* Error evaluation with optional derivatives - calculates
* z - h(x1,x2)
*/
virtual Vector evaluateError(const PoseRTV& x1, const PoseRTV& x2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
const Vector6 meas = z();
if (H1) *H1 = numericalDerivative21<Vector6, PoseRTV, PoseRTV>(
boost::bind(This::predict_proxy, _1, _2, dt_, meas), x1, x2, 1e-5);
if (H2) *H2 = numericalDerivative22<Vector6, PoseRTV, PoseRTV>(
boost::bind(This::predict_proxy, _1, _2, dt_, meas), x1, x2, 1e-5);
return predict_proxy(x1, x2, dt_, meas);
}
/** dummy version that fails for non-dynamic poses */
virtual Vector evaluateError(const Pose3& x1, const Pose3& x2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
assert(false); // no corresponding factor here
return Vector6::Zero();
}
private:
/** copy of the measurement function formulated for numerical derivatives */
static Vector6 predict_proxy(const PoseRTV& x1, const PoseRTV& x2,
double dt, const Vector6& meas) {
Vector6 hx = x1.imuPrediction(x2, dt);
return meas - hx;
}
};
} // \namespace gtsam