gtsam/matlab/examples/VisualISAMInitialize.m

63 lines
2.0 KiB
Matlab

function [noiseModels,isam,result] = VisualInitialize(data,truth,options)
% VisualInitialize: initialize visualSLAM::iSAM object and noise parameters
% Authors: Duy Nguyen Ta and Frank Dellaert
%% Initialize iSAM
isam = visualSLAMISAM(options.reorderInterval);
%% Set Noise parameters
noiseModels.pose = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
noiseModels.odometry = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
noiseModels.point = gtsamSharedNoiseModel_Sigma(3, 0.1);
noiseModels.measurement = gtsamSharedNoiseModel_Sigma(2, 1.0);
%% Add constraints/priors
% TODO: should not be from ground truth!
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
for i=1:2
ii = symbol('x',i);
if i==1 & options.hardConstraint % add hard constraint
newFactors.addPoseConstraint(ii,truth.cameras{1}.pose);
else
newFactors.addPosePrior(ii,truth.cameras{i}.pose, noiseModels.pose);
end
initialEstimates.insertPose(ii,truth.cameras{i}.pose);
end
%% Add visual measurement factors from two first poses
for i=1:2
ii = symbol('x',i);
for j=1:size(data.z,2)
jj = symbol('l',j);
newFactors.addMeasurement(data.z{i,j}, noiseModels.measurement, ii, jj, data.K);
end
end
%% Initialize points, possibly add priors on them
% TODO: should not be from ground truth!
for j=1:size(data.z,2)
jj = symbol('l',j);
if options.pointPriors % add point priors
newFactors.addPointPrior(jj, truth.points{j}, noiseModels.point);
end
initialEstimates.insertPoint(jj, truth.points{j});
end
%% Update ISAM
if options.batchInitialization % Do a full optimize for first two poses
fullyOptimized = newFactors.optimize(initialEstimates);
isam.update(newFactors, fullyOptimized);
else
isam.update(newFactors, initialEstimates);
end
% figure(1);tic;
% t=toc; plot(frame_i,t,'r.'); tic
result = isam.estimate();
% t=toc; plot(frame_i,t,'g.');
if options.alwaysRelinearize % re-linearize
isam.reorder_relinearize();
end
cla;