gtsam/base/Vector.h

304 lines
7.0 KiB
C++

/**
* @file Vector.h
* @brief typedef and functions to augment Boost's ublas::vector<double>
* @author Kai Ni
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <list>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/random/linear_congruential.hpp>
// Vector is a *global* typedef
// wrap-matlab does this typedef as well
#if ! defined (MEX_H)
typedef boost::numeric::ublas::vector<double> Vector;
#endif
typedef boost::numeric::ublas::vector_range<Vector> SubVector;
typedef boost::numeric::ublas::vector_range<const Vector> ConstSubVector;
namespace gtsam {
/**
* An auxiliary function to printf for Win32 compatibility, added by Kai
*/
void odprintf(const char *format, ...);
/**
* constructor with size and initial data, row order !
*/
Vector Vector_( size_t m, const double* const data);
/**
* nice constructor, dangerous as number of arguments must be exactly right
* and you have to pass doubles !!! always use 0.0 never 0
*/
Vector Vector_(size_t m, ...);
/**
* Create vector initialized to a constant value
* @param size
* @param constant value
*/
Vector repeat(size_t n, double value);
/**
* Create basis vector of dimension n,
* with a constant in spot i
* @param n is the size of the vector
* @param index of the one
* @param value is the value to insert into the vector
* @return delta vector
*/
Vector delta(size_t n, size_t i, double value);
/**
* Create basis vector of dimension n,
* with one in spot i
* @param n is the size of the vector
* @param index of the one
* @return basis vector
*/
inline Vector basis(size_t n, size_t i) { return delta(n, i, 1.0); }
/**
* Create zero vector
* @param size
*/
inline Vector zero(size_t n) { return repeat(n,0.0);}
/**
* Create vector initialized to ones
* @param size
*/
inline Vector ones(size_t n) { return repeat(n,1.0);}
/**
* check if all zero
*/
bool zero(const Vector& v);
/**
* dimensionality == size
*/
inline size_t dim(const Vector& v) { return v.size(); }
/**
* print with optional string
*/
void print(const Vector& v, const std::string& s = "", std::ostream& stream = std::cout);
/**
* save a vector to file, which can be loaded by matlab
*/
void save(const Vector& A, const std::string &s, const std::string& filename);
/**
* operator==()
*/
bool operator==(const Vector& vec1,const Vector& vec2);
/**
* Greater than or equal to operation
* returns true if all elements in v1
* are greater than corresponding elements in v2
*/
bool greaterThanOrEqual(const Vector& v1, const Vector& v2);
/**
* VecA == VecB up to tolerance
*/
bool equal_with_abs_tol(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2, double tol) {
return equal_with_abs_tol(vec1, vec2, tol);
}
/**
* Override of equal in Lie.h
*/
inline bool equal(const Vector& vec1, const Vector& vec2) {
return equal_with_abs_tol(vec1, vec2);
}
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
bool assert_equal(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* Same, prints if error
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
bool assert_equal(SubVector vec1, SubVector vec2, double tol=1e-9);
bool assert_equal(ConstSubVector vec1, ConstSubVector vec2, double tol=1e-9);
/**
* check whether two vectors are linearly dependent
* @param vec1 Vector
* @param vec2 Vector
* @param tol 1e-9
* @return bool
*/
bool linear_dependent(const Vector& vec1, const Vector& vec2, double tol=1e-9);
/**
* extract subvector, slice semantics, i.e. range = [i1,i2[ excluding i2
* @param v Vector
* @param i1 first row index
* @param i2 last row index + 1
* @return subvector v(i1:i2)
*/
Vector sub(const Vector &v, size_t i1, size_t i2);
/**
* Inserts a subvector into a vector IN PLACE
* @param big is the vector to be changed
* @param small is the vector to insert
* @param i is the index where the subvector should be inserted
*/
void subInsert(Vector& big, const Vector& small, size_t i);
/**
* elementwise multiplication
* @param a first vector
* @param b second vector
* @return vector [a(i)*b(i)]
*/
Vector emul(const Vector &a, const Vector &b);
/**
* elementwise division
* @param a first vector
* @param b second vector
* @return vector [a(i)/b(i)]
*/
Vector ediv(const Vector &a, const Vector &b);
/**
* elementwise division, but 0/0 = 0, not inf
* @param a first vector
* @param b second vector
* @return vector [a(i)/b(i)]
*/
Vector ediv_(const Vector &a, const Vector &b);
/**
* sum vector elements
* @param a vector
* @return sum_i a(i)
*/
double sum(const Vector &a);
/**
* elementwise reciprocal of vector elements
* @param a vector
* @return [1/a(i)]
*/
Vector reciprocal(const Vector &a);
/**
* elementwise sqrt of vector elements
* @param a vector
* @return [sqrt(a(i))]
*/
Vector esqrt(const Vector& v);
/**
* absolut values of vector elements
* @param a vector
* @return [abs(a(i))]
*/
Vector abs(const Vector& v);
/**
* return the max element of a vector
* @param a vector
* @return max(a)
*/
double max(const Vector &a);
/** Dot product */
double dot(const Vector &a, const Vector& b);
/**
* BLAS Level 1 scal: x <- alpha*x
*/
void scal(double alpha, Vector& x);
/**
* BLAS Level 1 axpy: y <- alpha*x + y
*/
void axpy(double alpha, const Vector& x, Vector& y);
void axpy(double alpha, const Vector& x, SubVector y);
/**
* Divide every element of a Vector into a scalar
*/
Vector operator/(double s, const Vector& v);
/**
* house(x,j) computes HouseHolder vector v and scaling factor beta
* from x, such that the corresponding Householder reflection zeroes out
* all but x.(j), j is base 0. Golub & Van Loan p 210.
*/
std::pair<double,Vector> house(const Vector &x);
/** beta = house(x) computes the HouseHolder vector in place */
double houseInPlace(Vector &x);
/**
* Weighted Householder solution vector,
* a.k.a., the pseudoinverse of the column
* NOTE: if any sigmas are zero (indicating a constraint)
* the pseudoinverse will be a selection vector, and the
* variance will be zero
* @param v is the first column of the matrix to solve
* @param weights is a vector of weights/precisions where w=1/(s*s)
* @return a pair of the pseudoinverse of v and the associated precision/weight
*/
std::pair<Vector, double>
weightedPseudoinverse(const Vector& v, const Vector& weights);
/*
* Fast version *no error checking* !
* Pass in initialized vector pseudo of size(weights) or will crash !
* @return the precision, pseudoinverse in third argument
*/
double weightedPseudoinverse(const Vector& a, const Vector& weights, Vector& pseudo);
/**
* concatenate Vectors
*/
Vector concatVectors(const std::list<Vector>& vs);
/**
* concatenate Vectors
*/
Vector concatVectors(size_t nrVectors, ...);
/**
* random vector
*/
Vector rand_vector_norm(size_t dim, double mean = 0, double sigma = 1);
} // namespace gtsam
static boost::minstd_rand generator(42u);