gtsam/base/testVector.cpp

295 lines
7.5 KiB
C++

/**
* @file testVector.cpp
* @brief Unit tests for Vector class
* @author Frank Dellaert
**/
#include <iostream>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include "Vector.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST( TestVector, Vector_variants )
{
Vector a = Vector_(2,10.0,20.0);
double data[] = {10,20};
Vector b = Vector_(2,data);
CHECK(a==b);
}
/* ************************************************************************* */
TEST( TestVector, copy )
{
Vector a(2); a(0) = 10; a(1) = 20;
double data[] = {10,20};
Vector b(2); copy(data,data+2,b.begin());
CHECK(a==b);
}
/* ************************************************************************* */
TEST( TestVector, zero1 )
{
Vector v(2,0.0);
CHECK(zero(v)==true);
}
/* ************************************************************************* */
TEST( TestVector, zero2 )
{
Vector a = zero(2);
Vector b(2,0.0);
CHECK(a==b);
}
/* ************************************************************************* */
TEST( TestVector, scalar_multiply )
{
Vector a(2); a(0) = 10; a(1) = 20;
Vector b(2); b(0) = 1; b(1) = 2;
CHECK(a==b*10.0);
}
/* ************************************************************************* */
TEST( TestVector, scalar_divide )
{
Vector a(2); a(0) = 10; a(1) = 20;
Vector b(2); b(0) = 1; b(1) = 2;
CHECK(b==a/10.0);
}
/* ************************************************************************* */
TEST( TestVector, negate )
{
Vector a(2); a(0) = 10; a(1) = 20;
Vector b(2); b(0) = -10; b(1) = -20;
CHECK(b==-a);
}
/* ************************************************************************* */
TEST( TestVector, sub )
{
Vector a(6);
a(0) = 10; a(1) = 20; a(2) = 3;
a(3) = 34; a(4) = 11; a(5) = 2;
Vector result(sub(a,2,5));
Vector b(3);
b(0) = 3; b(1) = 34; b(2) =11;
CHECK(b==result);
}
/* ************************************************************************* */
TEST( TestVector, subInsert )
{
Vector big = zero(6),
small = ones(3);
size_t i = 2;
subInsert(big, small, i);
Vector expected = Vector_(6, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0);
CHECK(assert_equal(expected, big));
}
/* ************************************************************************* */
TEST( TestVector, householder )
{
Vector x(4);
x(0) = 3; x(1) = 1; x(2) = 5; x(3) = 1;
Vector expected(4);
expected(0) = 1.0; expected(1) = -0.333333; expected(2) = -1.66667; expected(3) = -0.333333;
pair<double, Vector> result = house(x);
CHECK(result.first==0.5);
CHECK(equal_with_abs_tol(expected,result.second,1e-5));
}
/* ************************************************************************* */
TEST( TestVector, zeros )
{
Vector a(2); a(0) = 0; a(1) = 0;
Vector b(2,0.0);
CHECK(b==a);
}
/* ************************************************************************* */
TEST( TestVector, concatVectors)
{
Vector A(2);
for(int i = 0; i < 2; i++)
A(i) = i;
Vector B(5);
for(int i = 0; i < 5; i++)
B(i) = i;
Vector C(7);
for(int i = 0; i < 2; i++) C(i) = A(i);
for(int i = 0; i < 5; i++) C(i+2) = B(i);
list<Vector> vs;
vs.push_back(A);
vs.push_back(B);
Vector AB1 = concatVectors(vs);
CHECK(AB1 == C);
Vector AB2 = concatVectors(2, &A, &B);
CHECK(AB2 == C);
}
/* ************************************************************************* */
TEST( TestVector, weightedPseudoinverse )
{
// column from a matrix
Vector x(2);
x(0) = 1.0; x(1) = 2.0;
// create sigmas
Vector sigmas(2);
sigmas(0) = 0.1; sigmas(1) = 0.2;
Vector weights = reciprocal(emul(sigmas,sigmas));
// perform solve
Vector actual; double precision;
boost::tie(actual, precision) = weightedPseudoinverse(x, weights);
// construct expected
Vector expected(2);
expected(0) = 0.5; expected(1) = 0.25;
double expPrecision = 200.0;
// verify
CHECK(assert_equal(expected,actual));
CHECK(fabs(expPrecision-precision) < 1e-5);
}
/* ************************************************************************* */
TEST( TestVector, weightedPseudoinverse_constraint )
{
// column from a matrix
Vector x(2);
x(0) = 1.0; x(1) = 2.0;
// create sigmas
Vector sigmas(2);
sigmas(0) = 0.0; sigmas(1) = 0.2;
Vector weights = reciprocal(emul(sigmas,sigmas));
// perform solve
Vector actual; double precision;
boost::tie(actual, precision) = weightedPseudoinverse(x, weights);
// construct expected
Vector expected(2);
expected(0) = 1.0; expected(1) = 0.0;
// verify
CHECK(assert_equal(expected,actual));
CHECK(isinf(precision));
}
/* ************************************************************************* */
TEST( TestVector, weightedPseudoinverse_nan )
{
Vector a = Vector_(4, 1., 0., 0., 0.);
Vector sigmas = Vector_(4, 0.1, 0.1, 0., 0.);
Vector weights = reciprocal(emul(sigmas,sigmas));
Vector pseudo; double precision;
boost::tie(pseudo, precision) = weightedPseudoinverse(a, weights);
Vector expected = Vector_(4, 1., 0., 0.,0.);
CHECK(assert_equal(expected, pseudo));
DOUBLES_EQUAL(100, precision, 1e-5);
}
/* ************************************************************************* */
TEST( TestVector, ediv )
{
Vector a = Vector_(3,10.,20.,30.);
Vector b = Vector_(3,2.0,5.0,6.0);
Vector actual(ediv(a,b));
Vector c = Vector_(3,5.0,4.0,5.0);
CHECK(assert_equal(c,actual));
}
/* ************************************************************************* */
TEST( TestVector, dot )
{
Vector a = Vector_(3,10.,20.,30.);
Vector b = Vector_(3,2.0,5.0,6.0);
DOUBLES_EQUAL(20+100+180,dot(a,b),1e-9);
}
/* ************************************************************************* */
TEST( TestVector, axpy )
{
Vector x = Vector_(3,10.,20.,30.);
Vector y = Vector_(3,2.0,5.0,6.0);
axpy(0.1,x,y);
Vector expected = Vector_(3,3.0,7.0,9.0);
CHECK(assert_equal(expected,y));
}
/* ************************************************************************* */
TEST( TestVector, equals )
{
Vector v1 = Vector_(1, 0.0/0.0); //testing nan
Vector v2 = Vector_(1, 1.0);
double tol = 1.;
CHECK(!equal_with_abs_tol(v1, v2, tol));
}
/* ************************************************************************* */
TEST( TestVector, greater_than )
{
Vector v1 = Vector_(3, 1.0, 2.0, 3.0),
v2 = zero(3);
CHECK(greaterThanOrEqual(v1, v1)); // test basic greater than
CHECK(greaterThanOrEqual(v1, v2)); // test equals
}
/* ************************************************************************* */
TEST( TestVector, reciprocal )
{
Vector v = Vector_(3, 1.0, 2.0, 4.0);
CHECK(assert_equal(Vector_(3, 1.0, 0.5, 0.25),reciprocal(v)));
}
/* ************************************************************************* */
TEST( TestVector, linear_dependent )
{
Vector v1 = Vector_(3, 1.0, 2.0, 3.0);
Vector v2 = Vector_(3, -2.0, -4.0, -6.0);
CHECK(linear_dependent(v1, v2));
}
/* ************************************************************************* */
TEST( TestVector, linear_dependent2 )
{
Vector v1 = Vector_(3, 0.0, 2.0, 0.0);
Vector v2 = Vector_(3, 0.0, -4.0, 0.0);
CHECK(linear_dependent(v1, v2));
}
/* ************************************************************************* */
TEST( TestVector, linear_dependent3 )
{
Vector v1 = Vector_(3, 0.0, 2.0, 0.0);
Vector v2 = Vector_(3, 0.1, -4.1, 0.0);
CHECK(!linear_dependent(v1, v2));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */