190 lines
5.3 KiB
C++
190 lines
5.3 KiB
C++
/**
|
|
* @file testRot3.cpp
|
|
* @brief Unit tests for Rot3 class
|
|
* @author Alireza Fathi
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include "numericalDerivative.h"
|
|
#include "Point3.h"
|
|
#include "Rot3.h"
|
|
|
|
using namespace gtsam;
|
|
|
|
Rot3 R = rodriguez(0.1,0.4,0.2);
|
|
Point3 P(0.2,0.7,-2.0);
|
|
double error = 1e-9, epsilon=0.001;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor) {
|
|
Rot3 expected(eye(3,3));
|
|
Vector r1(3), r2(3), r3(3);
|
|
r1(0)=1;r1(1)=0;r1(2)=0;
|
|
r2(0)=0;r2(1)=1;r2(2)=0;
|
|
r3(0)=0;r3(1)=0;r3(2)=1;
|
|
Rot3 actual(r1,r2,r3);
|
|
CHECK(assert_equal(actual,expected));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor2) {
|
|
Matrix R = Matrix_(3,3,
|
|
11.,12.,13.,
|
|
21.,22.,23.,
|
|
31.,32.,33.);
|
|
Rot3 actual(R);
|
|
Rot3 expected(11,12,13,
|
|
21,22,23,
|
|
31,32,33);
|
|
CHECK(assert_equal(actual,expected));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor3) {
|
|
Rot3 expected(1,2,3,4,5,6,7,8,9);
|
|
Point3 r1(1,4,7), r2(2,5,8), r3(3,6,9);
|
|
CHECK(assert_equal(Rot3(r1,r2,r3),expected));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, transpose) {
|
|
Rot3 R(1,2,3,4,5,6,7,8,9);
|
|
Point3 r1(1,2,3), r2(4,5,6), r3(7,8,9);
|
|
CHECK(assert_equal(R.inverse(),Rot3(r1,r2,r3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, equals) {
|
|
CHECK(R.equals(R));
|
|
Rot3 zero;
|
|
CHECK(!R.equals(zero));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 slow_but_correct_rodriguez(const Vector& w) {
|
|
double t = norm_2(w);
|
|
Matrix J = skewSymmetric(w/t);
|
|
if (t < 1e-5) return Rot3();
|
|
Matrix R = eye(3, 3) + sin(t) * J + (1.0 - cos(t)) * (J * J);
|
|
return R; // matrix constructor will be tripped
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, rodriguez) {
|
|
Rot3 R1 = rodriguez(epsilon, 0, 0);
|
|
Vector w = Vector_(3,epsilon,0.,0.);
|
|
Rot3 R2 = slow_but_correct_rodriguez(w);
|
|
CHECK(assert_equal(R1,R2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, rodriguez2) {
|
|
Vector v(3); v(0) = 0; v(1) = 1; v(2) = 0;
|
|
Rot3 R1 = rodriguez(v, 3.14/4.0);
|
|
Rot3 R2(0.707388,0,0.706825,
|
|
0,1,0,
|
|
-0.706825,0,0.707388);
|
|
CHECK(assert_equal(R1,R2,1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, rodriguez3) {
|
|
Vector w = Vector_(3,0.1,0.2,0.3);
|
|
Rot3 R1 = rodriguez(w/norm_2(w), norm_2(w));
|
|
Rot3 R2 = slow_but_correct_rodriguez(w);
|
|
CHECK(assert_equal(R1,R2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
//TEST(Rot3, manifold) {
|
|
// Rot3 t1 = rodriguez(0.1,0.4,0.2);
|
|
// Rot3 t2 = rodriguez(0.3,0.1,0.7);
|
|
// Rot3 origin;
|
|
// Vector d12 = t1.log(t2);
|
|
// CHECK(assert_equal(t2, t1.exmap(d12)));
|
|
// CHECK(assert_equal(t2, origin.exmap(d12)*t1));
|
|
// Vector d21 = t2.log(t1);
|
|
// CHECK(assert_equal(t1, t2.exmap(d21)));
|
|
// CHECK(assert_equal(t1, origin.exmap(d21)*t2));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, exmap)
|
|
{
|
|
Vector v(3);
|
|
fill(v.begin(), v.end(), 0);
|
|
CHECK(assert_equal(R.exmap(v), R));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// rotate derivatives
|
|
|
|
TEST( Rot3, Drotate1)
|
|
{
|
|
Matrix computed = Drotate1(R, P);
|
|
Matrix numerical = numericalDerivative21(rotate,R,P);
|
|
CHECK(assert_equal(numerical,computed,error));
|
|
}
|
|
|
|
TEST( Rot3, Drotate2_DNrotate2)
|
|
{
|
|
Matrix computed = Drotate2(R);
|
|
Matrix numerical = numericalDerivative22(rotate,R,P);
|
|
CHECK(assert_equal(numerical,computed,error));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, unrotate)
|
|
{
|
|
Point3 w = R*P;
|
|
CHECK(assert_equal(unrotate(R,w),P));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// unrotate derivatives
|
|
|
|
TEST( Rot3, Dunrotate1)
|
|
{
|
|
Matrix computed = Dunrotate1(R, P);
|
|
Matrix numerical = numericalDerivative21(unrotate,R,P);
|
|
CHECK(assert_equal(numerical,computed,error));
|
|
}
|
|
|
|
TEST( Rot3, Dunrotate2_DNunrotate2)
|
|
{
|
|
Matrix computed = Dunrotate2(R);
|
|
Matrix numerical = numericalDerivative22(unrotate,R,P);
|
|
CHECK(assert_equal(numerical,computed,error));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, RQ)
|
|
{
|
|
// Try RQ on a pure rotation
|
|
Matrix actualK; Vector actual;
|
|
boost::tie(actualK,actual) = RQ(R.matrix());
|
|
Vector expected = Vector_(3,0.14715, 0.385821, 0.231671);
|
|
CHECK(assert_equal(eye(3),actualK));
|
|
CHECK(assert_equal(expected,actual,1e-6));
|
|
|
|
// Try using ypr call
|
|
actual = R.ypr();
|
|
CHECK(assert_equal(expected,actual,1e-6));
|
|
|
|
// Try RQ to recover calibration from 3*3 sub-block of projection matrix
|
|
Matrix K = Matrix_(3,3,
|
|
500.0, 0.0, 320.0,
|
|
0.0, 500.0, 240.0,
|
|
0.0, 0.0, 1.0
|
|
);
|
|
Matrix A = K*R.matrix();
|
|
boost::tie(actualK,actual) = RQ(A);
|
|
CHECK(assert_equal(K,actualK));
|
|
CHECK(assert_equal(expected,actual,1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main(){ TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|
|
|