329 lines
13 KiB
C++
329 lines
13 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testDoglegOptimizer.cpp
|
|
* @brief Unit tests for DoglegOptimizer
|
|
* @author Richard Roberts
|
|
* @author Frank dellaert
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/nonlinear/DoglegOptimizer.h>
|
|
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
|
#include <gtsam/nonlinear/NonlinearEquality.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
|
#include "examples/SFMdata.h"
|
|
|
|
#include <functional>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeBlend) {
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
|
|
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
|
|
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
|
|
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
|
|
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
|
|
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
|
|
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished());
|
|
|
|
// Compute steepest descent point
|
|
VectorValues xu = gbn.optimizeGradientSearch();
|
|
|
|
// Compute Newton's method point
|
|
VectorValues xn = gbn.optimize();
|
|
|
|
// The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
|
|
EXPECT(xu.vector().norm() < xn.vector().norm());
|
|
|
|
// Compute blend
|
|
double Delta = 1.5;
|
|
VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
|
|
DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeBlendEdgeCases) {
|
|
// Test Derived from Issue #1861
|
|
// Evaluate ComputeBlend Behavior for edge cases where the trust region
|
|
// is equal in size to that of the newton step or the gradient step.
|
|
|
|
// Simulated Newton (n) and Gradient Descent (u) step vectors w/ ||n|| > ||u||
|
|
VectorValues::Dims dims;
|
|
dims[0] = 3;
|
|
VectorValues n(Vector3(0.3233546123, -0.2133456123, 0.3664345632), dims);
|
|
VectorValues u(Vector3(0.0023456342, -0.04535687, 0.087345661212), dims);
|
|
|
|
// Test upper edge case where trust region is equal to magnitude of newton step
|
|
EXPECT(assert_equal(n, DoglegOptimizerImpl::ComputeBlend(n.norm(), u, n, false)));
|
|
// Test lower edge case where trust region is equal to magnitude of gradient step
|
|
EXPECT(assert_equal(u, DoglegOptimizerImpl::ComputeBlend(u.norm(), u, n, false)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, ComputeDoglegPoint) {
|
|
// Create an arbitrary Bayes Net
|
|
GaussianBayesNet gbn;
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
|
|
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
|
|
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
|
|
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
|
|
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
|
|
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
|
|
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished());
|
|
gbn.emplace_shared<GaussianConditional>(
|
|
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished());
|
|
|
|
// Compute dogleg point for different deltas
|
|
|
|
double Delta1 = 0.5; // Less than steepest descent
|
|
VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
|
|
DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
|
|
|
|
double Delta2 = 1.5; // Between steepest descent and Newton's method
|
|
VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
|
|
VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
|
|
DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
|
|
EXPECT(assert_equal(expected2, actual2));
|
|
|
|
double Delta3 = 5.0; // Larger than Newton's method point
|
|
VectorValues expected3 = gbn.optimize();
|
|
VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
|
|
EXPECT(assert_equal(expected3, actual3));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, Iterate) {
|
|
// really non-linear factor graph
|
|
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
|
|
|
|
// config far from minimum
|
|
Point2 x0(3,0);
|
|
Values config;
|
|
config.insert(X(1), x0);
|
|
|
|
double Delta = 1.0;
|
|
for(size_t it=0; it<10; ++it) {
|
|
auto linearized = fg.linearize(config);
|
|
|
|
// Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
|
|
double nonlinearError = fg.error(config);
|
|
double linearError = linearized->error(config.zeroVectors());
|
|
DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
|
|
|
|
auto gbn = linearized->eliminateSequential();
|
|
VectorValues dx_u = gbn->optimizeGradientSearch();
|
|
VectorValues dx_n = gbn->optimize();
|
|
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
|
|
Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, *gbn, fg,
|
|
config, fg.error(config));
|
|
Delta = result.delta;
|
|
EXPECT(result.f_error < fg.error(config)); // Check that error decreases
|
|
|
|
Values newConfig(config.retract(result.dx_d));
|
|
config = newConfig;
|
|
DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(DoglegOptimizer, Constraint) {
|
|
// Create a pose-graph graph with a constraint on the first pose
|
|
NonlinearFactorGraph graph;
|
|
const Pose2 origin(0, 0, 0), pose2(2, 0, 0);
|
|
graph.emplace_shared<NonlinearEquality<Pose2> >(1, origin);
|
|
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
|
|
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, pose2, model);
|
|
|
|
// Create feasible initial estimate
|
|
Values initial;
|
|
initial.insert(1, origin); // feasible !
|
|
initial.insert(2, Pose2(2.3, 0.1, -0.2));
|
|
|
|
// Optimize the initial values using DoglegOptimizer
|
|
DoglegParams params;
|
|
params.setVerbosityDL("VERBOSITY");
|
|
DoglegOptimizer optimizer(graph, initial, params);
|
|
Values result = optimizer.optimize();
|
|
|
|
// Check result
|
|
EXPECT(assert_equal(pose2, result.at<Pose2>(2)));
|
|
|
|
// Create infeasible initial estimate
|
|
Values infeasible;
|
|
infeasible.insert(1, Pose2(0.1, 0, 0)); // infeasible !
|
|
infeasible.insert(2, Pose2(2.3, 0.1, -0.2));
|
|
|
|
// Try optimizing with infeasible initial estimate
|
|
DoglegOptimizer optimizer2(graph, infeasible, params);
|
|
|
|
#ifdef GTSAM_USE_TBB
|
|
CHECK_EXCEPTION(optimizer2.optimize(), std::exception);
|
|
#else
|
|
CHECK_EXCEPTION(optimizer2.optimize(), std::invalid_argument);
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* Test created to fix issue in ISAM2 when using the DogLegOptimizer.
|
|
* Originally reported by kvmanohar22 in issue #301
|
|
* https://github.com/borglab/gtsam/issues/301
|
|
*
|
|
* This test is based on a script provided by kvmanohar22
|
|
* to help reproduce the issue.
|
|
*/
|
|
TEST(DogLegOptimizer, VariableUpdate) {
|
|
// Make the typename short so it looks much cleaner
|
|
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
|
|
|
// create a typedef to the camera type
|
|
typedef PinholePose<Cal3_S2> Camera;
|
|
// Define the camera calibration parameters
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
|
|
// Define the camera observation noise model
|
|
noiseModel::Isotropic::shared_ptr measurementNoise =
|
|
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
|
|
|
// Create the set of ground-truth landmarks and poses
|
|
vector<Point3> points = createPoints();
|
|
vector<Pose3> poses = createPoses();
|
|
|
|
// Create a factor graph
|
|
NonlinearFactorGraph graph;
|
|
|
|
ISAM2DoglegParams doglegparams = ISAM2DoglegParams();
|
|
doglegparams.verbose = false;
|
|
ISAM2Params isam2_params;
|
|
isam2_params.evaluateNonlinearError = true;
|
|
isam2_params.relinearizeThreshold = 0.0;
|
|
isam2_params.enableRelinearization = true;
|
|
isam2_params.optimizationParams = doglegparams;
|
|
isam2_params.relinearizeSkip = 1;
|
|
ISAM2 isam2(isam2_params);
|
|
|
|
// Simulated measurements from each camera pose, adding them to the factor
|
|
// graph
|
|
unordered_map<int, SmartFactor::shared_ptr> smart_factors;
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
// every landmark represent a single landmark, we use shared pointer to init
|
|
// the factor, and then insert measurements.
|
|
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
|
|
|
for (size_t i = 0; i < poses.size(); ++i) {
|
|
// generate the 2D measurement
|
|
Camera camera(poses[i], K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
|
|
// call add() function to add measurement into a single factor, here we
|
|
// need to add:
|
|
// 1. the 2D measurement
|
|
// 2. the corresponding camera's key
|
|
// 3. camera noise model
|
|
// 4. camera calibration
|
|
|
|
// add only first 3 measurements and update the later measurements
|
|
// incrementally
|
|
if (i < 3) smartfactor->add(measurement, i);
|
|
}
|
|
|
|
// insert the smart factor in the graph
|
|
smart_factors[j] = smartfactor;
|
|
graph.push_back(smartfactor);
|
|
}
|
|
|
|
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
|
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
|
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
|
graph.emplace_shared<PriorFactor<Pose3> >(0, poses[0], noise);
|
|
|
|
// Because the structure-from-motion problem has a scale ambiguity, the
|
|
// problem is still under-constrained. Here we add a prior on the second pose
|
|
// x1, so this will fix the scale by indicating the distance between x0 and
|
|
// x1. Because these two are fixed, the rest of the poses will be also be
|
|
// fixed.
|
|
graph.emplace_shared<PriorFactor<Pose3> >(1, poses[1],
|
|
noise); // add directly to graph
|
|
|
|
// Create the initial estimate to the solution
|
|
// Intentionally initialize the variables off from the ground truth
|
|
Values initialEstimate;
|
|
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
|
for (size_t i = 0; i < 3; ++i)
|
|
initialEstimate.insert(i, poses[i].compose(delta));
|
|
// initialEstimate.print("Initial Estimates:\n");
|
|
|
|
// Optimize the graph and print results
|
|
isam2.update(graph, initialEstimate);
|
|
Values result = isam2.calculateEstimate();
|
|
// result.print("Results:\n");
|
|
|
|
// we add new measurements from this pose
|
|
size_t pose_idx = 3;
|
|
|
|
// Now update existing smart factors with new observations
|
|
for (size_t j = 0; j < points.size(); ++j) {
|
|
SmartFactor::shared_ptr smartfactor = smart_factors[j];
|
|
|
|
// add the 4th measurement
|
|
Camera camera(poses[pose_idx], K);
|
|
Point2 measurement = camera.project(points[j]);
|
|
smartfactor->add(measurement, pose_idx);
|
|
}
|
|
|
|
graph.resize(0);
|
|
initialEstimate.clear();
|
|
|
|
// update initial estimate for the new pose
|
|
initialEstimate.insert(pose_idx, poses[pose_idx].compose(delta));
|
|
|
|
// this should break the system
|
|
isam2.update(graph, initialEstimate);
|
|
result = isam2.calculateEstimate();
|
|
EXPECT(std::find(result.keys().begin(), result.keys().end(), pose_idx) !=
|
|
result.keys().end());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|