87 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file Pose2SLAMExampleExpressions.cpp
 | 
						|
 * @brief Expressions version of Pose2SLAMExample.cpp
 | 
						|
 * @date Oct 2, 2014
 | 
						|
 * @author Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
// The two new headers that allow using our Automatic Differentiation Expression framework
 | 
						|
#include <gtsam/slam/expressions.h>
 | 
						|
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
 | 
						|
 | 
						|
// For an explanation of headers below, please see Pose2SLAMExample.cpp
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | 
						|
#include <gtsam/nonlinear/Marginals.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
int main(int argc, char** argv) {
 | 
						|
 | 
						|
  // 1. Create a factor graph container and add factors to it
 | 
						|
  ExpressionFactorGraph graph;
 | 
						|
 | 
						|
  // Create Expressions for unknowns
 | 
						|
  Pose2_ x1(1), x2(2), x3(3), x4(4), x5(5);
 | 
						|
 | 
						|
  // 2a. Add a prior on the first pose, setting it to the origin
 | 
						|
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
 | 
						|
  graph.addExpressionFactor(x1, Pose2(0, 0, 0), priorNoise);
 | 
						|
 | 
						|
  // For simplicity, we will use the same noise model for odometry and loop closures
 | 
						|
  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | 
						|
 | 
						|
  // 2b. Add odometry factors
 | 
						|
  graph.addExpressionFactor(between(x1,x2), Pose2(2, 0, 0     ), model);
 | 
						|
  graph.addExpressionFactor(between(x2,x3), Pose2(2, 0, M_PI_2), model);
 | 
						|
  graph.addExpressionFactor(between(x3,x4), Pose2(2, 0, M_PI_2), model);
 | 
						|
  graph.addExpressionFactor(between(x4,x5), Pose2(2, 0, M_PI_2), model);
 | 
						|
 | 
						|
  // 2c. Add the loop closure constraint
 | 
						|
  graph.addExpressionFactor(between(x5,x2), Pose2(2, 0, M_PI_2), model);
 | 
						|
  graph.print("\nFactor Graph:\n"); // print
 | 
						|
 | 
						|
  // 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
						|
  // For illustrative purposes, these have been deliberately set to incorrect values
 | 
						|
  Values initialEstimate;
 | 
						|
  initialEstimate.insert(1, Pose2(0.5, 0.0,  0.2   ));
 | 
						|
  initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2   ));
 | 
						|
  initialEstimate.insert(3, Pose2(4.1, 0.1,  M_PI_2));
 | 
						|
  initialEstimate.insert(4, Pose2(4.0, 2.0,  M_PI  ));
 | 
						|
  initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2));
 | 
						|
  initialEstimate.print("\nInitial Estimate:\n"); // print
 | 
						|
 | 
						|
  // 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
 | 
						|
  GaussNewtonParams parameters;
 | 
						|
  parameters.relativeErrorTol = 1e-5;
 | 
						|
  parameters.maxIterations = 100;
 | 
						|
  GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters);
 | 
						|
  Values result = optimizer.optimize();
 | 
						|
  result.print("Final Result:\n");
 | 
						|
 | 
						|
  // 5. Calculate and print marginal covariances for all variables
 | 
						|
  cout.precision(3);
 | 
						|
  Marginals marginals(graph, result);
 | 
						|
  cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
 | 
						|
  cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
 | 
						|
  cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
 | 
						|
  cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl;
 | 
						|
  cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |