gtsam/gtsam/basis/Chebyshev2.cpp

206 lines
5.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Chebyshev2.cpp
* @brief Chebyshev parameterizations on Chebyshev points of second kind
* @author Varun Agrawal, Jing Dong, Frank Dellaert
* @date July 4, 2020
*/
#include <gtsam/basis/Chebyshev2.h>
namespace gtsam {
Weights Chebyshev2::CalculateWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weights(N + 1);
// We start by getting distances from x to all Chebyshev points
// as well as getting the smallest distance
Weights distances(N + 1);
for (size_t j = 0; j <= N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-12) {
// exceptional case: x coincides with a Chebyshev point
weights.setZero();
weights(j) = 1;
return weights;
}
distances(j) = dj;
}
// Beginning of interval, j = 0, x(0) = a
weights(0) = 0.5 / distances(0);
// All intermediate points j=1:N-1
double d = weights(0), s = -1; // changes sign s at every iteration
for (size_t j = 1; j < N; j++, s = -s) {
weights(j) = s / distances(j);
d += weights(j);
}
// End of interval, j = N, x(N) = b
weights(N) = 0.5 * s / distances(N);
d += weights(N);
// normalize
return weights / d;
}
Weights Chebyshev2::DerivativeWeights(size_t N, double x, double a, double b) {
// Allocate space for weights
Weights weightDerivatives(N + 1);
// toggle variable so we don't need to use `pow` for -1
double t = -1;
// We start by getting distances from x to all Chebyshev points
// as well as getting smallest distance
Weights distances(N + 1);
for (size_t j = 0; j <= N; j++) {
const double dj =
x - Point(N, j, a, b); // only thing that depends on [a,b]
if (std::abs(dj) < 1e-12) {
// exceptional case: x coincides with a Chebyshev point
weightDerivatives.setZero();
// compute the jth row of the differentiation matrix for this point
double cj = (j == 0 || j == N) ? 2. : 1.;
for (size_t k = 0; k <= N; k++) {
if (j == 0 && k == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = -(cj * N * N + 1) / 6.0;
} else if (j == N && k == N) {
// we reverse the sign since we order the cheb points from -1 to 1
weightDerivatives(k) = (cj * N * N + 1) / 6.0;
} else if (k == j) {
double xj = Point(N, j);
double xj2 = xj * xj;
weightDerivatives(k) = -0.5 * xj / (1 - xj2);
} else {
double xj = Point(N, j);
double xk = Point(N, k);
double ck = (k == 0 || k == N) ? 2. : 1.;
t = ((j + k) % 2) == 0 ? 1 : -1;
weightDerivatives(k) = (cj / ck) * t / (xj - xk);
}
}
return 2 * weightDerivatives / (b - a);
}
distances(j) = dj;
}
// This section of code computes the derivative of
// the Barycentric Interpolation weights formula by applying
// the chain rule on the original formula.
// g and k are multiplier terms which represent the derivatives of
// the numerator and denominator
double g = 0, k = 0;
double w = 1;
for (size_t j = 0; j <= N; j++) {
if (j == 0 || j == N) {
w = 0.5;
} else {
w = 1.0;
}
t = (j % 2 == 0) ? 1 : -1;
double c = t / distances(j);
g += w * c;
k += (w * c / distances(j));
}
double s = 1; // changes sign s at every iteration
double g2 = g * g;
for (size_t j = 0; j <= N; j++, s = -s) {
// Beginning of interval, j = 0, x0 = -1.0
// and end of interval, j = N, x0 = 1.0
if (j == 0 || j == N) {
w = 0.5;
} else {
// All intermediate points j=1:N-1
w = 1.0;
}
weightDerivatives(j) = (w * -s / (g * distances(j) * distances(j))) -
(w * -s * k / (g2 * distances(j)));
}
return weightDerivatives;
}
Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a,
double b) {
DiffMatrix D(N + 1, N + 1);
if (N + 1 == 1) {
D(0, 0) = 1;
return D;
}
// toggle variable so we don't need to use `pow` for -1
double t = -1;
for (size_t i = 0; i <= N; i++) {
double xi = Point(N, i);
double ci = (i == 0 || i == N) ? 2. : 1.;
for (size_t j = 0; j <= N; j++) {
if (i == 0 && j == 0) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = -(ci * N * N + 1) / 6.0;
} else if (i == N && j == N) {
// we reverse the sign since we order the cheb points from -1 to 1
D(i, j) = (ci * N * N + 1) / 6.0;
} else if (i == j) {
double xi2 = xi * xi;
D(i, j) = -xi / (2 * (1 - xi2));
} else {
double xj = Point(N, j);
double cj = (j == 0 || j == N) ? 2. : 1.;
t = ((i + j) % 2) == 0 ? 1 : -1;
D(i, j) = (ci / cj) * t / (xi - xj);
}
}
}
// scale the matrix to the range
return D / ((b - a) / 2.0);
}
Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
// Allocate space for weights
Weights weights(N + 1);
size_t K = N, // number of intervals between N points
K2 = K * K;
weights(0) = 0.5 * (b - a) / (K2 + K % 2 - 1);
weights(N) = weights(0);
size_t last_k = K / 2 + K % 2 - 1;
for (size_t i = 1; i <= N - 1; ++i) {
double theta = i * M_PI / K;
weights(i) = (K % 2 == 0) ? 1 - cos(K * theta) / (K2 - 1) : 1;
for (size_t k = 1; k <= last_k; ++k)
weights(i) -= 2 * cos(2 * k * theta) / (4 * k * k - 1);
weights(i) *= (b - a) / K;
}
return weights;
}
} // namespace gtsam