gtsam/python/gtsam/tests/test_custom_factor.py

207 lines
6.8 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
CustomFactor unit tests.
Author: Fan Jiang
"""
import unittest
from typing import List
import gtsam
import numpy as np
from gtsam import CustomFactor, JacobianFactor, Pose2, Values
from gtsam.utils.test_case import GtsamTestCase
class TestCustomFactor(GtsamTestCase):
def test_new(self):
"""Test the creation of a new CustomFactor"""
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""Minimal error function stub"""
return np.array([1, 0, 0]), H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0], error_func)
def test_new_keylist(self):
"""Test the creation of a new CustomFactor"""
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""Minimal error function stub"""
return np.array([1, 0, 0]), H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0], error_func)
def test_call(self):
"""Test if calling the factor works (only error)"""
expected_pose = Pose2(1, 1, 0)
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]) -> np.ndarray:
"""Minimal error function with no Jacobian"""
key0 = this.keys()[0]
error = -v.atPose2(key0).localCoordinates(expected_pose)
return error, H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0], error_func)
v = Values()
v.insert(0, Pose2(1, 0, 0))
e = cf.error(v)
self.assertEqual(e, 0.5)
def test_jacobian(self):
"""Tests if the factor result matches the GTSAM Pose2 unit test"""
gT1 = Pose2(1, 2, np.pi / 2)
gT2 = Pose2(-1, 4, np.pi)
expected = Pose2(2, 2, np.pi / 2)
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""
the custom error function. One can freely use variables captured
from the outside scope. Or the variables can be acquired by indexing `v`.
Jacobian is passed by modifying the H array of numpy matrices.
"""
key0 = this.keys()[0]
key1 = this.keys()[1]
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
error = expected.localCoordinates(gT1.between(gT2))
if H is not None:
result = gT1.between(gT2)
H[0] = -result.inverse().AdjointMap()
H[1] = np.eye(3)
return error, H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0, 1], error_func)
v = Values()
v.insert(0, gT1)
v.insert(1, gT2)
bf = gtsam.BetweenFactorPose2(0, 1, expected, noise_model)
gf = cf.linearize(v)
gf_b = bf.linearize(v)
J_cf, b_cf = gf.jacobian()
J_bf, b_bf = gf_b.jacobian()
np.testing.assert_allclose(J_cf, J_bf)
np.testing.assert_allclose(b_cf, b_bf)
def test_printing(self):
"""Tests if the factor result matches the GTSAM Pose2 unit test"""
gT1 = Pose2(1, 2, np.pi / 2)
gT2 = Pose2(-1, 4, np.pi)
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""Minimal error function stub"""
return np.array([1, 0, 0]), H
noise_model = gtsam.noiseModel.Unit.Create(3)
from gtsam.symbol_shorthand import X
cf = CustomFactor(noise_model, [X(0), X(1)], error_func)
cf_string = """CustomFactor on x0, x1
noise model: unit (3)
"""
self.assertEqual(cf_string, repr(cf))
def test_no_jacobian(self):
"""Tests that we will not calculate the Jacobian if not requested"""
gT1 = Pose2(1, 2, np.pi / 2)
gT2 = Pose2(-1, 4, np.pi)
expected = Pose2(2, 2, np.pi / 2)
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""
Error function that mimics a BetweenFactor
:param this: reference to the current CustomFactor being evaluated
:param v: Values object
:param H: list of references to the Jacobian arrays
:return: the non-linear error
"""
key0 = this.keys()[0]
key1 = this.keys()[1]
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
error = expected.localCoordinates(gT1.between(gT2))
self.assertTrue(H is None) # Should be true if we only request the error
if H is not None:
result = gT1.between(gT2)
H[0] = -result.inverse().AdjointMap()
H[1] = np.eye(3)
return error, H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0, 1], error_func)
v = Values()
v.insert(0, gT1)
v.insert(1, gT2)
bf = gtsam.BetweenFactorPose2(0, 1, expected, noise_model)
e_cf = cf.error(v)
e_bf = bf.error(v)
np.testing.assert_allclose(e_cf, e_bf)
def test_optimization(self):
"""Tests if a factor graph with a CustomFactor can be properly optimized"""
gT1 = Pose2(1, 2, np.pi / 2)
gT2 = Pose2(-1, 4, np.pi)
expected = Pose2(2, 2, np.pi / 2)
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
"""
Error function that mimics a BetweenFactor
:param this: reference to the current CustomFactor being evaluated
:param v: Values object
:param H: list of references to the Jacobian arrays
:return: the non-linear error
"""
key0 = this.keys()[0]
key1 = this.keys()[1]
gT1, gT2 = v.atPose2(key0), v.atPose2(key1)
error = expected.localCoordinates(gT1.between(gT2))
if H is not None:
result = gT1.between(gT2)
H[0] = -result.inverse().AdjointMap()
H[1] = np.eye(3)
return error, H
noise_model = gtsam.noiseModel.Unit.Create(3)
cf = CustomFactor(noise_model, [0, 1], error_func)
fg = gtsam.NonlinearFactorGraph()
fg.add(cf)
fg.add(gtsam.PriorFactorPose2(0, gT1, noise_model))
v = Values()
v.insert(0, Pose2(0, 0, 0))
v.insert(1, Pose2(0, 0, 0))
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(fg, v, params)
result = optimizer.optimize()
self.gtsamAssertEquals(result.atPose2(0), gT1, tol=1e-5)
self.gtsamAssertEquals(result.atPose2(1), gT2, tol=1e-5)
if __name__ == "__main__":
unittest.main()