1150 lines
34 KiB
C++
1150 lines
34 KiB
C++
/**
|
|
* @file Matrix.cpp
|
|
* @brief matrix class
|
|
* @author Christian Potthast
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <iomanip>
|
|
#include <list>
|
|
#include <fstream>
|
|
|
|
#ifdef GT_USE_CBLAS
|
|
extern "C" {
|
|
#include <cblas.h>
|
|
}
|
|
#endif
|
|
|
|
#ifdef GT_USE_LAPACK
|
|
extern "C" {
|
|
#include <cblas.h>
|
|
#include <clapack.h>
|
|
}
|
|
#endif
|
|
|
|
#include <boost/numeric/ublas/matrix_proxy.hpp>
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/numeric/ublas/lu.hpp>
|
|
#include <boost/numeric/ublas/io.hpp>
|
|
#include <boost/numeric/ublas/triangular.hpp>
|
|
#include <boost/numeric/ublas/symmetric.hpp>
|
|
#include <boost/numeric/ublas/matrix_proxy.hpp>
|
|
#include <boost/numeric/ublas/vector_proxy.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
|
|
#include <ldl/ldl.h>
|
|
|
|
#include "Matrix.h"
|
|
#include "Vector.h"
|
|
#include "svdcmp.h"
|
|
|
|
using namespace std;
|
|
namespace ublas = boost::numeric::ublas;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Matrix_( size_t m, size_t n, const double* const data) {
|
|
Matrix A(m,n);
|
|
copy(data, data+m*n, A.data().begin());
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Matrix_( size_t m, size_t n, const Vector& v)
|
|
{
|
|
Matrix A(m,n);
|
|
// column-wise copy
|
|
for( size_t j = 0, k=0 ; j < n ; j++)
|
|
for( size_t i = 0; i < m ; i++,k++)
|
|
A(i,j) = v(k);
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Matrix_(size_t m, size_t n, ...) {
|
|
Matrix A(m,n);
|
|
va_list ap;
|
|
va_start(ap, n);
|
|
for( size_t i = 0 ; i < m ; i++)
|
|
for( size_t j = 0 ; j < n ; j++) {
|
|
double value = va_arg(ap, double);
|
|
A(i,j) = value;
|
|
}
|
|
va_end(ap);
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** create a matrix with value zero */
|
|
/* ************************************************************************* */
|
|
Matrix zeros( size_t m, size_t n )
|
|
{
|
|
Matrix A(m,n, 0.0);
|
|
return A;
|
|
}
|
|
|
|
/**
|
|
* Identity matrix
|
|
*/
|
|
Matrix eye( size_t m, size_t n){
|
|
Matrix A = zeros(m,n);
|
|
for(size_t i = 0; i<min(m,n); i++) A(i,i)=1.0;
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Diagonal matrix values */
|
|
/* ************************************************************************* */
|
|
Matrix diag(const Vector& v) {
|
|
size_t m = v.size();
|
|
Matrix A = zeros(m,m);
|
|
for(size_t i = 0; i<m; i++) A(i,i)=v(i);
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Check if two matrices are the same */
|
|
/* ************************************************************************* */
|
|
bool equal_with_abs_tol(const Matrix& A, const Matrix& B, double tol) {
|
|
|
|
size_t n1 = A.size2(), m1 = A.size1();
|
|
size_t n2 = B.size2(), m2 = B.size1();
|
|
|
|
if(m1!=m2 || n1!=n2) return false;
|
|
|
|
for(size_t i=0; i<m1; i++)
|
|
for(size_t j=0; j<n1; j++) {
|
|
if(isnan(A(i,j)) xor isnan(B(i,j)))
|
|
return false;
|
|
if(fabs(A(i,j) - B(i,j)) > tol)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool assert_equal(const Matrix& expected, const Matrix& actual, double tol) {
|
|
|
|
if (equal_with_abs_tol(expected,actual,tol)) return true;
|
|
|
|
size_t n1 = expected.size2(), m1 = expected.size1();
|
|
size_t n2 = actual.size2(), m2 = actual.size1();
|
|
|
|
cout << "not equal:" << endl;
|
|
print(expected,"expected = ");
|
|
print(actual,"actual = ");
|
|
if(m1!=m2 || n1!=n2)
|
|
cout << m1 << "," << n1 << " != " << m2 << "," << n2 << endl;
|
|
else
|
|
print(actual-expected, "actual - expected = ");
|
|
return false;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool assert_equal(const std::list<Matrix>& As, const std::list<Matrix>& Bs, double tol) {
|
|
if (As.size() != Bs.size()) return false;
|
|
|
|
list<Matrix>::const_iterator itA, itB;
|
|
itA = As.begin(); itB = Bs.begin();
|
|
for (; itA != As.end(); itA++, itB++)
|
|
if (!assert_equal(*itB, *itA, tol))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool linear_dependent(const Matrix& A, const Matrix& B, double tol) {
|
|
size_t n1 = A.size2(), m1 = A.size1();
|
|
size_t n2 = B.size2(), m2 = B.size1();
|
|
|
|
if(m1!=m2 || n1!=n2) return false;
|
|
|
|
for(size_t i=0; i<m1; i++) {
|
|
if (!gtsam::linear_dependent(row_(A,i), row_(B,i), tol))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void multiplyAdd(double alpha, const Matrix& A, const Vector& x, Vector& e) {
|
|
#if defined GT_USE_CBLAS
|
|
|
|
// uncomment and run tests to verify blas is enabled
|
|
// throw runtime_error("You are in multiplyAdd!");
|
|
|
|
// get sizes
|
|
const size_t m = A.size1(), n = A.size2();
|
|
|
|
// get pointers
|
|
const double * Aptr = A.data().begin();
|
|
const double * Xptr = x.data().begin();
|
|
double * Eptr = e.data().begin();
|
|
|
|
// fill in parameters
|
|
const double beta = 1.0;
|
|
const size_t incx = 1, incy = 1, ida = n;
|
|
|
|
// execute blas call
|
|
cblas_dgemv(CblasRowMajor, CblasNoTrans, m, n, alpha, Aptr, ida, Xptr, incx, beta, Eptr, incy);
|
|
|
|
#else
|
|
// throw runtime_error("You are in multiplyAdd / unoptimized!");
|
|
// ublas e += prod(A,x) is terribly slow
|
|
size_t m = A.size1(), n = A.size2();
|
|
double * ei = e.data().begin();
|
|
const double * aij = A.data().begin();
|
|
for(size_t i = 0; i < m; i++, ei++) {
|
|
const double * xj = x.data().begin();
|
|
for(size_t j = 0; j < n; j++, aij++, xj++)
|
|
(*ei) += alpha * (*aij) * (*xj);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void multiplyAdd(const Matrix& A, const Vector& x, Vector& e) {
|
|
// ublas e += prod(A,x) is terribly slow
|
|
#ifdef GT_USE_CBLAS
|
|
multiplyAdd(1.0, A, x, e);
|
|
#else
|
|
size_t m = A.size1(), n = A.size2();
|
|
double * ei = e.data().begin();
|
|
const double * aij = A.data().begin();
|
|
for(size_t i = 0; i < m; i++, ei++) {
|
|
const double * xj = x.data().begin();
|
|
for(size_t j = 0; j < n; j++, aij++, xj++)
|
|
(*ei) += (*aij) * (*xj);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector operator^(const Matrix& A, const Vector & v) {
|
|
if (A.size1()!=v.size()) throw std::invalid_argument(
|
|
boost::str(boost::format("Matrix operator^ : A.m(%d)!=v.size(%d)") % A.size1() % v.size()));
|
|
Vector vt = trans(v);
|
|
Vector vtA = prod(vt,A);
|
|
return trans(vtA);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, Vector& x) {
|
|
#if defined GT_USE_CBLAS
|
|
|
|
// get sizes
|
|
const size_t m = A.size1(), n = A.size2();
|
|
|
|
// get pointers
|
|
const double * Aptr = A.data().begin();
|
|
const double * Eptr = e.data().begin();
|
|
double * Xptr = x.data().begin();
|
|
|
|
// fill in parameters
|
|
const double beta = 1.0;
|
|
const size_t incx = 1, incy = 1, ida = n;
|
|
|
|
// execute blas call
|
|
cblas_dgemv(CblasRowMajor, CblasTrans, m, n, alpha, Aptr, ida, Eptr, incx, beta, Xptr, incy);
|
|
|
|
#else
|
|
// ublas x += prod(trans(A),e) is terribly slow
|
|
// TODO: use BLAS
|
|
size_t m = A.size1(), n = A.size2();
|
|
double * xj = x.data().begin();
|
|
for(size_t j = 0; j < n; j++,xj++) {
|
|
const double * ei = e.data().begin();
|
|
const double * aij = A.data().begin() + j;
|
|
for(size_t i = 0; i < m; i++, aij+=n, ei++)
|
|
(*xj) += alpha * (*aij) * (*ei);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void transposeMultiplyAdd(const Matrix& A, const Vector& e, Vector& x) {
|
|
// ublas x += prod(trans(A),e) is terribly slow
|
|
#ifdef GT_USE_CBLAS
|
|
transposeMultiplyAdd(1.0, A, e, x);
|
|
#else
|
|
size_t m = A.size1(), n = A.size2();
|
|
double * xj = x.data().begin();
|
|
for(size_t j = 0; j < n; j++,xj++) {
|
|
const double * ei = e.data().begin();
|
|
const double * aij = A.data().begin() + j;
|
|
for(size_t i = 0; i < m; i++, aij+=n, ei++)
|
|
(*xj) += (*aij) * (*ei);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void transposeMultiplyAdd(double alpha, const Matrix& A, const Vector& e, SubVector x) {
|
|
// ublas x += prod(trans(A),e) is terribly slow
|
|
// TODO: use BLAS
|
|
size_t m = A.size1(), n = A.size2();
|
|
for (size_t j = 0; j < n; j++) {
|
|
const double * ei = e.data().begin();
|
|
const double * aij = A.data().begin() + j;
|
|
for (size_t i = 0; i < m; i++, aij+=n, ei++)
|
|
x(j) += alpha * (*aij) * (*ei);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector Vector_(const Matrix& A)
|
|
{
|
|
size_t m = A.size1(), n = A.size2();
|
|
Vector v(m*n);
|
|
for( size_t j = 0, k=0 ; j < n ; j++)
|
|
for( size_t i = 0; i < m ; i++,k++)
|
|
v(k) = A(i,j);
|
|
return v;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector column_(const Matrix& A, size_t j) {
|
|
// if (j>=A.size2())
|
|
// throw invalid_argument("Column index out of bounds!");
|
|
|
|
return column(A,j); // real boost version
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector row_(const Matrix& A, size_t i) {
|
|
if (i>=A.size1())
|
|
throw invalid_argument("Row index out of bounds!");
|
|
|
|
const double * Aptr = A.data().begin() + A.size2() * i;
|
|
return Vector_(A.size2(), Aptr);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void print(const Matrix& A, const string &s, ostream& stream) {
|
|
size_t m = A.size1(), n = A.size2();
|
|
|
|
// print out all elements
|
|
stream << s << "[\n";
|
|
for( size_t i = 0 ; i < m ; i++) {
|
|
for( size_t j = 0 ; j < n ; j++) {
|
|
double aij = A(i,j);
|
|
stream << setw(9) << (fabs(aij)<1e-12 ? 0 : aij) << "\t";
|
|
}
|
|
stream << endl;
|
|
}
|
|
stream << "];" << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void save(const Matrix& A, const string &s, const string& filename) {
|
|
fstream stream(filename.c_str(), fstream::out | fstream::app);
|
|
print(A, s + "=", stream);
|
|
stream.close();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix sub(const Matrix& A, size_t i1, size_t i2, size_t j1, size_t j2) {
|
|
// using ublas is slower:
|
|
// Matrix B = Matrix(ublas::project(A,ublas::range(i1,i2+1),ublas::range(j1,j2+1)));
|
|
size_t m=i2-i1, n=j2-j1;
|
|
Matrix B(m,n);
|
|
for (size_t i=i1,k=0;i<i2;i++,k++)
|
|
memcpy(&B(k,0),&A(i,j1),n*sizeof(double));
|
|
return B;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void insertSub(Matrix& big, const Matrix& small, size_t i, size_t j) {
|
|
// direct pointer method
|
|
size_t jb = big.size2(),
|
|
is = small.size1(), js = small.size2();
|
|
|
|
// pointer to start of window in big
|
|
double * bigptr = big.data().begin() + i*jb + j;
|
|
const double * smallptr = small.data().begin();
|
|
for (size_t row=0; row<is; ++row)
|
|
memcpy(bigptr+row*jb, smallptr+row*js, js*sizeof(double));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void insertColumn(Matrix& A, const Vector& col, size_t j) {
|
|
ublas::matrix_column<Matrix> colproxy(A, j);
|
|
colproxy = col;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void insertColumn(Matrix& A, const Vector& col, size_t i, size_t j) {
|
|
ublas::matrix_column<Matrix> colproxy(A, j);
|
|
ublas::vector_range<ublas::matrix_column<Matrix> > colsubproxy(colproxy,
|
|
ublas::range (i, i+col.size()));
|
|
colsubproxy = col;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void solve(Matrix& A, Matrix& B)
|
|
{
|
|
typedef ublas::permutation_matrix<std::size_t> pmatrix;
|
|
// create a working copy of the input
|
|
Matrix A_(A);
|
|
// create a permutation matrix for the LU-factorization
|
|
pmatrix pm(A_.size1());
|
|
|
|
// perform LU-factorization
|
|
size_t res = lu_factorize(A_,pm);
|
|
if( res != 0 ) throw runtime_error ("Matrix::solve: lu_factorize failed!");
|
|
|
|
// backsubstitute to get the inverse
|
|
lu_substitute(A_, pm, B);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix inverse(const Matrix& originalA)
|
|
{
|
|
Matrix A(originalA);
|
|
Matrix B = eye(A.size2());
|
|
solve(A,B);
|
|
return B;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Householder QR factorization, Golub & Van Loan p 224, explicit version */
|
|
/* ************************************************************************* */
|
|
pair<Matrix,Matrix> qr(const Matrix& A) {
|
|
|
|
const size_t m = A.size1(), n = A.size2(), kprime = min(m,n);
|
|
|
|
Matrix Q=eye(m,m),R(A);
|
|
Vector v(m);
|
|
|
|
// loop over the kprime first columns
|
|
for(size_t j=0; j < kprime; j++){
|
|
|
|
// we now work on the matrix (m-j)*(n-j) matrix A(j:end,j:end)
|
|
const size_t mm=m-j;
|
|
|
|
// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
|
|
Vector xjm(mm);
|
|
for(size_t k = 0 ; k < mm; k++)
|
|
xjm(k) = R(j+k, j);
|
|
|
|
// calculate the Householder vector v
|
|
double beta; Vector vjm;
|
|
boost::tie(beta,vjm) = house(xjm);
|
|
|
|
// pad with zeros to get m-dimensional vector v
|
|
for(size_t k = 0 ; k < m; k++)
|
|
v(k) = k<j ? 0.0 : vjm(k-j);
|
|
|
|
// create Householder reflection matrix Qj = I-beta*v*v'
|
|
Matrix Qj = eye(m) - beta * Matrix(outer_prod(v,v)); //BAD: Fix this
|
|
|
|
R = Qj * R; // update R
|
|
Q = Q * Qj; // update Q
|
|
|
|
} // column j
|
|
|
|
return make_pair(Q,R);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Imperative version of Householder rank 1 update
|
|
* i.e. do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
|
|
* but only in relevant part, from row j onwards
|
|
* If called from householder_ does actually more work as first j columns
|
|
* will not be touched. However, is called from GaussianFactor.eliminate
|
|
* on a number of different matrices for which all columns change.
|
|
*/
|
|
/* ************************************************************************* */
|
|
inline void householder_update_manual(Matrix &A, size_t j, double beta, const Vector& vjm) {
|
|
const size_t m = A.size1(), n = A.size2();
|
|
// w = beta*transpose(A(j:m,:))*v(j:m)
|
|
Vector w(n);
|
|
for( size_t c = 0; c < n; c++) {
|
|
w(c) = 0.0;
|
|
// dangerous as relies on row-major scheme
|
|
const double *a = &A(j,c), * const v = &vjm(0);
|
|
for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
|
|
// w(c) += A(r,c) * vjm(r-j)
|
|
w(c) += (*a) * v[s];
|
|
w(c) *= beta;
|
|
}
|
|
|
|
// rank 1 update A(j:m,:) -= v(j:m)*w'
|
|
for( size_t c = 0 ; c < n; c++) {
|
|
double wc = w(c);
|
|
double *a = &A(j,c); const double * const v =&vjm(0);
|
|
for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
|
|
// A(r,c) -= vjm(r-j) * wjn(c-j);
|
|
(*a) -= v[s] * wc;
|
|
}
|
|
}
|
|
|
|
void householder_update(Matrix &A, size_t j, double beta, const Vector& vjm) {
|
|
#if defined GT_USE_CBLAS
|
|
|
|
// CBLAS version not working, using manual approach
|
|
householder_update_manual(A,j,beta,vjm);
|
|
|
|
// // straight atlas version
|
|
// const size_t m = A.size1(), n = A.size2();
|
|
// const size_t mj = m-j;
|
|
//
|
|
// // find pointers to the data
|
|
// const double * vptr = vjm.data().begin(); // mj long
|
|
// double * Aptr = A.data().begin() + n*j; // mj x n - note that this starts at row j
|
|
//
|
|
// // first step: get w = beta*trans(A(j:m,:))*vjm
|
|
// Vector w = zero(n);
|
|
// double * wptr = w.data().begin();
|
|
//
|
|
// // DEBUG: create a duplicate version of the problem to solve simultaneously
|
|
// Matrix aA(A); Vector avjm(vjm);
|
|
//
|
|
// // execute w generation
|
|
// cblas_dgemv(CblasRowMajor, CblasTrans, mj, n, beta, Aptr, n, vptr, 1, 0.0, wptr, 1);
|
|
//
|
|
// // Execute w generation with alternate code
|
|
// Vector aw(n);
|
|
// for( size_t c = 0; c < n; c++) {
|
|
// aw(c) = 0.0;
|
|
// // dangerous as relies on row-major scheme
|
|
// const double *a = &aA(j,c), * const v = &avjm(0);
|
|
// for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
|
|
// // w(c) += A(r,c) * vjm(r-j)
|
|
// aw(c) += (*a) * v[s];
|
|
// aw(c) *= beta;
|
|
// }
|
|
//
|
|
// print(w, "CBLAS w ");
|
|
// print(aw, "Alternate w");
|
|
//
|
|
// // second step: rank 1 update A(j:m,:) = v(j:m)*w' + A(j:m,:)
|
|
// cblas_dger(CblasRowMajor, mj, n, 1.0, vptr, 1, wptr, 1, Aptr, n); // not correct
|
|
//
|
|
// // Execute second step using alternate code
|
|
// // rank 1 update A(j:m,:) -= v(j:m)*w'
|
|
// for( size_t c = 0 ; c < n; c++) {
|
|
// double wc = aw(c);
|
|
// double *a = &aA(j,c);
|
|
// const double * const v =&avjm(0);
|
|
// for( size_t r=j, s=0 ; r < m ; r++, s++, a+=n )
|
|
// // A(r,c) -= vjm(r-j) * wjn(c-j);
|
|
// (*a) -= v[s] * wc;
|
|
// }
|
|
//
|
|
// // copy in alternate results, which should be correct
|
|
// A = aA;
|
|
|
|
#else
|
|
householder_update_manual(A,j,beta,vjm);
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// update A, b
|
|
// A' \define A_{S}-ar and b'\define b-ad
|
|
// __attribute__ ((noinline)) // uncomment to prevent inlining when profiling
|
|
inline void updateAb_manual(Matrix& A, Vector& b, size_t j, const Vector& a,
|
|
const Vector& r, double d) {
|
|
const size_t m = A.size1(), n = A.size2();
|
|
for (size_t i = 0; i < m; i++) { // update all rows
|
|
double ai = a(i);
|
|
b(i) -= ai * d;
|
|
double *Aij = A.data().begin() + i * n + j + 1;
|
|
const double *rptr = r.data().begin() + j + 1;
|
|
// A(i,j+1:end) -= ai*r(j+1:end)
|
|
for (size_t j2 = j + 1; j2 < n; j2++, Aij++, rptr++)
|
|
*Aij -= ai * (*rptr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform updates of system matrices
|
|
*/
|
|
static void updateAb(Matrix& A, Vector& b, size_t j, const Vector& a,
|
|
const Vector& r, double d) {
|
|
// TODO: reimplement using BLAS
|
|
updateAb_manual(A,b,j,a,r,d);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
list<boost::tuple<Vector, double, double> >
|
|
weighted_eliminate(Matrix& A, Vector& b, const Vector& sigmas) {
|
|
size_t m = A.size1(), n = A.size2(); // get size(A)
|
|
size_t maxRank = min(m,n);
|
|
|
|
// create list
|
|
list<boost::tuple<Vector, double, double> > results;
|
|
|
|
Vector pseudo(m); // allocate storage for pseudo-inverse
|
|
Vector weights = reciprocal(emul(sigmas,sigmas)); // calculate weights once
|
|
|
|
// We loop over all columns, because the columns that can be eliminated
|
|
// are not necessarily contiguous. For each one, estimate the corresponding
|
|
// scalar variable x as d-rS, with S the separator (remaining columns).
|
|
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
|
|
for (size_t j=0; j<n; ++j) {
|
|
// extract the first column of A
|
|
Vector a(column_(A, j)); // ublas::matrix_column is slower !
|
|
//print(a,"a");
|
|
|
|
// Calculate weighted pseudo-inverse and corresponding precision
|
|
double precision = weightedPseudoinverse(a, weights, pseudo);
|
|
// cout << precision << endl;
|
|
// print(pseudo,"pseudo");
|
|
|
|
// if precision is zero, no information on this column
|
|
if (precision < 1e-8) continue;
|
|
|
|
// create solution and copy into r
|
|
Vector r(basis(n, j));
|
|
for (size_t j2=j+1; j2<n; ++j2)
|
|
r(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(A, j2)); // TODO: don't use ublas
|
|
|
|
// create the rhs
|
|
double d = inner_prod(pseudo, b);
|
|
|
|
// construct solution (r, d, sigma)
|
|
// TODO: avoid sqrt, store precision or at least variance
|
|
results.push_back(boost::make_tuple(r, d, 1./sqrt(precision)));
|
|
|
|
// exit after rank exhausted
|
|
if (results.size()>=maxRank) break;
|
|
|
|
// update A, b, expensive, using outer product
|
|
// A' \define A_{S}-a*r and b'\define b-d*a
|
|
updateAb(A, b, j, a, r, d);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Imperative version of Householder QR factorization, Golub & Van Loan p 224
|
|
* version with Householder vectors below diagonal, as in GVL
|
|
*/
|
|
/* ************************************************************************* */
|
|
inline void householder_manual(Matrix &A, size_t k) {
|
|
const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n));
|
|
// loop over the kprime first columns
|
|
for(size_t j=0; j < kprime; j++){
|
|
// below, the indices r,c always refer to original A
|
|
|
|
// copy column from matrix to xjm, i.e. x(j:m) = A(j:m,j)
|
|
Vector xjm(m-j);
|
|
for(size_t r = j ; r < m; r++)
|
|
xjm(r-j) = A(r,j);
|
|
|
|
// calculate the Householder vector, in place
|
|
double beta = houseInPlace(xjm);
|
|
Vector& vjm = xjm;
|
|
|
|
// do outer product update A = (I-beta vv')*A = A - v*(beta*A'*v)' = A - v*w'
|
|
householder_update(A, j, beta, vjm);
|
|
|
|
// the Householder vector is copied in the zeroed out part
|
|
for( size_t r = j+1 ; r < m ; r++ )
|
|
A(r,j) = vjm(r-j);
|
|
|
|
} // column j
|
|
}
|
|
|
|
void householder_(Matrix &A, size_t k)
|
|
{
|
|
householder_manual(A, k);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** version with zeros below diagonal */
|
|
/* ************************************************************************* */
|
|
void householder(Matrix &A, size_t k) {
|
|
householder_(A,k);
|
|
const size_t m = A.size1(), n = A.size2(), kprime = min(k,min(m,n));
|
|
for(size_t j=0; j < kprime; j++)
|
|
for( size_t i = j+1 ; i < m ; i++ )
|
|
A(i,j) = 0.0;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** in-place householder */
|
|
/* ************************************************************************* */
|
|
#ifdef GT_USE_LAPACK
|
|
#ifdef YA_BLAS
|
|
void householder(Matrix &A) {
|
|
__CLPK_integer m = A.size1();
|
|
__CLPK_integer n = A.size2();
|
|
|
|
// convert from row major to column major
|
|
double a[m*n]; size_t k = 0;
|
|
for(size_t j=0; j<n; j++)
|
|
for(size_t i=0; i<m; i++, k++)
|
|
a[k] = A(i,j);
|
|
|
|
double tau[n];
|
|
double work_optimal_size;
|
|
__CLPK_integer lwork = -1;
|
|
__CLPK_integer info;
|
|
|
|
dgeqrf_(&m, &n, a, &m, tau, &work_optimal_size, &lwork, &info);
|
|
lwork = (__CLPK_integer)work_optimal_size;
|
|
double work[lwork];
|
|
dgeqrf_(&m, &n, a, &m, tau, work, &lwork, &info);
|
|
size_t k0 = 0;
|
|
size_t j0;
|
|
memset(A.data().begin(), 0, m*n*sizeof(double));
|
|
for(size_t j=0; j<n; j++, k0+=m) {
|
|
k = k0;
|
|
j0 = j+1<m?j+1:m;
|
|
for(size_t i=0; i<j0; i++, k++)
|
|
A(i,j) = a[k];
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* ************************************************************************* */
|
|
Vector backSubstituteUpper(const Matrix& U, const Vector& b, bool unit) {
|
|
size_t n = U.size2();
|
|
#ifndef NDEBUG
|
|
size_t m = U.size1();
|
|
if (m!=n)
|
|
throw invalid_argument("backSubstituteUpper: U must be square");
|
|
#endif
|
|
|
|
Vector result(n);
|
|
for (size_t i = n; i > 0; i--) {
|
|
double zi = b(i-1);
|
|
for (size_t j = i+1; j <= n; j++)
|
|
zi -= U(i-1,j-1) * result(j-1);
|
|
if (!unit) zi /= U(i-1,i-1);
|
|
result(i-1) = zi;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector backSubstituteUpper(const Vector& b, const Matrix& U, bool unit) {
|
|
size_t n = U.size2();
|
|
#ifndef NDEBUG
|
|
size_t m = U.size1();
|
|
if (m!=n)
|
|
throw invalid_argument("backSubstituteUpper: U must be square");
|
|
#endif
|
|
|
|
Vector result(n);
|
|
for (size_t i = 1; i <= n; i++) {
|
|
double zi = b(i-1);
|
|
for (size_t j = 1; j < i; j++)
|
|
zi -= U(j-1,i-1) * result(j-1);
|
|
if (!unit) zi /= U(i-1,i-1);
|
|
result(i-1) = zi;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector backSubstituteLower(const Matrix& L, const Vector& b, bool unit) {
|
|
size_t n = L.size2();
|
|
#ifndef NDEBUG
|
|
size_t m = L.size1();
|
|
if (m!=n)
|
|
throw invalid_argument("backSubstituteLower: L must be square");
|
|
#endif
|
|
|
|
Vector result(n);
|
|
for (size_t i = 1; i <= n; i++) {
|
|
double zi = b(i-1);
|
|
for (size_t j = 1; j < i; j++)
|
|
zi -= L(i-1,j-1) * result(j-1);
|
|
if (!unit) zi /= L(i-1,i-1);
|
|
result(i-1) = zi;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix stack(size_t nrMatrices, ...)
|
|
{
|
|
size_t dimA1 = 0;
|
|
size_t dimA2 = 0;
|
|
va_list ap;
|
|
va_start(ap, nrMatrices);
|
|
for(size_t i = 0 ; i < nrMatrices ; i++) {
|
|
Matrix *M = va_arg(ap, Matrix *);
|
|
dimA1 += M->size1();
|
|
dimA2 = M->size2(); // TODO: should check if all the same !
|
|
}
|
|
va_end(ap);
|
|
va_start(ap, nrMatrices);
|
|
Matrix A(dimA1, dimA2);
|
|
size_t vindex = 0;
|
|
for( size_t i = 0 ; i < nrMatrices ; i++) {
|
|
Matrix *M = va_arg(ap, Matrix *);
|
|
for(size_t d1 = 0; d1 < M->size1(); d1++)
|
|
for(size_t d2 = 0; d2 < M->size2(); d2++)
|
|
A(vindex+d1, d2) = (*M)(d1, d2);
|
|
vindex += M->size1();
|
|
}
|
|
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix collect(const std::vector<const Matrix *>& matrices, size_t m, size_t n)
|
|
{
|
|
// if we have known and constant dimensions, use them
|
|
size_t dimA1 = m;
|
|
size_t dimA2 = n*matrices.size();
|
|
if (!m && !n) {
|
|
BOOST_FOREACH(const Matrix* M, matrices) {
|
|
dimA1 = M->size1(); // TODO: should check if all the same !
|
|
dimA2 += M->size2();
|
|
}
|
|
}
|
|
|
|
// memcpy version
|
|
Matrix A(dimA1, dimA2);
|
|
double * Aptr = A.data().begin();
|
|
size_t hindex = 0;
|
|
BOOST_FOREACH(const Matrix* M, matrices) {
|
|
size_t row_len = M->size2();
|
|
|
|
// find the size of the row to copy
|
|
size_t row_size = sizeof(double) * row_len;
|
|
|
|
// loop over rows
|
|
for(size_t d1 = 0; d1 < M->size1(); ++d1) { // rows
|
|
// get a pointer to the start of the row in each matrix
|
|
double * Arow = Aptr + d1*dimA2 + hindex;
|
|
double * Mrow = const_cast<double*> (M->data().begin() + d1*row_len);
|
|
|
|
// do direct memory copy to move the row over
|
|
memcpy(Arow, Mrow, row_size);
|
|
}
|
|
hindex += row_len;
|
|
}
|
|
|
|
return A;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix collect(size_t nrMatrices, ...)
|
|
{
|
|
vector<const Matrix *> matrices;
|
|
va_list ap;
|
|
va_start(ap, nrMatrices);
|
|
for( size_t i = 0 ; i < nrMatrices ; i++) {
|
|
Matrix *M = va_arg(ap, Matrix *);
|
|
matrices.push_back(M);
|
|
}
|
|
return collect(matrices);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// row scaling, in-place
|
|
void vector_scale_inplace(const Vector& v, Matrix& A) {
|
|
size_t m = A.size1(); size_t n = A.size2();
|
|
for (size_t i=0; i<m; ++i) { // loop over rows
|
|
double vi = v(i);
|
|
double *Aij = A.data().begin() + i*n;
|
|
for (size_t j=0; j<n; ++j, ++Aij) (*Aij) *= vi;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// row scaling
|
|
Matrix vector_scale(const Vector& v, const Matrix& A) {
|
|
Matrix M(A);
|
|
vector_scale_inplace(v, M);
|
|
return M;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// column scaling
|
|
Matrix vector_scale(const Matrix& A, const Vector& v) {
|
|
Matrix M(A);
|
|
size_t m = A.size1(); size_t n = A.size2();
|
|
const double * vptr = v.data().begin();
|
|
for (size_t i=0; i<m; ++i) { // loop over rows
|
|
for (size_t j=0; j<n; ++j) { // loop over columns
|
|
double * Mptr = M.data().begin() + i*n + j;
|
|
(*Mptr) = (*Mptr) * *(vptr+j);
|
|
}
|
|
}
|
|
return M;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix skewSymmetric(double wx, double wy, double wz)
|
|
{
|
|
return Matrix_(3,3,
|
|
0.0, -wz, +wy,
|
|
+wz, 0.0, -wx,
|
|
-wy, +wx, 0.0);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Numerical Recipes in C wrappers
|
|
* create Numerical Recipes in C structure
|
|
* pointers are subtracted by one to provide base 1 access
|
|
*/
|
|
/* ************************************************************************* */
|
|
double** createNRC(Matrix& A) {
|
|
const size_t m=A.size1();
|
|
double** a = new double* [m];
|
|
for(size_t i = 0; i < m; i++)
|
|
a[i] = &A(i,0)-1;
|
|
return a;
|
|
}
|
|
|
|
|
|
|
|
/* ******************************************
|
|
*
|
|
* Modified from Justin's codebase
|
|
*
|
|
* Idea came from other public domain code. Takes a S.P.D. matrix
|
|
* and computes the LL^t decomposition. returns L, which is lower
|
|
* triangular. Note this is the opposite convention from Matlab,
|
|
* which calculates Q'Q where Q is upper triangular.
|
|
*
|
|
* ******************************************/
|
|
|
|
namespace BNU = boost::numeric::ublas;
|
|
|
|
|
|
Matrix LLt(const Matrix& A)
|
|
{
|
|
assert(A.size1() == A.size2());
|
|
Matrix L = zeros(A.size1(), A.size1());
|
|
|
|
for (size_t i = 0 ; i < A.size1(); i++) {
|
|
double p = A(i,i) - BNU::inner_prod( BNU::project( BNU::row(L, i), BNU::range(0, i) ),
|
|
BNU::project( BNU::row(L, i), BNU::range(0, i) ) );
|
|
assert(p > 0); // Rank failure
|
|
double l_i_i = sqrt(p);
|
|
L(i,i) = l_i_i;
|
|
|
|
BNU::matrix_column<Matrix> l_i(L, i);
|
|
project( l_i, BNU::range(i+1, A.size1()) )
|
|
= ( BNU::project( BNU::column(A, i), BNU::range(i+1, A.size1()) )
|
|
- BNU::prod( BNU::project(L, BNU::range(i+1, A.size1()), BNU::range(0, i)),
|
|
BNU::project(BNU::row(L, i), BNU::range(0, i) ) ) ) / l_i_i;
|
|
}
|
|
return L;
|
|
}
|
|
|
|
Matrix RtR(const Matrix &A)
|
|
{
|
|
return trans(LLt(A));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector solve_ldl(const Matrix& M, const Vector& rhs) {
|
|
|
|
int N = M.size1(); // size of the matrix
|
|
|
|
// count the nonzero entries above diagonal
|
|
double thresh = 1e-9;
|
|
int nrANZ = 0; // # of nonzeros on diagonal and upper triangular part of A
|
|
for (int i=0; i<N; ++i) // rows
|
|
for (int j=i; j<N; ++j) // columns
|
|
if (fabs(M(i,j)) > thresh)
|
|
++nrANZ;
|
|
|
|
// components to pass in
|
|
int * Ap = new int[N+1],
|
|
* Ai = new int[nrANZ];
|
|
double * Ax = new double[nrANZ],
|
|
* b = new double[N];
|
|
|
|
// set ending value for Ap
|
|
Ap[N] = nrANZ;
|
|
|
|
// copy in the full A matrix to compressed column form
|
|
int t = 0; // count the elements added
|
|
for (int j=0; j<N; ++j) { // columns
|
|
Ap[j] = t; // add to the column indices
|
|
for (int i=0; i<=j; ++i) { // rows
|
|
const double& m = M(i,j);
|
|
if (fabs(m) > thresh) {
|
|
Ai[t] = i;
|
|
Ax[t++] = m;
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy in RHS
|
|
for (int i = 0; i < N; ++i)
|
|
b[i] = rhs(i);
|
|
|
|
// workspace variables
|
|
double * D = new double[N],
|
|
* Y = new double[N];
|
|
int * Lp = new int [N+1],
|
|
* Parent = new int [N],
|
|
* Lnz = new int [N],
|
|
* Flag = new int [N],
|
|
* Pattern = new int [N];
|
|
|
|
// factorize A into LDL' (P and Pinv not used)
|
|
LDL_symbolic (N, Ap, Ai, Lp, Parent, Lnz, Flag, NULL, NULL);
|
|
|
|
int nrLNZ = Lp[N]; // # of nonzeros below the diagonal of L
|
|
|
|
// after getting size of L, initialize storage arrays
|
|
double * Lx = new double[nrLNZ];
|
|
int * Li = new int [nrLNZ];
|
|
|
|
int d = LDL_numeric (N, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D, Y, Pattern,
|
|
Flag, NULL, NULL);
|
|
|
|
if (d == N) {
|
|
/* solve Ax=b, overwriting b with the solution x */
|
|
LDL_lsolve (N, b, Lp, Li, Lx) ;
|
|
LDL_dsolve (N, b, D) ;
|
|
LDL_ltsolve (N, b, Lp, Li, Lx) ;
|
|
} else {
|
|
throw runtime_error("ldl_numeric failed");
|
|
}
|
|
|
|
// copy solution out
|
|
Vector result = Vector_(N, b);
|
|
|
|
// cleanup
|
|
delete[] Ap; delete[] Ai;
|
|
delete[] Ax; delete[] b;
|
|
|
|
delete[] Lx; delete[] D; delete[] Y;
|
|
delete[] Li; delete[] Lp; delete[] Parent; delete[] Lnz; delete[] Flag; delete[] Pattern;
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This is not ultra efficient, but not terrible, either.
|
|
*/
|
|
Matrix cholesky_inverse(const Matrix &A)
|
|
{
|
|
Matrix L = LLt(A);
|
|
Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1()));
|
|
inplace_solve (L, inv, BNU::lower_tag ());
|
|
return BNU::prod(trans(inv), inv);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
/** SVD */
|
|
/* ************************************************************************* */
|
|
|
|
// version with in place modification of A
|
|
void svd(Matrix& A, Vector& s, Matrix& V, bool sort) {
|
|
|
|
const size_t m=A.size1(), n=A.size2();
|
|
if( m < n )
|
|
throw invalid_argument("in-place svd calls NRC which needs matrix A with m>n");
|
|
|
|
double * q = new double[n]; // singular values
|
|
|
|
// create NRC matrices, u is in place
|
|
V = Matrix(n,n);
|
|
double **u = createNRC(A), **v = createNRC(V);
|
|
|
|
// perform SVD
|
|
// need to pass pointer - 1 in NRC routines so u[1][1] is first element !
|
|
svdcmp(u-1,m,n,q-1,v-1, sort);
|
|
|
|
// copy singular values back
|
|
s.resize(n);
|
|
copy(q,q+n,s.begin());
|
|
|
|
delete[] v;
|
|
delete[] q; //switched to array delete
|
|
delete[] u;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void svd(const Matrix& A, Matrix& U, Vector& s, Matrix& V, bool sort) {
|
|
const size_t m=A.size1(), n=A.size2();
|
|
if( m < n ) {
|
|
V = trans(A);
|
|
svd(V,s,U,sort); // A'=V*diag(s)*U'
|
|
}
|
|
else{
|
|
U = A; // copy
|
|
svd(U,s,V,sort); // call in-place version
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
/* ************************************************************************* */
|
|
// TODO, would be faster with Cholesky
|
|
Matrix inverse_square_root(const Matrix& A) {
|
|
size_t m = A.size2(), n = A.size1();
|
|
if (m!=n)
|
|
throw invalid_argument("inverse_square_root: A must be square");
|
|
|
|
// Perform SVD, TODO: symmetric SVD?
|
|
Matrix U,V;
|
|
Vector S;
|
|
svd(A,U,S,V);
|
|
|
|
// invert and sqrt diagonal of S
|
|
// We also arbitrarily choose sign to make result have positive signs
|
|
for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),-0.5);
|
|
return vector_scale(S, V); // V*S;
|
|
}
|
|
#endif
|
|
|
|
/* ************************************************************************* */
|
|
// New, improved, with 100% more Cholesky goodness!
|
|
//
|
|
// Semantics:
|
|
// if B = inverse_square_root(A), then all of the following are true:
|
|
// inv(B) * inv(B)' == A
|
|
// inv(B' * B) == A
|
|
Matrix inverse_square_root(const Matrix& A) {
|
|
Matrix R = RtR(A);
|
|
Matrix inv(boost::numeric::ublas::identity_matrix<double>(A.size1()));
|
|
inplace_solve (R, inv, BNU::upper_tag ());
|
|
return inv;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix square_root_positive(const Matrix& A) {
|
|
size_t m = A.size2(), n = A.size1();
|
|
if (m!=n)
|
|
throw invalid_argument("inverse_square_root: A must be square");
|
|
|
|
// Perform SVD, TODO: symmetric SVD?
|
|
Matrix U,V;
|
|
Vector S;
|
|
svd(A,U,S,V,false);
|
|
|
|
// invert and sqrt diagonal of S
|
|
// We also arbitrarily choose sign to make result have positive signs
|
|
for(size_t i = 0; i<m; i++) S(i) = - pow(S(i),0.5);
|
|
return vector_scale(S, V); // V*S;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix expm(const Matrix& A, size_t K) {
|
|
Matrix E = eye(A.size1()), A_k = eye(4);
|
|
for(size_t k=1;k<=K;k++) {
|
|
A_k = A_k*A/k;
|
|
E = E + A_k;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|