gtsam/geometry/Rot3.h

239 lines
7.3 KiB
C++

/**
* @file Rot3.h
* @brief Rotation
* @author Alireza Fathi
* @author Christian Potthast
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <boost/math/constants/constants.hpp>
#include "Point3.h"
#include "Testable.h"
#include "Lie.h"
namespace gtsam {
/* 3D Rotation */
class Rot3: Testable<Rot3>, public Lie<Rot3> {
private:
/** we store columns ! */
Point3 r1_, r2_, r3_;
public:
/** default constructor, unit rotation */
Rot3() :
r1_(Point3(1.0,0.0,0.0)),
r2_(Point3(0.0,1.0,0.0)),
r3_(Point3(0.0,0.0,1.0)) {}
/** constructor from columns */
Rot3(const Point3& r1, const Point3& r2, const Point3& r3) :
r1_(r1), r2_(r2), r3_(r3) {}
/** constructor from vector */
Rot3(const Vector &v) :
r1_(Point3(v(0),v(1),v(2))),
r2_(Point3(v(3),v(4),v(5))),
r3_(Point3(v(6),v(7),v(8))) {}
/** constructor from doubles in *row* order !!! */
Rot3(double R11, double R12, double R13,
double R21, double R22, double R23,
double R31, double R32, double R33) :
r1_(Point3(R11, R21, R31)),
r2_(Point3(R12, R22, R32)),
r3_(Point3(R13, R23, R33)) {}
/** constructor from matrix */
Rot3(const Matrix& R):
r1_(Point3(R(0,0), R(1,0), R(2,0))),
r2_(Point3(R(0,1), R(1,1), R(2,1))),
r3_(Point3(R(0,2), R(1,2), R(2,2))) {}
/** Static member function to generate some well known rotations */
/**
* Rotations around axes as in http://en.wikipedia.org/wiki/Rotation_matrix
* Counterclockwise when looking from unchanging axis.
*/
static Rot3 Rx(double t);
static Rot3 Ry(double t);
static Rot3 Rz(double t);
static Rot3 RzRyRx(double x, double y, double z);
/**
* Tait-Bryan system from Spatial Reference Model (SRM) (x,y,z) = (roll,pitch,yaw)
* as described in http://www.sedris.org/wg8home/Documents/WG80462.pdf
* Assumes vehicle coordinate frame X forward, Y right, Z down
*/
static Rot3 yaw (double t) { return Rz(t);} // positive yaw is to right (as in aircraft heading)
static Rot3 pitch(double t) { return Ry(t);} // positive pitch is up (increasing aircraft altitude)
static Rot3 roll (double t) { return Rx(t);} // positive roll is to right (increasing yaw in aircraft)
static Rot3 ypr (double y, double p, double r) { return RzRyRx(r,p,y);}
/** print */
void print(const std::string& s="R") const { gtsam::print(matrix(), s);}
/** equals with an tolerance */
bool equals(const Rot3& p, double tol = 1e-9) const;
/** return 3*3 rotation matrix */
Matrix matrix() const;
/** return 3*3 transpose (inverse) rotation matrix */
Matrix transpose() const;
/** returns column vector specified by index */
Point3 column(int index) const;
Point3 r1() const { return r1_; }
Point3 r2() const { return r2_; }
Point3 r3() const { return r3_; }
/**
* Use RQ to calculate xyz angle representation
* @return a vector containing x,y,z s.t. R = Rot3::RzRyRx(x,y,z)
*/
Vector xyz() const;
/**
* Use RQ to calculate yaw-pitch-roll angle representation
* @return a vector containing ypr s.t. R = Rot3::ypr(y,p,r)
*/
Vector ypr() const;
/** get the dimension by the type */
static inline size_t dim() { return 3; };
/* Find the inverse rotation R^T s.t. inverse(R)*R = I */
inline Rot3 inverse() const {
return Rot3(
r1_.x(), r1_.y(), r1_.z(),
r2_.x(), r2_.y(), r2_.z(),
r3_.x(), r3_.y(), r3_.z());
}
/** compose two rotations */
Rot3 operator*(const Rot3& R2) const {
return Rot3(rotate(R2.r1_), rotate(R2.r2_), rotate(R2.r3_));
}
/**
* rotate point from rotated coordinate frame to
* world = R*p
*/
Point3 rotate(const Point3& p) const
{return r1_ * p.x() + r2_ * p.y() + r3_ * p.z();}
inline Point3 operator*(const Point3& p) const { return rotate(p);}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(r1_);
ar & BOOST_SERIALIZATION_NVP(r2_);
ar & BOOST_SERIALIZATION_NVP(r3_);
}
};
/** Global print calls member function */
inline void print(const Rot3& r, std::string& s) { r.print(s); }
inline void print(const Rot3& r) { r.print(); }
/**
* Rodriguez' formula to compute an incremental rotation matrix
* @param w is the rotation axis, unit length
* @param theta rotation angle
* @return incremental rotation matrix
*/
Rot3 rodriguez(const Vector& w, double theta);
/**
* Rodriguez' formula to compute an incremental rotation matrix
* @param v a vector of incremental roll,pitch,yaw
* @return incremental rotation matrix
*/
Rot3 rodriguez(const Vector& v);
/**
* Rodriguez' formula to compute an incremental rotation matrix
* @param wx
* @param wy
* @param wz
* @return incremental rotation matrix
*/
inline Rot3 rodriguez(double wx, double wy, double wz)
{ return rodriguez(Vector_(3,wx,wy,wz));}
/** return DOF, dimensionality of tangent space */
inline size_t dim(const Rot3&) { return 3; }
// Exponential map at identity - create a rotation from canonical coordinates
// using Rodriguez' formula
template<> inline Rot3 expmap(const Vector& v) {
if(zero(v)) return Rot3();
else return rodriguez(v);
}
// Log map at identity - return the canonical coordinates of this rotation
Vector logmap(const Rot3& R);
// Compose two rotations
inline Rot3 compose(const Rot3& R1, const Rot3& R2) { return R1*R2;}
// Find the inverse rotation R^T s.t. inverse(R)*R = Rot3()
inline Rot3 inverse(const Rot3& R) { return R.inverse();}
// and its derivative
inline Matrix Dinverse(Rot3 R) { return -R.matrix();}
/**
* rotate point from rotated coordinate frame to
* world = R*p
*/
inline Point3 rotate(const Rot3& R, const Point3& p) { return R*p;}
Matrix Drotate1(const Rot3& R, const Point3& p);
Matrix Drotate2(const Rot3& R); // does not depend on p !
/**
* rotate point from world to rotated
* frame = R'*p
*/
Point3 unrotate(const Rot3& R, const Point3& p);
Point3 unrotate(const Rot3& R, const Point3& p,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2);
/**
* compose two rotations i.e., R=R1*R2
*/
//Rot3 compose (const Rot3& R1, const Rot3& R2);
Matrix Dcompose1(const Rot3& R1, const Rot3& R2);
Matrix Dcompose2(const Rot3& R1, const Rot3& R2);
/**
* Return relative rotation D s.t. R2=D*R1, i.e. D=R2*R1'
*/
//Rot3 between (const Rot3& R1, const Rot3& R2);
Matrix Dbetween1(const Rot3& R1, const Rot3& R2);
Matrix Dbetween2(const Rot3& R1, const Rot3& R2);
/**
* [RQ] receives a 3 by 3 matrix and returns an upper triangular matrix R
* and 3 rotation angles corresponding to the rotation matrix Q=Qz'*Qy'*Qx'
* such that A = R*Q = R*Qz'*Qy'*Qx'. When A is a rotation matrix, R will
* be the identity and Q is a yaw-pitch-roll decomposition of A.
* The implementation uses Givens rotations and is based on Hartley-Zisserman.
* @param a 3 by 3 matrix A=RQ
* @return an upper triangular matrix R
* @return a vector [thetax, thetay, thetaz] in radians.
*/
std::pair<Matrix,Vector> RQ(const Matrix& A);
}