166 lines
5.6 KiB
C++
166 lines
5.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file RegularHessianFactor.h
|
|
* @brief HessianFactor class with constant sized blcoks
|
|
* @author Richard Roberts
|
|
* @date Dec 8, 2010
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <boost/foreach.hpp>
|
|
#include <vector>
|
|
|
|
namespace gtsam {
|
|
|
|
template<size_t D>
|
|
class RegularHessianFactor: public HessianFactor {
|
|
|
|
private:
|
|
|
|
typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block
|
|
typedef Eigen::Matrix<double, D, 1> VectorD;
|
|
// Use eigen magic to access raw memory
|
|
typedef Eigen::Map<VectorD> DMap;
|
|
typedef Eigen::Map<const VectorD> ConstDMap;
|
|
|
|
public:
|
|
|
|
/** Construct an n-way factor. Gs contains the upper-triangle blocks of the
|
|
* quadratic term (the Hessian matrix) provided in row-order, gs the pieces
|
|
* of the linear vector term, and f the constant term.
|
|
*/
|
|
RegularHessianFactor(const std::vector<Key>& js,
|
|
const std::vector<Matrix>& Gs, const std::vector<Vector>& gs, double f) :
|
|
HessianFactor(js, Gs, gs, f) {
|
|
}
|
|
|
|
/** Constructor with an arbitrary number of keys and with the augmented information matrix
|
|
* specified as a block matrix. */
|
|
template<typename KEYS>
|
|
RegularHessianFactor(const KEYS& keys,
|
|
const SymmetricBlockMatrix& augmentedInformation) :
|
|
HessianFactor(keys, augmentedInformation) {
|
|
}
|
|
|
|
/** Return the diagonal of the Hessian for this factor */
|
|
VectorValues hessianDiagonal() const {
|
|
return HessianFactor::hessianDiagonal();
|
|
}
|
|
|
|
/** Return the diagonal of the Hessian for this factor (raw memory version) */
|
|
void hessianDiagonal(double* d) const {
|
|
// Loop over all variables in the factor
|
|
for (DenseIndex pos = 0; pos < (DenseIndex)size(); ++pos) {
|
|
Key j = keys_[pos];
|
|
// Get the diagonal block, and insert its diagonal
|
|
const Matrix& B = info_(pos, pos).selfadjointView();
|
|
DMap(d + D * j) += B.diagonal();
|
|
}
|
|
}
|
|
|
|
/** y += alpha * A'*A*x */
|
|
void multiplyHessianAdd(double alpha, const VectorValues& x,
|
|
VectorValues& y) const {
|
|
HessianFactor::multiplyHessianAdd(alpha, x, y);
|
|
}
|
|
|
|
void multiplyHessianAdd(double alpha, const double* x, double* yvalues,
|
|
std::vector<size_t> offsets) const {
|
|
// Create a vector of temporary y values, corresponding to rows i
|
|
std::vector<Vector> y;
|
|
y.reserve(size());
|
|
for (const_iterator it = begin(); it != end(); it++)
|
|
y.push_back(zero(getDim(it)));
|
|
|
|
// Accessing the VectorValues one by one is expensive
|
|
// So we will loop over columns to access x only once per column
|
|
// And fill the above temporary y values, to be added into yvalues after
|
|
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
|
DenseIndex i = 0;
|
|
for (; i < j; ++i)
|
|
y[i] += info_(i, j).knownOffDiagonal()
|
|
* ConstDMap(x + offsets[keys_[j]],
|
|
offsets[keys_[j] + 1] - offsets[keys_[j]]);
|
|
// blocks on the diagonal are only half
|
|
y[i] += info_(j, j).selfadjointView()
|
|
* ConstDMap(x + offsets[keys_[j]],
|
|
offsets[keys_[j] + 1] - offsets[keys_[j]]);
|
|
// for below diagonal, we take transpose block from upper triangular part
|
|
for (i = j + 1; i < (DenseIndex) size(); ++i)
|
|
y[i] += info_(i, j).knownOffDiagonal()
|
|
* ConstDMap(x + offsets[keys_[j]],
|
|
offsets[keys_[j] + 1] - offsets[keys_[j]]);
|
|
}
|
|
|
|
// copy to yvalues
|
|
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i)
|
|
DMap(yvalues + offsets[keys_[i]], offsets[keys_[i] + 1] - offsets[keys_[i]]) +=
|
|
alpha * y[i];
|
|
}
|
|
|
|
// Scratch space for multiplyHessianAdd
|
|
mutable std::vector<VectorD> y;
|
|
|
|
void multiplyHessianAdd(double alpha, const double* x, double* yvalues) const {
|
|
// Create a vector of temporary y values, corresponding to rows i
|
|
y.resize(size());
|
|
BOOST_FOREACH(VectorD & yi, y)
|
|
yi.setZero();
|
|
|
|
// Accessing the VectorValues one by one is expensive
|
|
// So we will loop over columns to access x only once per column
|
|
// And fill the above temporary y values, to be added into yvalues after
|
|
VectorD xj(D);
|
|
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
|
Key key = keys_[j];
|
|
const double* xj = x + key * D;
|
|
DenseIndex i = 0;
|
|
for (; i < j; ++i)
|
|
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
|
|
// blocks on the diagonal are only half
|
|
y[i] += info_(j, j).selfadjointView() * ConstDMap(xj);
|
|
// for below diagonal, we take transpose block from upper triangular part
|
|
for (i = j + 1; i < (DenseIndex) size(); ++i)
|
|
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
|
|
}
|
|
|
|
// copy to yvalues
|
|
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i) {
|
|
Key key = keys_[i];
|
|
DMap(yvalues + key * D) += alpha * y[i];
|
|
}
|
|
}
|
|
|
|
/** eta for Hessian */
|
|
VectorValues gradientAtZero() const {
|
|
return HessianFactor::gradientAtZero();
|
|
}
|
|
|
|
/** eta for Hessian (raw memory version) */
|
|
void gradientAtZero(double* d) const {
|
|
// Loop over all variables in the factor
|
|
for (DenseIndex pos = 0; pos < (DenseIndex)size(); ++pos) {
|
|
Key j = keys_[pos];
|
|
// Get the diagonal block, and insert its diagonal
|
|
VectorD dj = -info_(pos,size()).knownOffDiagonal();
|
|
DMap(d + D * j) += dj;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|