gtsam/gtsam/geometry/tests/testEssentialMatrix.cpp

230 lines
7.6 KiB
C++

/*
* @file testEssentialMatrix.cpp
* @brief Test EssentialMatrix class
* @author Frank Dellaert
* @date December 17, 2013
*/
#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <sstream>
using namespace std;
using namespace gtsam;
GTSAM_CONCEPT_TESTABLE_INST(EssentialMatrix)
GTSAM_CONCEPT_MANIFOLD_INST(EssentialMatrix)
//*************************************************************************
// Create two cameras and corresponding essential matrix E
Rot3 c1Rc2 = Rot3::yaw(M_PI_2);
Point3 c1Tc2(0.1, 0, 0);
EssentialMatrix trueE(c1Rc2, Unit3(c1Tc2));
//*************************************************************************
TEST (EssentialMatrix, equality) {
EssentialMatrix actual(c1Rc2, Unit3(c1Tc2)), expected(c1Rc2, Unit3(c1Tc2));
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, FromPose3) {
EssentialMatrix expected(c1Rc2, Unit3(c1Tc2));
Pose3 pose(c1Rc2, c1Tc2);
EssentialMatrix actual = EssentialMatrix::FromPose3(pose);
EXPECT(assert_equal(expected, actual));
}
//*******************************************************************************
TEST(EssentialMatrix, localCoordinates0) {
EssentialMatrix E;
Vector expected = zero(5);
Vector actual = E.localCoordinates(E);
EXPECT(assert_equal(expected, actual, 1e-8));
}
//*************************************************************************
TEST (EssentialMatrix, localCoordinates) {
// Pose between two cameras
Pose3 pose(c1Rc2, c1Tc2);
EssentialMatrix hx = EssentialMatrix::FromPose3(pose);
Vector actual = hx.localCoordinates(EssentialMatrix::FromPose3(pose));
EXPECT(assert_equal(zero(5), actual, 1e-8));
Vector6 d;
d << 0.1, 0.2, 0.3, 0, 0, 0;
Vector actual2 = hx.localCoordinates(
EssentialMatrix::FromPose3(pose.retract(d)));
EXPECT(assert_equal(d.head(5), actual2, 1e-8));
}
//*************************************************************************
TEST (EssentialMatrix, retract0) {
EssentialMatrix actual = trueE.retract(zero(5));
EXPECT(assert_equal(trueE, actual));
}
//*************************************************************************
TEST (EssentialMatrix, retract1) {
EssentialMatrix expected(c1Rc2.retract(Vector3(0.1, 0, 0)), Unit3(c1Tc2));
EssentialMatrix actual = trueE.retract((Vector(5) << 0.1, 0, 0, 0, 0).finished());
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, retract2) {
EssentialMatrix expected(c1Rc2,
Unit3(c1Tc2).retract(Vector2(0.1, 0)));
EssentialMatrix actual = trueE.retract((Vector(5) << 0, 0, 0, 0.1, 0).finished());
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, RoundTrip) {
Vector5 d;
d << 0.1, 0.2, 0.3, 0.4, 0.5;
EssentialMatrix e, hx = e.retract(d);
Vector actual = e.localCoordinates(hx);
EXPECT(assert_equal(d, actual, 1e-8));
}
//*************************************************************************
Point3 transform_to_(const EssentialMatrix& E, const Point3& point) {
return E.transform_to(point);
}
TEST (EssentialMatrix, transform_to) {
// test with a more complicated EssentialMatrix
Rot3 aRb2 = Rot3::yaw(M_PI / 3.0) * Rot3::pitch(M_PI_4)
* Rot3::roll(M_PI / 6.0);
Point3 aTb2(19.2, 3.7, 5.9);
EssentialMatrix E(aRb2, Unit3(aTb2));
//EssentialMatrix E(aRb, Unit3(aTb).retract(Vector2(0.1, 0)));
static Point3 P(0.2, 0.7, -2);
Matrix actH1, actH2;
E.transform_to(P, actH1, actH2);
Matrix expH1 = numericalDerivative21(transform_to_, E, P), //
expH2 = numericalDerivative22(transform_to_, E, P);
EXPECT(assert_equal(expH1, actH1, 1e-8));
EXPECT(assert_equal(expH2, actH2, 1e-8));
}
//*************************************************************************
EssentialMatrix rotate_(const EssentialMatrix& E, const Rot3& cRb) {
return E.rotate(cRb);
}
TEST (EssentialMatrix, rotate) {
// Suppose the essential matrix is specified in a body coordinate frame B
// which is rotated with respect to the camera frame C, via rotation bRc.
// The rotation between body and camera is:
Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
Rot3 bRc(bX, bZ, -bY), cRb = bRc.inverse();
// Let's compute the ground truth E in body frame:
Rot3 b1Rb2 = bRc * c1Rc2 * cRb;
Point3 b1Tb2 = bRc * c1Tc2;
EssentialMatrix bodyE(b1Rb2, Unit3(b1Tb2));
EXPECT(assert_equal(bodyE, bRc * trueE, 1e-8));
EXPECT(assert_equal(bodyE, trueE.rotate(bRc), 1e-8));
// Let's go back to camera frame:
EXPECT(assert_equal(trueE, cRb * bodyE, 1e-8));
EXPECT(assert_equal(trueE, bodyE.rotate(cRb), 1e-8));
// Derivatives
Matrix actH1, actH2;
try {
bodyE.rotate(cRb, actH1, actH2);
} catch (exception e) {
} // avoid exception
Matrix expH1 = numericalDerivative21(rotate_, bodyE, cRb), //
expH2 = numericalDerivative22(rotate_, bodyE, cRb);
EXPECT(assert_equal(expH1, actH1, 1e-7));
// Does not work yet EXPECT(assert_equal(expH2, actH2, 1e-8));
}
//*************************************************************************
TEST (EssentialMatrix, FromPose3_a) {
Matrix actualH;
Pose3 pose(c1Rc2, c1Tc2); // Pose between two cameras
EXPECT(assert_equal(trueE, EssentialMatrix::FromPose3(pose, actualH), 1e-8));
Matrix expectedH = numericalDerivative11<EssentialMatrix, Pose3>(
boost::bind(EssentialMatrix::FromPose3, _1, boost::none), pose);
EXPECT(assert_equal(expectedH, actualH, 1e-7));
}
//*************************************************************************
TEST (EssentialMatrix, FromPose3_b) {
Matrix actualH;
Rot3 c1Rc2 = Rot3::ypr(0.1, -0.2, 0.3);
Point3 c1Tc2(0.4, 0.5, 0.6);
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
Pose3 pose(c1Rc2, c1Tc2); // Pose between two cameras
EXPECT(assert_equal(E, EssentialMatrix::FromPose3(pose, actualH), 1e-8));
Matrix expectedH = numericalDerivative11<EssentialMatrix, Pose3>(
boost::bind(EssentialMatrix::FromPose3, _1, boost::none), pose);
EXPECT(assert_equal(expectedH, actualH, 1e-5));
}
//*************************************************************************
TEST (EssentialMatrix, streaming) {
EssentialMatrix expected(c1Rc2, Unit3(c1Tc2)), actual;
stringstream ss;
ss << expected;
ss >> actual;
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, epipoles) {
// Create an E
Rot3 c1Rc2 = Rot3::ypr(0.1, -0.2, 0.3);
Point3 c1Tc2(0.4, 0.5, 0.6);
EssentialMatrix E(c1Rc2, Unit3(c1Tc2));
// Calculate expected values through SVD
Matrix U, V;
Vector S;
gtsam::svd(E.matrix(), U, S, V);
// take care of SVD sign ambiguity
if (U(0, 2) > 0) {
U = -U;
V = -V;
}
// check rank 2 constraint
CHECK(fabs(S(2))<1e-10);
// check epipoles not at infinity
CHECK(fabs(U(2,2))>1e-10 && fabs(V(2,2))>1e-10);
// Check epipoles
// Epipole in image 1 is just E.direction()
Unit3 e1(-U(0, 2), -U(1, 2), -U(2, 2));
Unit3 actual = E.epipole_a();
EXPECT(assert_equal(e1, actual));
// take care of SVD sign ambiguity
if (V(0, 2) < 0) {
U = -U;
V = -V;
}
// Epipole in image 2 is E.rotation().unrotate(E.direction())
Unit3 e2(V(0, 2), V(1, 2), V(2, 2));
EXPECT(assert_equal(e2, E.epipole_b()));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */