155 lines
5.8 KiB
C++
155 lines
5.8 KiB
C++
/**
|
|
* @file testNonlinearClusterTree.cpp
|
|
* @author Frank Dellaert
|
|
* @date March, 2016
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/NonlinearClusterTree.h>
|
|
#include <gtsam/sam/BearingRangeFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace gtsam;
|
|
|
|
static const Symbol x1('x', 1), x2('x', 2), x3('x', 3);
|
|
static const Symbol l1('l', 1), l2('l', 2);
|
|
|
|
/* ************************************************************************* */
|
|
NonlinearFactorGraph planarSLAMGraph() {
|
|
NonlinearFactorGraph graph;
|
|
|
|
// Prior on pose x1 at the origin.
|
|
Pose2 prior(0.0, 0.0, 0.0);
|
|
auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
|
|
graph.addPrior(x1, prior, priorNoise);
|
|
|
|
// Two odometry factors
|
|
Pose2 odometry(2.0, 0.0, 0.0);
|
|
auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
|
graph.emplace_shared<BetweenFactor<Pose2> >(x1, x2, odometry, odometryNoise);
|
|
graph.emplace_shared<BetweenFactor<Pose2> >(x2, x3, odometry, odometryNoise);
|
|
|
|
// Add Range-Bearing measurements to two different landmarks
|
|
auto measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
|
|
Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
|
|
bearing32 = Rot2::fromDegrees(90);
|
|
double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
|
|
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x1, l1, bearing11, range11, measurementNoise);
|
|
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x2, l1, bearing21, range21, measurementNoise);
|
|
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x3, l2, bearing32, range32, measurementNoise);
|
|
|
|
return graph;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Create initial estimate
|
|
Values planarSLAMValues() {
|
|
Values initial;
|
|
initial.insert(l1, Point2(1.8, 2.1));
|
|
initial.insert(l2, Point2(4.1, 1.8));
|
|
initial.insert(x1, Pose2(0.5, 0.0, 0.2));
|
|
initial.insert(x2, Pose2(2.3, 0.1, -0.2));
|
|
initial.insert(x3, Pose2(4.1, 0.1, 0.1));
|
|
return initial;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NonlinearClusterTree, Clusters) {
|
|
NonlinearFactorGraph graph = planarSLAMGraph();
|
|
Values initial = planarSLAMValues();
|
|
|
|
// Build the clusters
|
|
// NOTE(frank): Order matters here as factors are removed!
|
|
VariableIndex variableIndex(graph);
|
|
typedef NonlinearClusterTree::NonlinearCluster Cluster;
|
|
auto marginalCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x1}, &graph));
|
|
auto landmarkCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {l1, l2}, &graph));
|
|
auto rootCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x2, x3}, &graph));
|
|
|
|
EXPECT_LONGS_EQUAL(3, marginalCluster->nrFactors());
|
|
EXPECT_LONGS_EQUAL(2, landmarkCluster->nrFactors());
|
|
EXPECT_LONGS_EQUAL(1, rootCluster->nrFactors());
|
|
|
|
EXPECT_LONGS_EQUAL(1, marginalCluster->nrFrontals());
|
|
EXPECT_LONGS_EQUAL(2, landmarkCluster->nrFrontals());
|
|
EXPECT_LONGS_EQUAL(2, rootCluster->nrFrontals());
|
|
|
|
// Test linearize
|
|
auto gfg = marginalCluster->linearize(initial);
|
|
EXPECT_LONGS_EQUAL(3, gfg->size());
|
|
|
|
// Calculate expected result of only evaluating the marginalCluster
|
|
Ordering ordering;
|
|
ordering.push_back(x1);
|
|
const auto [bn, fg] = gfg->eliminatePartialSequential(ordering);
|
|
auto expectedFactor = std::dynamic_pointer_cast<HessianFactor>(fg->at(0));
|
|
if (!expectedFactor)
|
|
throw std::runtime_error("Expected HessianFactor");
|
|
|
|
// Linearize and eliminate the marginalCluster
|
|
auto actual = marginalCluster->linearizeAndEliminate(initial);
|
|
const GaussianBayesNet& bayesNet = actual.first;
|
|
const HessianFactor& factor = *actual.second;
|
|
EXPECT(assert_equal(*bn->at(0), *bayesNet.at(0), 1e-6));
|
|
EXPECT(assert_equal(*expectedFactor, factor, 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static NonlinearClusterTree Construct() {
|
|
// Build the clusters
|
|
// NOTE(frank): Order matters here as factors are removed!
|
|
NonlinearFactorGraph graph = planarSLAMGraph();
|
|
VariableIndex variableIndex(graph);
|
|
typedef NonlinearClusterTree::NonlinearCluster Cluster;
|
|
auto marginalCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x1}, &graph));
|
|
auto landmarkCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {l1, l2}, &graph));
|
|
auto rootCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x2, x3}, &graph));
|
|
|
|
// Build the tree
|
|
NonlinearClusterTree clusterTree;
|
|
clusterTree.addRoot(rootCluster);
|
|
rootCluster->addChild(landmarkCluster);
|
|
landmarkCluster->addChild(marginalCluster);
|
|
|
|
return clusterTree;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NonlinearClusterTree, Construct) {
|
|
NonlinearClusterTree clusterTree = Construct();
|
|
|
|
EXPECT_LONGS_EQUAL(3, clusterTree[0].problemSize());
|
|
EXPECT_LONGS_EQUAL(3, clusterTree[0][0].problemSize());
|
|
EXPECT_LONGS_EQUAL(3, clusterTree[0][0][0].problemSize());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NonlinearClusterTree, Solve) {
|
|
NonlinearClusterTree clusterTree = Construct();
|
|
|
|
Values expected;
|
|
expected.insert(l1, Point2(2, 2));
|
|
expected.insert(l2, Point2(4, 2));
|
|
expected.insert(x1, Pose2(0, 0, 0));
|
|
expected.insert(x2, Pose2(2, 0, 0));
|
|
expected.insert(x3, Pose2(4, 0, 0));
|
|
|
|
Values values = planarSLAMValues();
|
|
for (size_t i = 0; i < 4; i++)
|
|
values = clusterTree.updateCholesky(values);
|
|
|
|
EXPECT(assert_equal(expected, values, 1e-7));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|