1087 lines
43 KiB
C++
1087 lines
43 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ISAM2-inl.h
|
|
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
|
* @author Michael Kaess, Richard Roberts
|
|
*/
|
|
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
#include <boost/range/adaptors.hpp>
|
|
#include <boost/range/algorithm/copy.hpp>
|
|
#include <boost/algorithm/string.hpp>
|
|
namespace br { using namespace boost::range; using namespace boost::adaptors; }
|
|
|
|
#include <gtsam/base/timing.h>
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/inference/BayesTree-inst.h>
|
|
#include <gtsam/inference/BayesTreeCliqueBase-inst.h>
|
|
#include <gtsam/inference/JunctionTree-inst.h> // We need the inst file because we'll make a special JT templated on ISAM2
|
|
#include <gtsam/linear/linearAlgorithms-inst.h>
|
|
#include <gtsam/linear/HessianFactor.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/linear/GaussianEliminationTree.h>
|
|
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
|
#include <gtsam/nonlinear/nonlinearExceptions.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
// Instantiate base classes
|
|
template class BayesTreeCliqueBase<ISAM2Clique, GaussianFactorGraph>;
|
|
template class BayesTree<ISAM2Clique>;
|
|
|
|
static const bool disableReordering = false;
|
|
static const double batchThreshold = 0.65;
|
|
|
|
/* ************************************************************************* */
|
|
// Special BayesTree class that uses ISAM2 cliques - this is the result of reeliminating ISAM2
|
|
// subtrees.
|
|
class ISAM2BayesTree : public ISAM2::Base
|
|
{
|
|
public:
|
|
typedef ISAM2::Base Base;
|
|
typedef ISAM2BayesTree This;
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
ISAM2BayesTree() {}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
// Special JunctionTree class that produces ISAM2 BayesTree cliques, used for reeliminating ISAM2
|
|
// subtrees.
|
|
class ISAM2JunctionTree : public JunctionTree<ISAM2BayesTree, GaussianFactorGraph>
|
|
{
|
|
public:
|
|
typedef JunctionTree<ISAM2BayesTree, GaussianFactorGraph> Base;
|
|
typedef ISAM2JunctionTree This;
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
ISAM2JunctionTree(const GaussianEliminationTree& eliminationTree) :
|
|
Base(eliminationTree) {}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
std::string ISAM2DoglegParams::adaptationModeTranslator(const DoglegOptimizerImpl::TrustRegionAdaptationMode& adaptationMode) const {
|
|
std::string s;
|
|
switch (adaptationMode) {
|
|
case DoglegOptimizerImpl::SEARCH_EACH_ITERATION: s = "SEARCH_EACH_ITERATION"; break;
|
|
case DoglegOptimizerImpl::ONE_STEP_PER_ITERATION: s = "ONE_STEP_PER_ITERATION"; break;
|
|
default: s = "UNDEFINED"; break;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
DoglegOptimizerImpl::TrustRegionAdaptationMode ISAM2DoglegParams::adaptationModeTranslator(const std::string& adaptationMode) const {
|
|
std::string s = adaptationMode; boost::algorithm::to_upper(s);
|
|
if (s == "SEARCH_EACH_ITERATION") return DoglegOptimizerImpl::SEARCH_EACH_ITERATION;
|
|
if (s == "ONE_STEP_PER_ITERATION") return DoglegOptimizerImpl::ONE_STEP_PER_ITERATION;
|
|
|
|
/* default is SEARCH_EACH_ITERATION */
|
|
return DoglegOptimizerImpl::SEARCH_EACH_ITERATION;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ISAM2Params::Factorization ISAM2Params::factorizationTranslator(const std::string& str) {
|
|
std::string s = str; boost::algorithm::to_upper(s);
|
|
if (s == "QR") return ISAM2Params::QR;
|
|
if (s == "CHOLESKY") return ISAM2Params::CHOLESKY;
|
|
|
|
/* default is CHOLESKY */
|
|
return ISAM2Params::CHOLESKY;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::string ISAM2Params::factorizationTranslator(const ISAM2Params::Factorization& value) {
|
|
std::string s;
|
|
switch (value) {
|
|
case ISAM2Params::QR: s = "QR"; break;
|
|
case ISAM2Params::CHOLESKY: s = "CHOLESKY"; break;
|
|
default: s = "UNDEFINED"; break;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ISAM2Clique::setEliminationResult(const FactorGraphType::EliminationResult& eliminationResult)
|
|
{
|
|
conditional_ = eliminationResult.first;
|
|
cachedFactor_ = eliminationResult.second;
|
|
// Compute gradient contribution
|
|
gradientContribution_.resize(conditional_->cols() - 1);
|
|
// Rewrite -(R * P')'*d as -(d' * R * P')' for computational speed reasons
|
|
gradientContribution_ << -conditional_->get_R().transpose() * conditional_->get_d(),
|
|
-conditional_->get_S().transpose() * conditional_->get_d();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool ISAM2Clique::equals(const This& other, double tol) const {
|
|
return Base::equals(other) &&
|
|
((!cachedFactor_ && !other.cachedFactor_)
|
|
|| (cachedFactor_ && other.cachedFactor_
|
|
&& cachedFactor_->equals(*other.cachedFactor_, tol)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ISAM2Clique::print(const std::string& s, const KeyFormatter& formatter) const
|
|
{
|
|
Base::print(s,formatter);
|
|
if(cachedFactor_)
|
|
cachedFactor_->print(s + "Cached: ", formatter);
|
|
else
|
|
std::cout << s << "Cached empty" << std::endl;
|
|
if(gradientContribution_.rows() != 0)
|
|
gtsam::print(gradientContribution_, "Gradient contribution: ");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ISAM2::ISAM2(const ISAM2Params& params): params_(params), update_count_(0) {
|
|
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
|
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ISAM2::ISAM2() : update_count_(0) {
|
|
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
|
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool ISAM2::equals(const ISAM2& other, double tol) const {
|
|
return Base::equals(other, tol)
|
|
&& theta_.equals(other.theta_, tol) && variableIndex_.equals(other.variableIndex_, tol)
|
|
&& nonlinearFactors_.equals(other.nonlinearFactors_, tol)
|
|
&& fixedVariables_ == other.fixedVariables_;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
KeySet ISAM2::getAffectedFactors(const KeyList& keys) const {
|
|
static const bool debug = false;
|
|
if(debug) cout << "Getting affected factors for ";
|
|
if(debug) { for(const Key key: keys) { cout << key << " "; } }
|
|
if(debug) cout << endl;
|
|
|
|
NonlinearFactorGraph allAffected;
|
|
KeySet indices;
|
|
for(const Key key: keys) {
|
|
const VariableIndex::Factors& factors(variableIndex_[key]);
|
|
indices.insert(factors.begin(), factors.end());
|
|
}
|
|
if(debug) cout << "Affected factors are: ";
|
|
if(debug) { for(const size_t index: indices) { cout << index << " "; } }
|
|
if(debug) cout << endl;
|
|
return indices;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// retrieve all factors that ONLY contain the affected variables
|
|
// (note that the remaining stuff is summarized in the cached factors)
|
|
|
|
GaussianFactorGraph::shared_ptr
|
|
ISAM2::relinearizeAffectedFactors(const FastList<Key>& affectedKeys, const KeySet& relinKeys) const
|
|
{
|
|
gttic(getAffectedFactors);
|
|
KeySet candidates = getAffectedFactors(affectedKeys);
|
|
gttoc(getAffectedFactors);
|
|
|
|
NonlinearFactorGraph nonlinearAffectedFactors;
|
|
|
|
gttic(affectedKeysSet);
|
|
// for fast lookup below
|
|
KeySet affectedKeysSet;
|
|
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
|
|
gttoc(affectedKeysSet);
|
|
|
|
gttic(check_candidates_and_linearize);
|
|
GaussianFactorGraph::shared_ptr linearized = boost::make_shared<GaussianFactorGraph>();
|
|
for(Key idx: candidates) {
|
|
bool inside = true;
|
|
bool useCachedLinear = params_.cacheLinearizedFactors;
|
|
for(Key key: nonlinearFactors_[idx]->keys()) {
|
|
if(affectedKeysSet.find(key) == affectedKeysSet.end()) {
|
|
inside = false;
|
|
break;
|
|
}
|
|
if(useCachedLinear && relinKeys.find(key) != relinKeys.end())
|
|
useCachedLinear = false;
|
|
}
|
|
if(inside) {
|
|
if(useCachedLinear) {
|
|
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
|
|
assert(linearFactors_[idx]);
|
|
assert(linearFactors_[idx]->keys() == nonlinearFactors_[idx]->keys());
|
|
#endif
|
|
linearized->push_back(linearFactors_[idx]);
|
|
} else {
|
|
GaussianFactor::shared_ptr linearFactor = nonlinearFactors_[idx]->linearize(theta_);
|
|
linearized->push_back(linearFactor);
|
|
if(params_.cacheLinearizedFactors) {
|
|
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
|
|
assert(linearFactors_[idx]->keys() == linearFactor->keys());
|
|
#endif
|
|
linearFactors_[idx] = linearFactor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
gttoc(check_candidates_and_linearize);
|
|
|
|
return linearized;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// find intermediate (linearized) factors from cache that are passed into the affected area
|
|
|
|
GaussianFactorGraph ISAM2::getCachedBoundaryFactors(Cliques& orphans) {
|
|
GaussianFactorGraph cachedBoundary;
|
|
|
|
for(sharedClique orphan: orphans) {
|
|
// retrieve the cached factor and add to boundary
|
|
cachedBoundary.push_back(orphan->cachedFactor());
|
|
}
|
|
|
|
return cachedBoundary;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
boost::shared_ptr<KeySet > ISAM2::recalculate(const KeySet& markedKeys, const KeySet& relinKeys,
|
|
const vector<Key>& observedKeys,
|
|
const KeySet& unusedIndices,
|
|
const boost::optional<FastMap<Key,int> >& constrainKeys,
|
|
ISAM2Result& result)
|
|
{
|
|
// TODO: new factors are linearized twice, the newFactors passed in are not used.
|
|
|
|
const bool debug = ISDEBUG("ISAM2 recalculate");
|
|
|
|
// Input: BayesTree(this), newFactors
|
|
|
|
//#define PRINT_STATS // figures for paper, disable for timing
|
|
#ifdef PRINT_STATS
|
|
static int counter = 0;
|
|
int maxClique = 0;
|
|
double avgClique = 0;
|
|
int numCliques = 0;
|
|
int nnzR = 0;
|
|
if (counter>0) { // cannot call on empty tree
|
|
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
|
|
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
|
|
maxClique = cstats.maxCONDITIONALSize;
|
|
avgClique = cstats.avgCONDITIONALSize;
|
|
numCliques = cdata.conditionalSizes.size();
|
|
nnzR = calculate_nnz(this->root());
|
|
}
|
|
counter++;
|
|
#endif
|
|
|
|
if(debug) {
|
|
cout << "markedKeys: ";
|
|
for(const Key key: markedKeys) { cout << key << " "; }
|
|
cout << endl;
|
|
cout << "observedKeys: ";
|
|
for(const Key key: observedKeys) { cout << key << " "; }
|
|
cout << endl;
|
|
}
|
|
|
|
// 1. Remove top of Bayes tree and convert to a factor graph:
|
|
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
|
|
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
|
|
gttic(removetop);
|
|
Cliques orphans;
|
|
GaussianBayesNet affectedBayesNet;
|
|
this->removeTop(FastVector<Key>(markedKeys.begin(), markedKeys.end()), affectedBayesNet, orphans);
|
|
gttoc(removetop);
|
|
|
|
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
|
|
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
|
|
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
|
|
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
|
|
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
|
|
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
|
|
// in the cached_ values which again will be wrong]
|
|
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
|
|
|
|
// BEGIN OF COPIED CODE
|
|
|
|
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
|
gttic(affectedKeys);
|
|
FastList<Key> affectedKeys;
|
|
for(const ConditionalType::shared_ptr& conditional: affectedBayesNet)
|
|
affectedKeys.insert(affectedKeys.end(), conditional->beginFrontals(), conditional->endFrontals());
|
|
gttoc(affectedKeys);
|
|
|
|
boost::shared_ptr<KeySet > affectedKeysSet(new KeySet()); // Will return this result
|
|
|
|
if(affectedKeys.size() >= theta_.size() * batchThreshold)
|
|
{
|
|
// Do a batch step - reorder and relinearize all variables
|
|
gttic(batch);
|
|
|
|
gttic(add_keys);
|
|
br::copy(variableIndex_ | br::map_keys, std::inserter(*affectedKeysSet, affectedKeysSet->end()));
|
|
gttoc(add_keys);
|
|
|
|
gttic(ordering);
|
|
Ordering order;
|
|
if(constrainKeys)
|
|
{
|
|
order = Ordering::ColamdConstrained(variableIndex_, *constrainKeys);
|
|
}
|
|
else
|
|
{
|
|
if(theta_.size() > observedKeys.size())
|
|
{
|
|
// Only if some variables are unconstrained
|
|
FastMap<Key, int> constraintGroups;
|
|
for(Key var: observedKeys)
|
|
constraintGroups[var] = 1;
|
|
order = Ordering::ColamdConstrained(variableIndex_, constraintGroups);
|
|
}
|
|
else
|
|
{
|
|
order = Ordering::Colamd(variableIndex_);
|
|
}
|
|
}
|
|
gttoc(ordering);
|
|
|
|
gttic(linearize);
|
|
GaussianFactorGraph linearized = *nonlinearFactors_.linearize(theta_);
|
|
if(params_.cacheLinearizedFactors)
|
|
linearFactors_ = linearized;
|
|
gttoc(linearize);
|
|
|
|
gttic(eliminate);
|
|
ISAM2BayesTree::shared_ptr bayesTree = ISAM2JunctionTree(GaussianEliminationTree(linearized, variableIndex_, order))
|
|
.eliminate(params_.getEliminationFunction()).first;
|
|
gttoc(eliminate);
|
|
|
|
gttic(insert);
|
|
this->clear();
|
|
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(), bayesTree->roots().end());
|
|
this->nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
|
gttoc(insert);
|
|
|
|
result.variablesReeliminated = affectedKeysSet->size();
|
|
result.factorsRecalculated = nonlinearFactors_.size();
|
|
|
|
lastAffectedMarkedCount = markedKeys.size();
|
|
lastAffectedVariableCount = affectedKeysSet->size();
|
|
lastAffectedFactorCount = linearized.size();
|
|
|
|
// Reeliminated keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(Key key: theta_.keys()) {
|
|
result.detail->variableStatus[key].isReeliminated = true;
|
|
}
|
|
}
|
|
|
|
gttoc(batch);
|
|
|
|
} else {
|
|
|
|
gttic(incremental);
|
|
|
|
// 2. Add the new factors \Factors' into the resulting factor graph
|
|
FastList<Key> affectedAndNewKeys;
|
|
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(), affectedKeys.end());
|
|
affectedAndNewKeys.insert(affectedAndNewKeys.end(), observedKeys.begin(), observedKeys.end());
|
|
gttic(relinearizeAffected);
|
|
GaussianFactorGraph factors(*relinearizeAffectedFactors(affectedAndNewKeys, relinKeys));
|
|
if(debug) factors.print("Relinearized factors: ");
|
|
gttoc(relinearizeAffected);
|
|
|
|
if(debug) { cout << "Affected keys: "; for(const Key key: affectedKeys) { cout << key << " "; } cout << endl; }
|
|
|
|
// Reeliminated keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(Key key: affectedAndNewKeys) {
|
|
result.detail->variableStatus[key].isReeliminated = true;
|
|
}
|
|
}
|
|
|
|
result.variablesReeliminated = affectedAndNewKeys.size();
|
|
result.factorsRecalculated = factors.size();
|
|
lastAffectedMarkedCount = markedKeys.size();
|
|
lastAffectedVariableCount = affectedKeys.size();
|
|
lastAffectedFactorCount = factors.size();
|
|
|
|
#ifdef PRINT_STATS
|
|
// output for generating figures
|
|
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
|
|
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
|
|
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
|
|
#endif
|
|
|
|
gttic(cached);
|
|
// add the cached intermediate results from the boundary of the orphans ...
|
|
GaussianFactorGraph cachedBoundary = getCachedBoundaryFactors(orphans);
|
|
if(debug) cachedBoundary.print("Boundary factors: ");
|
|
factors.push_back(cachedBoundary);
|
|
gttoc(cached);
|
|
|
|
gttic(orphans);
|
|
// Add the orphaned subtrees
|
|
for(const sharedClique& orphan: orphans)
|
|
factors += boost::make_shared<BayesTreeOrphanWrapper<Clique> >(orphan);
|
|
gttoc(orphans);
|
|
|
|
|
|
// END OF COPIED CODE
|
|
|
|
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
|
|
|
|
gttic(reorder_and_eliminate);
|
|
|
|
gttic(list_to_set);
|
|
// create a partial reordering for the new and contaminated factors
|
|
// markedKeys are passed in: those variables will be forced to the end in the ordering
|
|
affectedKeysSet->insert(markedKeys.begin(), markedKeys.end());
|
|
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
|
|
gttoc(list_to_set);
|
|
|
|
VariableIndex affectedFactorsVarIndex(factors);
|
|
|
|
gttic(ordering_constraints);
|
|
// Create ordering constraints
|
|
FastMap<Key,int> constraintGroups;
|
|
if(constrainKeys) {
|
|
constraintGroups = *constrainKeys;
|
|
} else {
|
|
constraintGroups = FastMap<Key,int>();
|
|
const int group = observedKeys.size() < affectedFactorsVarIndex.size() ? 1 : 0;
|
|
for (Key var: observedKeys)
|
|
constraintGroups.insert(make_pair(var, group));
|
|
}
|
|
|
|
// Remove unaffected keys from the constraints
|
|
for(FastMap<Key,int>::iterator iter = constraintGroups.begin(); iter != constraintGroups.end(); /*Incremented in loop ++iter*/) {
|
|
if(unusedIndices.exists(iter->first) || !affectedKeysSet->exists(iter->first))
|
|
constraintGroups.erase(iter ++);
|
|
else
|
|
++ iter;
|
|
}
|
|
gttoc(ordering_constraints);
|
|
|
|
// Generate ordering
|
|
gttic(Ordering);
|
|
Ordering ordering = Ordering::ColamdConstrained(affectedFactorsVarIndex, constraintGroups);
|
|
gttoc(Ordering);
|
|
|
|
ISAM2BayesTree::shared_ptr bayesTree = ISAM2JunctionTree(GaussianEliminationTree(
|
|
factors, affectedFactorsVarIndex, ordering)).eliminate(params_.getEliminationFunction()).first;
|
|
|
|
gttoc(reorder_and_eliminate);
|
|
|
|
gttic(reassemble);
|
|
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(), bayesTree->roots().end());
|
|
this->nodes_.insert(bayesTree->nodes().begin(), bayesTree->nodes().end());
|
|
gttoc(reassemble);
|
|
|
|
// 4. The orphans have already been inserted during elimination
|
|
|
|
gttoc(incremental);
|
|
}
|
|
|
|
// Root clique variables for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(const sharedNode& root: this->roots())
|
|
for(Key var: *root->conditional())
|
|
result.detail->variableStatus[var].inRootClique = true;
|
|
}
|
|
|
|
return affectedKeysSet;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ISAM2Result ISAM2::update(
|
|
const NonlinearFactorGraph& newFactors, const Values& newTheta, const FactorIndices& removeFactorIndices,
|
|
const boost::optional<FastMap<Key,int> >& constrainedKeys, const boost::optional<FastList<Key> >& noRelinKeys,
|
|
const boost::optional<FastList<Key> >& extraReelimKeys, bool force_relinearize)
|
|
{
|
|
|
|
const bool debug = ISDEBUG("ISAM2 update");
|
|
const bool verbose = ISDEBUG("ISAM2 update verbose");
|
|
|
|
gttic(ISAM2_update);
|
|
|
|
this->update_count_++;
|
|
|
|
lastAffectedVariableCount = 0;
|
|
lastAffectedFactorCount = 0;
|
|
lastAffectedCliqueCount = 0;
|
|
lastAffectedMarkedCount = 0;
|
|
lastBacksubVariableCount = 0;
|
|
lastNnzTop = 0;
|
|
ISAM2Result result;
|
|
if(params_.enableDetailedResults)
|
|
result.detail = ISAM2Result::DetailedResults();
|
|
const bool relinearizeThisStep = force_relinearize
|
|
|| (params_.enableRelinearization && update_count_ % params_.relinearizeSkip == 0);
|
|
|
|
if(verbose) {
|
|
cout << "ISAM2::update\n";
|
|
this->print("ISAM2: ");
|
|
}
|
|
|
|
// Update delta if we need it to check relinearization later
|
|
if(relinearizeThisStep) {
|
|
gttic(updateDelta);
|
|
updateDelta(disableReordering);
|
|
gttoc(updateDelta);
|
|
}
|
|
|
|
gttic(push_back_factors);
|
|
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
|
|
// Add the new factor indices to the result struct
|
|
if(debug || verbose) newFactors.print("The new factors are: ");
|
|
Impl::AddFactorsStep1(newFactors, params_.findUnusedFactorSlots, nonlinearFactors_, result.newFactorsIndices);
|
|
|
|
// Remove the removed factors
|
|
NonlinearFactorGraph removeFactors; removeFactors.reserve(removeFactorIndices.size());
|
|
for(size_t index: removeFactorIndices) {
|
|
removeFactors.push_back(nonlinearFactors_[index]);
|
|
nonlinearFactors_.remove(index);
|
|
if(params_.cacheLinearizedFactors)
|
|
linearFactors_.remove(index);
|
|
}
|
|
|
|
// Remove removed factors from the variable index so we do not attempt to relinearize them
|
|
variableIndex_.remove(removeFactorIndices.begin(), removeFactorIndices.end(), removeFactors);
|
|
|
|
// Compute unused keys and indices
|
|
KeySet unusedKeys;
|
|
KeySet unusedIndices;
|
|
{
|
|
// Get keys from removed factors and new factors, and compute unused keys,
|
|
// i.e., keys that are empty now and do not appear in the new factors.
|
|
KeySet removedAndEmpty;
|
|
for(Key key: removeFactors.keys()) {
|
|
if(variableIndex_[key].empty())
|
|
removedAndEmpty.insert(removedAndEmpty.end(), key);
|
|
}
|
|
KeySet newFactorSymbKeys = newFactors.keys();
|
|
std::set_difference(removedAndEmpty.begin(), removedAndEmpty.end(),
|
|
newFactorSymbKeys.begin(), newFactorSymbKeys.end(), std::inserter(unusedKeys, unusedKeys.end()));
|
|
|
|
// Get indices for unused keys
|
|
for(Key key: unusedKeys) {
|
|
unusedIndices.insert(unusedIndices.end(), key);
|
|
}
|
|
}
|
|
gttoc(push_back_factors);
|
|
|
|
gttic(add_new_variables);
|
|
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
|
|
Impl::AddVariables(newTheta, theta_, delta_, deltaNewton_, RgProd_);
|
|
// New keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(Key key: newTheta.keys()) { result.detail->variableStatus[key].isNew = true; } }
|
|
gttoc(add_new_variables);
|
|
|
|
gttic(evaluate_error_before);
|
|
if(params_.evaluateNonlinearError)
|
|
result.errorBefore.reset(nonlinearFactors_.error(calculateEstimate()));
|
|
gttoc(evaluate_error_before);
|
|
|
|
gttic(gather_involved_keys);
|
|
// 3. Mark linear update
|
|
KeySet markedKeys = newFactors.keys(); // Get keys from new factors
|
|
// Also mark keys involved in removed factors
|
|
{
|
|
KeySet markedRemoveKeys = removeFactors.keys(); // Get keys involved in removed factors
|
|
markedKeys.insert(markedRemoveKeys.begin(), markedRemoveKeys.end()); // Add to the overall set of marked keys
|
|
}
|
|
// Also mark any provided extra re-eliminate keys
|
|
if(extraReelimKeys) {
|
|
for(Key key: *extraReelimKeys) {
|
|
markedKeys.insert(key);
|
|
}
|
|
}
|
|
|
|
// Observed keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(Key key: markedKeys) {
|
|
result.detail->variableStatus[key].isObserved = true;
|
|
}
|
|
}
|
|
// NOTE: we use assign instead of the iterator constructor here because this
|
|
// is a vector of size_t, so the constructor unintentionally resolves to
|
|
// vector(size_t count, Key value) instead of the iterator constructor.
|
|
FastVector<Key> observedKeys; observedKeys.reserve(markedKeys.size());
|
|
for(Key index: markedKeys) {
|
|
if(unusedIndices.find(index) == unusedIndices.end()) // Only add if not unused
|
|
observedKeys.push_back(index); // Make a copy of these, as we'll soon add to them
|
|
}
|
|
gttoc(gather_involved_keys);
|
|
|
|
// Check relinearization if we're at the nth step, or we are using a looser loop relin threshold
|
|
KeySet relinKeys;
|
|
if (relinearizeThisStep) {
|
|
gttic(gather_relinearize_keys);
|
|
// 4. Mark keys in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
|
|
if(params_.enablePartialRelinearizationCheck)
|
|
relinKeys = Impl::CheckRelinearizationPartial(roots_, delta_, params_.relinearizeThreshold);
|
|
else
|
|
relinKeys = Impl::CheckRelinearizationFull(delta_, params_.relinearizeThreshold);
|
|
if(disableReordering) relinKeys = Impl::CheckRelinearizationFull(delta_, 0.0); // This is used for debugging
|
|
|
|
// Remove from relinKeys any keys whose linearization points are fixed
|
|
for(Key key: fixedVariables_) {
|
|
relinKeys.erase(key);
|
|
}
|
|
if(noRelinKeys) {
|
|
for(Key key: *noRelinKeys) {
|
|
relinKeys.erase(key);
|
|
}
|
|
}
|
|
|
|
// Above relin threshold keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
for(Key key: relinKeys) {
|
|
result.detail->variableStatus[key].isAboveRelinThreshold = true;
|
|
result.detail->variableStatus[key].isRelinearized = true; } }
|
|
|
|
// Add the variables being relinearized to the marked keys
|
|
KeySet markedRelinMask;
|
|
for(const Key key: relinKeys)
|
|
markedRelinMask.insert(key);
|
|
markedKeys.insert(relinKeys.begin(), relinKeys.end());
|
|
gttoc(gather_relinearize_keys);
|
|
|
|
gttic(fluid_find_all);
|
|
// 5. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
|
|
if (!relinKeys.empty()) {
|
|
for(const sharedClique& root: roots_)
|
|
// add other cliques that have the marked ones in the separator
|
|
Impl::FindAll(root, markedKeys, markedRelinMask);
|
|
|
|
// Relin involved keys for detailed results
|
|
if(params_.enableDetailedResults) {
|
|
KeySet involvedRelinKeys;
|
|
for(const sharedClique& root: roots_)
|
|
Impl::FindAll(root, involvedRelinKeys, markedRelinMask);
|
|
for(Key key: involvedRelinKeys) {
|
|
if(!result.detail->variableStatus[key].isAboveRelinThreshold) {
|
|
result.detail->variableStatus[key].isRelinearizeInvolved = true;
|
|
result.detail->variableStatus[key].isRelinearized = true; } }
|
|
}
|
|
}
|
|
gttoc(fluid_find_all);
|
|
|
|
gttic(expmap);
|
|
// 6. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
|
|
if (!relinKeys.empty())
|
|
Impl::ExpmapMasked(theta_, delta_, markedRelinMask, delta_);
|
|
gttoc(expmap);
|
|
|
|
result.variablesRelinearized = markedKeys.size();
|
|
} else {
|
|
result.variablesRelinearized = 0;
|
|
}
|
|
|
|
gttic(linearize_new);
|
|
// 7. Linearize new factors
|
|
if(params_.cacheLinearizedFactors) {
|
|
gttic(linearize);
|
|
GaussianFactorGraph::shared_ptr linearFactors = newFactors.linearize(theta_);
|
|
if(params_.findUnusedFactorSlots)
|
|
{
|
|
linearFactors_.resize(nonlinearFactors_.size());
|
|
for(size_t newFactorI = 0; newFactorI < newFactors.size(); ++newFactorI)
|
|
linearFactors_[result.newFactorsIndices[newFactorI]] = (*linearFactors)[newFactorI];
|
|
}
|
|
else
|
|
{
|
|
linearFactors_.push_back(*linearFactors);
|
|
}
|
|
assert(nonlinearFactors_.size() == linearFactors_.size());
|
|
gttoc(linearize);
|
|
}
|
|
gttoc(linearize_new);
|
|
|
|
gttic(augment_VI);
|
|
// Augment the variable index with the new factors
|
|
if(params_.findUnusedFactorSlots)
|
|
variableIndex_.augment(newFactors, result.newFactorsIndices);
|
|
else
|
|
variableIndex_.augment(newFactors);
|
|
gttoc(augment_VI);
|
|
|
|
gttic(recalculate);
|
|
// 8. Redo top of Bayes tree
|
|
boost::shared_ptr<KeySet > replacedKeys;
|
|
if(!markedKeys.empty() || !observedKeys.empty())
|
|
replacedKeys = recalculate(markedKeys, relinKeys, observedKeys, unusedIndices, constrainedKeys, result);
|
|
|
|
// Update replaced keys mask (accumulates until back-substitution takes place)
|
|
if(replacedKeys)
|
|
deltaReplacedMask_.insert(replacedKeys->begin(), replacedKeys->end());
|
|
gttoc(recalculate);
|
|
|
|
// Update data structures to remove unused keys
|
|
if(!unusedKeys.empty()) {
|
|
gttic(remove_variables);
|
|
Impl::RemoveVariables(unusedKeys, roots_, theta_, variableIndex_, delta_, deltaNewton_, RgProd_,
|
|
deltaReplacedMask_, Base::nodes_, fixedVariables_);
|
|
gttoc(remove_variables);
|
|
}
|
|
result.cliques = this->nodes().size();
|
|
|
|
gttic(evaluate_error_after);
|
|
if(params_.evaluateNonlinearError)
|
|
result.errorAfter.reset(nonlinearFactors_.error(calculateEstimate()));
|
|
gttoc(evaluate_error_after);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ISAM2::marginalizeLeaves(const FastList<Key>& leafKeysList,
|
|
boost::optional<FactorIndices&> marginalFactorsIndices,
|
|
boost::optional<FactorIndices&> deletedFactorsIndices)
|
|
{
|
|
// Convert to ordered set
|
|
KeySet leafKeys(leafKeysList.begin(), leafKeysList.end());
|
|
|
|
// Keep track of marginal factors - map from clique to the marginal factors
|
|
// that should be incorporated into it, passed up from it's children.
|
|
// multimap<sharedClique, GaussianFactor::shared_ptr> marginalFactors;
|
|
map<Key, vector<GaussianFactor::shared_ptr> > marginalFactors;
|
|
|
|
// Keep track of factors that get summarized by removing cliques
|
|
KeySet factorIndicesToRemove;
|
|
|
|
// Keep track of variables removed in subtrees
|
|
KeySet leafKeysRemoved;
|
|
|
|
// Remove each variable and its subtrees
|
|
for(Key j: leafKeys) {
|
|
if(!leafKeysRemoved.exists(j)) { // If the index was not already removed by removing another subtree
|
|
|
|
// Traverse up the tree to find the root of the marginalized subtree
|
|
sharedClique clique = nodes_[j];
|
|
while(!clique->parent_._empty())
|
|
{
|
|
// Check if parent contains a marginalized leaf variable. Only need to check the first
|
|
// variable because it is the closest to the leaves.
|
|
sharedClique parent = clique->parent();
|
|
if(leafKeys.exists(parent->conditional()->front()))
|
|
clique = parent;
|
|
else
|
|
break;
|
|
}
|
|
|
|
// See if we should remove the whole clique
|
|
bool marginalizeEntireClique = true;
|
|
for(Key frontal: clique->conditional()->frontals()) {
|
|
if(!leafKeys.exists(frontal)) {
|
|
marginalizeEntireClique = false;
|
|
break; } }
|
|
|
|
// Remove either the whole clique or part of it
|
|
if(marginalizeEntireClique) {
|
|
// Remove the whole clique and its subtree, and keep the marginal factor.
|
|
GaussianFactor::shared_ptr marginalFactor = clique->cachedFactor();
|
|
// We do not need the marginal factors associated with this clique
|
|
// because their information is already incorporated in the new
|
|
// marginal factor. So, now associate this marginal factor with the
|
|
// parent of this clique.
|
|
marginalFactors[clique->parent()->conditional()->front()].push_back(marginalFactor);
|
|
// Now remove this clique and its subtree - all of its marginal
|
|
// information has been stored in marginalFactors.
|
|
const Cliques removedCliques = this->removeSubtree(clique); // Remove the subtree and throw away the cliques
|
|
for(const sharedClique& removedClique: removedCliques) {
|
|
marginalFactors.erase(removedClique->conditional()->front());
|
|
leafKeysRemoved.insert(removedClique->conditional()->beginFrontals(), removedClique->conditional()->endFrontals());
|
|
for(Key frontal: removedClique->conditional()->frontals())
|
|
{
|
|
// Add to factors to remove
|
|
const VariableIndex::Factors& involvedFactors = variableIndex_[frontal];
|
|
factorIndicesToRemove.insert(involvedFactors.begin(), involvedFactors.end());
|
|
|
|
// Check for non-leaf keys
|
|
if(!leafKeys.exists(frontal))
|
|
throw runtime_error("Requesting to marginalize variables that are not leaves, the ISAM2 object is now in an inconsistent state so should no longer be used.");
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// Reeliminate the current clique and the marginals from its children,
|
|
// then keep only the marginal on the non-marginalized variables. We
|
|
// get the childrens' marginals from any existing children, plus
|
|
// the marginals from the marginalFactors multimap, which come from any
|
|
// subtrees already marginalized out.
|
|
|
|
// Add child marginals and remove marginalized subtrees
|
|
GaussianFactorGraph graph;
|
|
KeySet factorsInSubtreeRoot;
|
|
Cliques subtreesToRemove;
|
|
for(const sharedClique& child: clique->children) {
|
|
// Remove subtree if child depends on any marginalized keys
|
|
for(Key parent: child->conditional()->parents()) {
|
|
if(leafKeys.exists(parent)) {
|
|
subtreesToRemove.push_back(child);
|
|
graph.push_back(child->cachedFactor()); // Add child marginal
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Cliques childrenRemoved;
|
|
for(const sharedClique& childToRemove: subtreesToRemove) {
|
|
const Cliques removedCliques = this->removeSubtree(childToRemove); // Remove the subtree and throw away the cliques
|
|
childrenRemoved.insert(childrenRemoved.end(), removedCliques.begin(), removedCliques.end());
|
|
for(const sharedClique& removedClique: removedCliques) {
|
|
marginalFactors.erase(removedClique->conditional()->front());
|
|
leafKeysRemoved.insert(removedClique->conditional()->beginFrontals(), removedClique->conditional()->endFrontals());
|
|
for(Key frontal: removedClique->conditional()->frontals())
|
|
{
|
|
// Add to factors to remove
|
|
const VariableIndex::Factors& involvedFactors = variableIndex_[frontal];
|
|
factorIndicesToRemove.insert(involvedFactors.begin(), involvedFactors.end());
|
|
|
|
// Check for non-leaf keys
|
|
if(!leafKeys.exists(frontal))
|
|
throw runtime_error("Requesting to marginalize variables that are not leaves, the ISAM2 object is now in an inconsistent state so should no longer be used.");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the factors that are pulled into the current clique by the marginalized variables.
|
|
// These are the factors that involve *marginalized* frontal variables in this clique
|
|
// but do not involve frontal variables of any of its children.
|
|
// TODO: reuse cached linear factors
|
|
KeySet factorsFromMarginalizedInClique_step1;
|
|
for(Key frontal: clique->conditional()->frontals()) {
|
|
if(leafKeys.exists(frontal))
|
|
factorsFromMarginalizedInClique_step1.insert(variableIndex_[frontal].begin(), variableIndex_[frontal].end()); }
|
|
// Remove any factors in subtrees that we're removing at this step
|
|
for(const sharedClique& removedChild: childrenRemoved) {
|
|
for(Key indexInClique: removedChild->conditional()->frontals()) {
|
|
for(Key factorInvolving: variableIndex_[indexInClique]) {
|
|
factorsFromMarginalizedInClique_step1.erase(factorInvolving); } } }
|
|
// Create factor graph from factor indices
|
|
for(size_t i: factorsFromMarginalizedInClique_step1) {
|
|
graph.push_back(nonlinearFactors_[i]->linearize(theta_)); }
|
|
|
|
// Reeliminate the linear graph to get the marginal and discard the conditional
|
|
const KeySet cliqueFrontals(clique->conditional()->beginFrontals(), clique->conditional()->endFrontals());
|
|
FastVector<Key> cliqueFrontalsToEliminate;
|
|
std::set_intersection(cliqueFrontals.begin(), cliqueFrontals.end(), leafKeys.begin(), leafKeys.end(),
|
|
std::back_inserter(cliqueFrontalsToEliminate));
|
|
pair<GaussianConditional::shared_ptr, GaussianFactor::shared_ptr> eliminationResult1 =
|
|
params_.getEliminationFunction()(graph, Ordering(cliqueFrontalsToEliminate));
|
|
|
|
// Add the resulting marginal
|
|
if(eliminationResult1.second)
|
|
marginalFactors[clique->conditional()->front()].push_back(eliminationResult1.second);
|
|
|
|
// Split the current clique
|
|
// Find the position of the last leaf key in this clique
|
|
DenseIndex nToRemove = 0;
|
|
while(leafKeys.exists(clique->conditional()->keys()[nToRemove]))
|
|
++ nToRemove;
|
|
|
|
// Make the clique's matrix appear as a subset
|
|
const DenseIndex dimToRemove = clique->conditional()->matrixObject().offset(nToRemove);
|
|
clique->conditional()->matrixObject().firstBlock() = nToRemove;
|
|
clique->conditional()->matrixObject().rowStart() = dimToRemove;
|
|
|
|
// Change the keys in the clique
|
|
FastVector<Key> originalKeys; originalKeys.swap(clique->conditional()->keys());
|
|
clique->conditional()->keys().assign(originalKeys.begin() + nToRemove, originalKeys.end());
|
|
clique->conditional()->nrFrontals() -= nToRemove;
|
|
|
|
// Add to factors to remove factors involved in frontals of current clique
|
|
for(Key frontal: cliqueFrontalsToEliminate)
|
|
{
|
|
const VariableIndex::Factors& involvedFactors = variableIndex_[frontal];
|
|
factorIndicesToRemove.insert(involvedFactors.begin(), involvedFactors.end());
|
|
}
|
|
|
|
// Add removed keys
|
|
leafKeysRemoved.insert(cliqueFrontalsToEliminate.begin(), cliqueFrontalsToEliminate.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point we have updated the BayesTree, now update the remaining iSAM2 data structures
|
|
|
|
// Gather factors to add - the new marginal factors
|
|
GaussianFactorGraph factorsToAdd;
|
|
typedef pair<Key, vector<GaussianFactor::shared_ptr> > Key_Factors;
|
|
for(const Key_Factors& key_factors: marginalFactors) {
|
|
for(const GaussianFactor::shared_ptr& factor: key_factors.second) {
|
|
if(factor) {
|
|
factorsToAdd.push_back(factor);
|
|
if(marginalFactorsIndices)
|
|
marginalFactorsIndices->push_back(nonlinearFactors_.size());
|
|
nonlinearFactors_.push_back(boost::make_shared<LinearContainerFactor>(
|
|
factor));
|
|
if(params_.cacheLinearizedFactors)
|
|
linearFactors_.push_back(factor);
|
|
for(Key factorKey: *factor) {
|
|
fixedVariables_.insert(factorKey); }
|
|
}
|
|
}
|
|
}
|
|
variableIndex_.augment(factorsToAdd); // Augment the variable index
|
|
|
|
// Remove the factors to remove that have been summarized in the newly-added marginal factors
|
|
NonlinearFactorGraph removedFactors;
|
|
for(size_t i: factorIndicesToRemove) {
|
|
removedFactors.push_back(nonlinearFactors_[i]);
|
|
nonlinearFactors_.remove(i);
|
|
if(params_.cacheLinearizedFactors)
|
|
linearFactors_.remove(i);
|
|
}
|
|
variableIndex_.remove(factorIndicesToRemove.begin(), factorIndicesToRemove.end(), removedFactors);
|
|
|
|
if(deletedFactorsIndices)
|
|
deletedFactorsIndices->assign(factorIndicesToRemove.begin(), factorIndicesToRemove.end());
|
|
|
|
// Remove the marginalized variables
|
|
Impl::RemoveVariables(KeySet(leafKeys.begin(), leafKeys.end()), roots_, theta_, variableIndex_, delta_, deltaNewton_, RgProd_,
|
|
deltaReplacedMask_, nodes_, fixedVariables_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ISAM2::updateDelta(bool forceFullSolve) const
|
|
{
|
|
gttic(updateDelta);
|
|
if(params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
|
|
// If using Gauss-Newton, update with wildfireThreshold
|
|
const ISAM2GaussNewtonParams& gaussNewtonParams =
|
|
boost::get<ISAM2GaussNewtonParams>(params_.optimizationParams);
|
|
const double effectiveWildfireThreshold = forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
|
|
gttic(Wildfire_update);
|
|
lastBacksubVariableCount = Impl::UpdateGaussNewtonDelta(
|
|
roots_, deltaReplacedMask_, delta_, effectiveWildfireThreshold);
|
|
deltaReplacedMask_.clear();
|
|
gttoc(Wildfire_update);
|
|
|
|
} else if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams)) {
|
|
// If using Dogleg, do a Dogleg step
|
|
const ISAM2DoglegParams& doglegParams =
|
|
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
|
|
const double effectiveWildfireThreshold = forceFullSolve ? 0.0 : doglegParams.wildfireThreshold;
|
|
|
|
// Do one Dogleg iteration
|
|
gttic(Dogleg_Iterate);
|
|
|
|
// Compute Newton's method step
|
|
gttic(Wildfire_update);
|
|
lastBacksubVariableCount = Impl::UpdateGaussNewtonDelta(roots_, deltaReplacedMask_, deltaNewton_, effectiveWildfireThreshold);
|
|
gttoc(Wildfire_update);
|
|
|
|
// Compute steepest descent step
|
|
const VectorValues gradAtZero = this->gradientAtZero(); // Compute gradient
|
|
Impl::UpdateRgProd(roots_, deltaReplacedMask_, gradAtZero, RgProd_); // Update RgProd
|
|
const VectorValues dx_u = Impl::ComputeGradientSearch(gradAtZero, RgProd_); // Compute gradient search point
|
|
|
|
// Clear replaced keys mask because now we've updated deltaNewton_ and RgProd_
|
|
deltaReplacedMask_.clear();
|
|
|
|
// Compute dogleg point
|
|
DoglegOptimizerImpl::IterationResult doglegResult(DoglegOptimizerImpl::Iterate(
|
|
*doglegDelta_, doglegParams.adaptationMode, dx_u, deltaNewton_, *this, nonlinearFactors_,
|
|
theta_, nonlinearFactors_.error(theta_), doglegParams.verbose));
|
|
gttoc(Dogleg_Iterate);
|
|
|
|
gttic(Copy_dx_d);
|
|
// Update Delta and linear step
|
|
doglegDelta_ = doglegResult.delta;
|
|
delta_ = doglegResult.dx_d; // Copy the VectorValues containing with the linear solution
|
|
gttoc(Copy_dx_d);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Values ISAM2::calculateEstimate() const {
|
|
gttic(ISAM2_calculateEstimate);
|
|
const VectorValues& delta(getDelta());
|
|
gttic(Expmap);
|
|
return theta_.retract(delta);
|
|
gttoc(Expmap);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
const Value& ISAM2::calculateEstimate(Key key) const {
|
|
const Vector& delta = getDelta()[key];
|
|
return *theta_.at(key).retract_(delta);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Values ISAM2::calculateBestEstimate() const {
|
|
updateDelta(true); // Force full solve when updating delta_
|
|
return theta_.retract(delta_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix ISAM2::marginalCovariance(Key key) const {
|
|
return marginalFactor(key, params_.getEliminationFunction())->information().inverse();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
const VectorValues& ISAM2::getDelta() const {
|
|
if(!deltaReplacedMask_.empty())
|
|
updateDelta();
|
|
return delta_;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double ISAM2::error(const VectorValues& x) const
|
|
{
|
|
return GaussianFactorGraph(*this).error(x);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static void gradientAtZeroTreeAdder(const boost::shared_ptr<ISAM2Clique>& root, VectorValues& g) {
|
|
// Loop through variables in each clique, adding contributions
|
|
DenseIndex variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = root->conditional()->begin(); jit != root->conditional()->end(); ++jit) {
|
|
const DenseIndex dim = root->conditional()->getDim(jit);
|
|
pair<VectorValues::iterator, bool> pos_ins =
|
|
g.tryInsert(*jit, root->gradientContribution().segment(variablePosition, dim));
|
|
if(!pos_ins.second)
|
|
pos_ins.first->second += root->gradientContribution().segment(variablePosition, dim);
|
|
variablePosition += dim;
|
|
}
|
|
|
|
// Recursively add contributions from children
|
|
typedef boost::shared_ptr<ISAM2Clique> sharedClique;
|
|
for(const sharedClique& child: root->children) {
|
|
gradientAtZeroTreeAdder(child, g);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
VectorValues ISAM2::gradientAtZero() const
|
|
{
|
|
// Create result
|
|
VectorValues g;
|
|
|
|
// Sum up contributions for each clique
|
|
for(const ISAM2::sharedClique& root: this->roots())
|
|
gradientAtZeroTreeAdder(root, g);
|
|
|
|
return g;
|
|
}
|
|
|
|
}
|
|
/// namespace gtsam
|