gtsam/base/DSF.h

156 lines
4.5 KiB
C++

/*
* DSF.h
*
* Created on: Mar 26, 2010
* Author: nikai
* Description: An implementation of Disjoint set forests (see CLR page 446 and up)
* Quoting from CLR: A disjoint-set data structure maintains a collection
* S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
* a representative, which is some member of the set.
*/
#pragma once
#include <iostream>
#include <list>
#include <set>
#include <map>
#include <boost/foreach.hpp>
#include "BTree.h"
namespace gtsam {
template <class Key>
class DSF : protected BTree<Key, Key> {
public:
typedef Key Label; // label can be different from key, but for now they are same
typedef DSF<Key> Self;
typedef std::set<Key> Set;
typedef BTree<Key, Label> Tree;
typedef std::pair<Key, Label> KeyLabel;
// constructor
DSF() : Tree() { }
// constructor
DSF(const Tree& tree) : Tree(tree) {}
// constructor with a list of unconnected keys
DSF(const std::list<Key>& keys) : Tree() { BOOST_FOREACH(const Key& key, keys) *this = this->add(key, key); }
// create a new singleton, does nothing if already exists
Self makeSet(const Key& key) const { if (mem(key)) return *this; else return this->add(key, key); }
// find the label of the set in which {key} lives
Label findSet(const Key& key) const {
Key parent = this->find(key);
return parent == key ? key : findSet(parent); }
// return a new DSF where x and y are in the same set. Kai: the caml implementation is not const, and I followed
Self makeUnion(const Key& key1, const Key& key2) { return this->add(findSet_(key2), findSet_(key1)); }
// the in-place version of makeUnion
void makeUnionInPlace(const Key& key1, const Key& key2) { *this = this->add(findSet_(key2), findSet_(key1)); }
// create a new singleton with two connected keys
Self makePair(const Key& key1, const Key& key2) const { return makeSet(key1).makeSet(key2).makeUnion(key1, key2); }
// create a new singleton with a list of fully connected keys
Self makeList(const std::list<Key>& keys) const {
Self t = *this;
BOOST_FOREACH(const Key& key, keys)
t = t.makePair(key, keys.front());
return t;
}
// return a dsf in which all find_set operations will be O(1) due to path compression.
DSF flatten() const {
DSF t = *this;
BOOST_FOREACH(const KeyLabel& pair, (Tree)t)
t.findSet_(pair.first);
return t;
}
// maps f over all keys, must be invertible
DSF map(boost::function<Key(const Key&)> func) const {
DSF t;
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
t = t.add(func(pair.first), func(pair.second));
return t;
}
// return the number of sets
size_t numSets() const {
size_t num = 0;
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
if (pair.first == pair.second) num++;
return num;
}
// return the numer of keys
size_t size() const { return Tree::size(); }
// return all sets, i.e. a partition of all elements
std::map<Label, Set> sets() const {
std::map<Label, Set> sets;
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
sets[findSet(pair.second)].insert(pair.first);
return sets;
}
// return a partition of the given elements {keys}
std::map<Label, Set> partition(const std::list<Key>& keys) const {
std::map<Label, Set> partitions;
BOOST_FOREACH(const Key& key, keys)
partitions[findSet(key)].insert(key);
return partitions;
}
// get the nodes in the tree with the given label
Set set(const Label& label) const {
Set set;
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this) {
if (pair.second == label || findSet(pair.second) == label)
set.insert(pair.first);
}
return set;
}
/** equality */
bool operator==(const Self& t) const { return (Tree)*this == (Tree)t; }
/** inequality */
bool operator!=(const Self& t) const { return (Tree)*this != (Tree)t; }
// print the object
void print(const std::string& name = "DSF") const {
std::cout << name << std::endl;
BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
std::cout << (std::string)pair.first << " " << (std::string)pair.second << std::endl;
}
protected:
/**
* same as findSet except with path compression: After we have traversed the path to
* the root, each parent pointer is made to directly point to it
*/
Key findSet_(const Key& key) {
Key parent = this->find(key);
if (parent == key)
return parent;
else {
Key label = findSet_(parent);
*this = this->add(key, label);
return label;
}
}
};
// shortcuts
typedef DSF<int> DSFInt;
} // namespace gtsam