256 lines
7.9 KiB
C++
256 lines
7.9 KiB
C++
/*
|
|
* schedulingExample.cpp
|
|
* @brief hard scheduling example
|
|
* @date March 25, 2011
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#define ENABLE_TIMING
|
|
#define ADD_NO_CACHING
|
|
#define ADD_NO_PRUNING
|
|
#include <gtsam_unstable/discrete/Scheduler.h>
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/base/timing.h>
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
size_t NRSTUDENTS = 9;
|
|
|
|
bool NonZero(size_t i) {
|
|
return i > 0;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void addStudent(Scheduler& s, size_t i) {
|
|
switch (i) {
|
|
case 0:
|
|
s.addStudent("Pan, Yunpeng", "Controls", "Perception", "Mechanics", "Eric Johnson");
|
|
break;
|
|
case 1:
|
|
s.addStudent("Sawhney, Rahul", "Controls", "AI", "Perception", "Henrik Christensen");
|
|
break;
|
|
case 2:
|
|
s.addStudent("Akgun, Baris", "Controls", "AI", "HRI", "Andrea Thomaz");
|
|
break;
|
|
case 3:
|
|
s.addStudent("Jiang, Shu", "Controls", "AI", "Perception", "Ron Arkin");
|
|
break;
|
|
case 4:
|
|
s.addStudent("Grice, Phillip", "Controls", "Perception", "HRI", "Charlie Kemp");
|
|
break;
|
|
case 5:
|
|
s.addStudent("Huaman, Ana", "Controls", "AI", "Perception", "Mike Stilman");
|
|
break;
|
|
case 6:
|
|
s.addStudent("Levihn, Martin", "AI", "Autonomy", "Perception", "Mike Stilman");
|
|
break;
|
|
case 7:
|
|
s.addStudent("Nieto, Carlos", "AI", "Autonomy", "Perception", "Henrik Christensen");
|
|
break;
|
|
case 8:
|
|
s.addStudent("Robinette, Paul", "Controls", "AI", "HRI", "Ayanna Howard");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Scheduler largeExample(size_t nrStudents = NRSTUDENTS) {
|
|
string path("../../../gtsam_unstable/discrete/examples/");
|
|
Scheduler s(nrStudents, path + "Doodle2012.csv");
|
|
|
|
s.addArea("Harvey Lipkin", "Mechanics");
|
|
s.addArea("Jun Ueda", "Mechanics");
|
|
|
|
s.addArea("Patricio Vela", "Controls");
|
|
s.addArea("Magnus Egerstedt", "Controls");
|
|
s.addArea("Jun Ueda", "Controls");
|
|
s.addArea("Panos Tsiotras", "Controls");
|
|
s.addArea("Fumin Zhang", "Controls");
|
|
|
|
s.addArea("Henrik Christensen", "Perception");
|
|
s.addArea("Aaron Bobick", "Perception");
|
|
|
|
s.addArea("Mike Stilman", "AI");
|
|
// s.addArea("Henrik Christensen", "AI");
|
|
s.addArea("Ayanna Howard", "AI");
|
|
s.addArea("Charles Isbell", "AI");
|
|
s.addArea("Tucker Balch", "AI");
|
|
|
|
s.addArea("Ayanna Howard", "Autonomy");
|
|
s.addArea("Charlie Kemp", "Autonomy");
|
|
s.addArea("Tucker Balch", "Autonomy");
|
|
s.addArea("Ron Arkin", "Autonomy");
|
|
|
|
s.addArea("Andrea Thomaz", "HRI");
|
|
s.addArea("Karen Feigh", "HRI");
|
|
s.addArea("Charlie Kemp", "HRI");
|
|
|
|
// add students
|
|
for (size_t i = 0; i < nrStudents; i++)
|
|
addStudent(s, i);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void runLargeExample() {
|
|
|
|
Scheduler scheduler = largeExample();
|
|
scheduler.print();
|
|
|
|
// BUILD THE GRAPH !
|
|
size_t addMutex = 3;
|
|
// SETDEBUG("Scheduler::buildGraph", true);
|
|
scheduler.buildGraph(addMutex);
|
|
|
|
// Do brute force product and output that to file
|
|
if (scheduler.nrStudents() == 1) { // otherwise too slow
|
|
DecisionTreeFactor product = scheduler.product();
|
|
product.dot("scheduling-large", DefaultKeyFormatter, false);
|
|
}
|
|
|
|
// Do exact inference
|
|
// SETDEBUG("timing-verbose", true);
|
|
SETDEBUG("DiscreteConditional::DiscreteConditional", true);
|
|
#define SAMPLE
|
|
#ifdef SAMPLE
|
|
gttic(large);
|
|
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
|
|
gttoc(large);
|
|
tictoc_finishedIteration();
|
|
tictoc_print();
|
|
for (size_t i=0;i<100;i++) {
|
|
auto assignment = chordal->sample();
|
|
vector<size_t> stats(scheduler.nrFaculty());
|
|
scheduler.accumulateStats(assignment, stats);
|
|
size_t max = *max_element(stats.begin(), stats.end());
|
|
size_t min = *min_element(stats.begin(), stats.end());
|
|
size_t nz = count_if(stats.begin(), stats.end(), NonZero);
|
|
// cout << min << ", " << max << ", " << nz << endl;
|
|
if (nz >= 13 && min >=1 && max <= 4) {
|
|
cout << "======================================================\n";
|
|
scheduler.printAssignment(assignment);
|
|
}
|
|
}
|
|
#else
|
|
gttic(large);
|
|
auto MPE = scheduler.optimize();
|
|
gttoc(large);
|
|
tictoc_finishedIteration();
|
|
tictoc_print();
|
|
scheduler.printAssignment(MPE);
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Solve a series of relaxed problems for maximum flexibility solution
|
|
void solveStaged(size_t addMutex = 2) {
|
|
|
|
// super-hack! just count...
|
|
bool debug = false;
|
|
SETDEBUG("DiscreteConditional::COUNT", true);
|
|
SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
|
|
|
|
// make a vector with slot availability, initially all 1
|
|
// Reads file to get count :-)
|
|
vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0);
|
|
|
|
// now, find optimal value for each student, using relaxed mutex constraints
|
|
for (size_t s = 0; s < NRSTUDENTS; s++) {
|
|
// add all students first time, then drop last one second time, etc...
|
|
Scheduler scheduler = largeExample(NRSTUDENTS - s);
|
|
//scheduler.print(str(boost::format("Scheduler %d") % (NRSTUDENTS-s)));
|
|
|
|
// only allow slots not yet taken
|
|
scheduler.setSlotsAvailable(slotsAvailable);
|
|
|
|
// BUILD THE GRAPH !
|
|
scheduler.buildGraph(addMutex);
|
|
|
|
// Do EXACT INFERENCE
|
|
gttic_(eliminate);
|
|
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
|
|
gttoc_(eliminate);
|
|
|
|
// find root node
|
|
DiscreteConditional::shared_ptr root = chordal->back();
|
|
if (debug)
|
|
root->print(""/*scheduler.studentName(s)*/);
|
|
|
|
// solve root node only
|
|
size_t bestSlot = root->argmax();
|
|
|
|
// get corresponding count
|
|
DiscreteKey dkey = scheduler.studentKey(NRSTUDENTS - 1 - s);
|
|
DiscreteValues values;
|
|
values[dkey.first] = bestSlot;
|
|
size_t count = (*root)(values);
|
|
|
|
// remove this slot from consideration
|
|
slotsAvailable[bestSlot] = 0.0;
|
|
cout << scheduler.studentName(NRSTUDENTS - 1 - s) << " = " <<
|
|
scheduler.slotName(bestSlot) << " (" << bestSlot
|
|
<< "), count = " << count << endl;
|
|
}
|
|
tictoc_print_();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Sample from solution found above and evaluate cost function
|
|
DiscreteBayesNet::shared_ptr createSampler(size_t i,
|
|
size_t slot, vector<Scheduler>& schedulers) {
|
|
Scheduler scheduler = largeExample(0); // todo: wrong nr students
|
|
addStudent(scheduler, i);
|
|
SETDEBUG("Scheduler::buildGraph", false);
|
|
scheduler.addStudentSpecificConstraints(0, slot);
|
|
DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate();
|
|
schedulers.push_back(scheduler);
|
|
return chordal;
|
|
}
|
|
|
|
void sampleSolutions() {
|
|
|
|
vector<Scheduler> schedulers;
|
|
vector<DiscreteBayesNet::shared_ptr> samplers(NRSTUDENTS);
|
|
|
|
// Given the time-slots, we can create NRSTUDENTS independent samplers
|
|
vector<size_t> slots{3, 20, 2, 6, 5, 11, 1, 4}; // given slots
|
|
for (size_t i = 0; i < NRSTUDENTS; i++)
|
|
samplers[i] = createSampler(i, slots[i], schedulers);
|
|
|
|
// now, sample schedules
|
|
for (size_t n = 0; n < 500; n++) {
|
|
vector<size_t> stats(19, 0);
|
|
vector<DiscreteValues> samples;
|
|
for (size_t i = 0; i < NRSTUDENTS; i++) {
|
|
samples.push_back(samplers[i]->sample());
|
|
schedulers[i].accumulateStats(samples[i], stats);
|
|
}
|
|
size_t max = *max_element(stats.begin(), stats.end());
|
|
size_t min = *min_element(stats.begin(), stats.end());
|
|
size_t nz = count_if(stats.begin(), stats.end(), NonZero);
|
|
if (nz >= 15 && max <= 2) {
|
|
cout << "Sampled schedule " << (n + 1) << ", min = " << min
|
|
<< ", nz = " << nz << ", max = " << max << endl;
|
|
for (size_t i = 0; i < NRSTUDENTS; i++) {
|
|
cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName(
|
|
slots[i]) << endl;
|
|
schedulers[i].printSpecial(samples[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
// runLargeExample();
|
|
solveStaged(3);
|
|
// sampleSolutions();
|
|
return 0;
|
|
}
|
|
/* ************************************************************************* */
|
|
|