gtsam/examples/tests/testPlanarSLAMExample_lago.cpp

421 lines
18 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testPlanarSLAMExample_lago.cpp
* @brief Unit tests for planar SLAM example using the initialization technique
* LAGO (Linear Approximation for Graph Optimization)
*
* @author Luca Carlone
* @author Frank Dellaert
* @date May 14, 2014
*/
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
// the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
#include <gtsam/geometry/Pose2.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use a RangeBearing factor for the range-bearing measurements to identified
// landmarks, and Between factors for the relative motion described by odometry measurements.
// Also, we will initialize the robot at the origin using a Prior factor.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/base/TestableAssertions.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/math/constants/constants.hpp>
#include <cmath>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
static const double PI = boost::math::constants::pi<double>();
#include <gtsam/inference/graph.h>
/**
* @brief Initialization technique for planar pose SLAM using
* LAGO (Linear Approximation for Graph Optimization). see papers:
*
* L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
* approximation for planar pose graph optimization, IJRR, 2014.
*
* L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
* for graph-based simultaneous localization and mapping, RSS, 2011.
*
* @param graph: nonlinear factor graph including between (Pose2) measurements
* @return Values: initial guess including orientation estimate from LAGO
*/
/*
* This function computes the cumulative orientation wrt the root (without wrapping)
* for a node (without wrapping). The function starts at the nodes and moves towards the root
* summing up the (directed) rotation measurements. The root is assumed to have orientation zero
*/
double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while(1){
// We check if we reached the root
if(tree[key_child]==key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap[key_child];
// we get the parent
key_parent = tree[key_child]; // the parent
// we check if we connected to some part of the tree we know
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
nodeTheta += thetaFromRootMap[key_parent];
break;
}
key_child = key_parent; // we move upwards in the tree
}
return nodeTheta;
}
/*
* This function computes the cumulative orientation (without wrapping)
* for all node wrt the root (root has zero orientation)
*/
map<Key, double> computeThetasToRoot(vector<Key>& keysInBinary, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree){
map<Key, double> thetaToRootMap;
BOOST_FOREACH(const Key& nodeKey, keysInBinary){
double nodeTheta = computeThetaToRoot(nodeKey, tree, deltaThetaMap, thetaToRootMap);
thetaToRootMap.insert(std::pair<Key, double>(nodeKey, nodeTheta));
}
return thetaToRootMap;
}
/*
* Given a factor graph "g", and a spanning tree "tree", the function selects the nodes belong to the tree and to g,
* and stores the factor slots corresponding to edges in the tree and to chords wrt this tree
* Also it computes deltaThetaMap which is a fast way to encode relative orientations along the tree:
* for a node key2, s.t. tree[key2]=key1, the values deltaThetaMap[key2] is the relative orientation theta[key2]-theta[key1]
*/
void getSymbolicSubgraph(vector<Key>& keysInBinary,
/*OUTPUTS*/ vector<size_t>& spanningTree, vector<size_t>& chords, map<Key, double>& deltaThetaMap,
/*INPUTS*/ PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
// Get keys for which you want the orientation
size_t id=0;
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
if (factor->keys().size() == 2){
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
// recast to a between
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) continue;
// store the keys: these are the orientations we are going to estimate
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
keysInBinary.push_back(key1);
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
keysInBinary.push_back(key2);
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// insert (directed) orientations in the map "deltaThetaMap"
bool inTree=false;
if(tree[key1]==key2){
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
inTree = true;
}
if(tree[key2]==key1){
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
inTree = true;
}
// store factor slot, distinguishing spanning tree edges from chords
if(inTree == true)
spanningTree.push_back(id);
else // it's a chord!
chords.push_back(id);
}
id++;
}
}
void getDeltaThetaAndNoise(NonlinearFactor::shared_ptr factor,
Vector& deltaTheta, noiseModel::Diagonal::shared_ptr& model_deltaTheta){
td::cout << "TODO: improve computation of noise model" << std::endl;
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) throw std::invalid_argument("buildOrientationGraph: invalid between factor!");
deltaTheta = (Vector(1) << pose2Between->measured().theta());
// Retrieve noise model
SharedNoiseModel model = pose2Between->get_noiseModel();
boost::shared_ptr< noiseModel::Gaussian > gaussianModel = boost::dynamic_pointer_cast< noiseModel::Gaussian >(model);
if (!gaussianModel) throw std::invalid_argument("buildOrientationGraph: invalid noise model!");
Matrix infoMatrix = gaussianModel->R() * gaussianModel->R(); // information matrix
Matrix covMatrix = infoMatrix.inverse();
Vector variance_deltaTheta = (Vector(1) << covMatrix(2,2));
model_deltaTheta = noiseModel::Diagonal::Variances(variance_deltaTheta);
}
/*
* Linear factor graph with regularized orientation measurements
*/
GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, const vector<size_t>& chords,
const NonlinearFactorGraph& g, map<Key, double> orientationsToRoot){
GaussianFactorGraph lagoGraph;
Vector deltaTheta;
noiseModel::Diagonal::shared_ptr model_deltaTheta;
Matrix I = eye(1);
// put original measurements in the spanning tree
BOOST_FOREACH(const size_t& factorId, spanningTree){
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaTheta, model_deltaTheta));
}
// put regularized measurements in the chords
BOOST_FOREACH(const size_t& factorId, chords){
Key key1 = g[factorId]->keys()[0];
Key key2 = g[factorId]->keys()[1];
getDeltaThetaAndNoise(g[factorId], deltaTheta, model_deltaTheta);
double key1_DeltaTheta_key2 = deltaTheta(0);
double k2pi_noise = key1_DeltaTheta_key2 + orientationsToRoot[key1] - orientationsToRoot[key2]; // this coincides to summing up measurements along the cycle induced by the chord
double k = round(k2pi_noise/(2*PI));
Vector deltaThetaRegularized = (Vector(1) << key1_DeltaTheta_key2 - 2*k*PI);
lagoGraph.add(JacobianFactor(key1, -I, key2, I, deltaThetaRegularized, model_deltaTheta));
}
// prior on first orientation (anchor)
noiseModel::Diagonal::shared_ptr model_anchor = noiseModel::Diagonal::Variances((Vector(1) << 1e-8));
std::cout << "TODO: fix the right root orientation and key" << std::endl;
lagoGraph.add(JacobianFactor(x0, I, (Vector(1) << 0.0), model_anchor));
return lagoGraph;
}
/* ************************************************************************* */
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
VectorValues initializeLago(const NonlinearFactorGraph& graph, vector<Key>& keysInBinary) {
// Find a minimum spanning tree
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(graph);
// Create a linear factor graph (LFG) of scalars
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, graph);
// temporary structure to correct wraparounds along loops
map<Key, double> orientationsToRoot = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
// regularize measurements and plug everything in a factor graph
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, graph, orientationsToRoot);
// Solve the LFG
VectorValues estimateLago = lagoGraph.optimize();
return estimateLago;
}
/* ************************************************************************* */
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
vector<Key> keysInBinary;
return initializeLago(graph, keysInBinary);
}
/* ************************************************************************* */
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
vector<Key> keysInBinary;
VectorValues orientations = initializeLago(graph, keysInBinary);
// plug the orientations in the initialGuess
for(size_t i=0; i<keysInBinary.size(); i++){
Key key = keysInBinary[i];
Pose2 pose = initialGuess.at<Pose2>(key);
Vector orientation = orientations.at(key);
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
initialGuessLago.insert(key, poseLago);
}
return initialGuessLago;
}
namespace simple {
// We consider a small graph:
// symbolic FG
// x2 0 1
// / | \ 1 2
// / | \ 2 3
// x3 | x1 2 0
// \ | / 0 3
// \ | /
// x0
//
Pose2 pose0 = Pose2(0.000000, 0.000000, 0.000000);
Pose2 pose1 = Pose2(1.000000, 1.000000, 1.570796);
Pose2 pose2 = Pose2(0.000000, 2.000000, 3.141593);
Pose2 pose3 = Pose2(-1.000000, 1.000000, 4.712389);
NonlinearFactorGraph graph() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose2>(x0, x1, pose0.between(pose1), model));
g.add(BetweenFactor<Pose2>(x1, x2, pose1.between(pose2), model));
g.add(BetweenFactor<Pose2>(x2, x3, pose2.between(pose3), model));
g.add(BetweenFactor<Pose2>(x2, x0, pose2.between(pose0), model));
g.add(BetweenFactor<Pose2>(x0, x3, pose0.between(pose3), model));
return g;
}
}
/* *************************************************************************** */
TEST( Lago, checkSTandChords ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
DOUBLES_EQUAL(spanningTree[0], 0, 1e-6); // factor 0 is the first in the ST (0->1)
DOUBLES_EQUAL(spanningTree[1], 3, 1e-6); // factor 3 is the second in the ST(2->0)
DOUBLES_EQUAL(spanningTree[2], 4, 1e-6); // factor 4 is the third in the ST(0->3)
}
/* *************************************************************************** */
TEST( Lago, orientationsOverSpanningTree ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
// check the tree structure
EXPECT_LONGS_EQUAL(tree[x0], x0);
EXPECT_LONGS_EQUAL(tree[x1], x0);
EXPECT_LONGS_EQUAL(tree[x2], x0);
EXPECT_LONGS_EQUAL(tree[x3], x0);
map<Key, double> expected;
expected[x0]= 0;
expected[x1]= PI/2; // edge x0->x1 (consistent with edge (x0,x1))
expected[x2]= -PI; // edge x0->x2 (traversed backwards wrt edge (x2,x0))
expected[x3]= -PI/2; // edge x0->x3 (consistent with edge (x0,x3))
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
map<Key, double> actual;
actual = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
DOUBLES_EQUAL(expected[x0], actual[x0], 1e-6);
DOUBLES_EQUAL(expected[x1], actual[x1], 1e-6);
DOUBLES_EQUAL(expected[x2], actual[x2], 1e-6);
DOUBLES_EQUAL(expected[x3], actual[x3], 1e-6);
}
/* *************************************************************************** */
TEST( Lago, regularizedMeasurements ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
getSymbolicSubgraph(keysInBinary, spanningTree, chords, deltaThetaMap, tree, g);
map<Key, double> orientationsToRoot = computeThetasToRoot(keysInBinary, deltaThetaMap, tree);
GaussianFactorGraph lagoGraph = buildOrientationGraph(spanningTree, chords, g, orientationsToRoot);
std::pair<Matrix,Vector> actualAb = lagoGraph.jacobian();
// jacobian corresponding to the orientation measurements (last entry is the prior on the anchor and is disregarded)
Vector actual = (Vector(5) << actualAb.second(0),actualAb.second(1),actualAb.second(2),actualAb.second(3),actualAb.second(4));
// this is the whitened error, so we multiply by the std to unwhiten
actual = 0.1 * actual;
// Expected regularized measurements (same for the spanning tree, corrected for the chords)
Vector expected = (Vector(5) << PI/2, PI, -PI/2, PI/2 - 2*PI , PI/2);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphVectorValues ) {
VectorValues initialGuessLago = initializeLago(simple::graph());
// comparison is up to PI, that's why we add some multiples of 2*PI
EXPECT(assert_equal((Vector(1) << 0.0), initialGuessLago.at(x0), 1e-6));
EXPECT(assert_equal((Vector(1) << 0.5 * PI), initialGuessLago.at(x1), 1e-6));
EXPECT(assert_equal((Vector(1) << PI - 2*PI), initialGuessLago.at(x2), 1e-6));
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphValues ) {
// we set the orientations in the initial guess to zero
Values initialGuess;
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = initializeLago(simple::graph(), initialGuess);
// we are in a noiseless case
Values expected;
expected.insert(x0,simple::pose0);
expected.insert(x1,simple::pose1);
expected.insert(x2,simple::pose2);
expected.insert(x3,simple::pose3);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */