gtsam/gtsam_unstable/slam/tests/testSmartProjectionPoseFact...

1490 lines
58 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSmartProjectionPoseFactorRollingShutter.cpp
* @brief Unit tests for SmartProjectionPoseFactorRollingShutter Class
* @author Luca Carlone
* @date July 2021
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
#include <iostream>
#include "gtsam/slam/tests/smartFactorScenarios.h"
#define DISABLE_TIMING
using namespace gtsam;
using namespace std::placeholders;
static const double rankTol = 1.0;
// Create a noise model for the pixel error
static const double sigma = 0.1;
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
// Convenience for named keys
using symbol_shorthand::L;
using symbol_shorthand::X;
// tests data
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Symbol x4('X', 4);
static Symbol l0('L', 0);
static Pose3 body_P_sensor =
Pose3(Rot3::Ypr(-0.1, 0.2, -0.2), Point3(0.1, 0.0, 0.0));
static Point2 measurement1(323.0, 240.0);
static Point2 measurement2(200.0, 220.0);
static Point2 measurement3(320.0, 10.0);
static double interp_factor = 0.5;
static double interp_factor1 = 0.3;
static double interp_factor2 = 0.4;
static double interp_factor3 = 0.5;
static size_t cameraId1 = 0;
/* ************************************************************************* */
// default Cal3_S2 poses with rolling shutter effect
namespace vanillaPoseRS {
typedef PinholePose<Cal3_S2> Camera;
typedef CameraSet<Camera> Cameras;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
Camera cam1(interp_pose1, sharedK);
Camera cam2(interp_pose2, sharedK);
Camera cam3(interp_pose3, sharedK);
SmartProjectionParams params(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
} // namespace vanillaPoseRS
LevenbergMarquardtParams lmParams;
typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
SmartFactorRS;
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
using namespace vanillaPoseRS;
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
using namespace vanillaPoseRS;
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
params.setRankTolerance(rankTol);
SmartFactorRS factor1(model, cameraRig, params);
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, add) {
using namespace vanillaPoseRS;
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor);
}
/* ************************************************************************* */
TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
using namespace vanillaPoseRS;
// create fake measurements
Point2Vector measurements;
measurements.push_back(measurement1);
measurements.push_back(measurement2);
measurements.push_back(measurement3);
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x4));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
FastVector<size_t> cameraIds{0, 0, 0};
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
// create by adding a batch of measurements with a bunch of calibrations
SmartFactorRS::shared_ptr factor2(
new SmartFactorRS(model, cameraRig, params));
factor2->add(measurements, key_pairs, interp_factors, cameraIds);
// create by adding a batch of measurements with a single calibrations
SmartFactorRS::shared_ptr factor3(
new SmartFactorRS(model, cameraRig, params));
factor3->add(measurements, key_pairs, interp_factors, cameraIds);
{ // create equal factors and show equal returns true
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor2, cameraId1);
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create equal factors and show equal returns true (use default cameraId)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1);
factor1->add(measurement2, x2, x3, interp_factor2);
factor1->add(measurement3, x3, x4, interp_factor3);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create equal factors and show equal returns true (use default cameraId)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurements, key_pairs, interp_factors);
EXPECT(factor1->equals(*factor2));
EXPECT(factor1->equals(*factor3));
}
{ // create slightly different factors (different keys) and show equal
// returns false (use default cameraIds)
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x2, interp_factor2,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different extrinsics) and show equal
// returns false
std::shared_ptr<Cameras> cameraRig2(new Cameras());
cameraRig2->push_back(Camera(body_P_sensor * body_P_sensor, sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig2, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor2,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
{ // create slightly different factors (different interp factors) and show
// equal returns false
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
factor1->add(measurement2, x2, x3, interp_factor1,
cameraId1); // different!
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
EXPECT(!factor1->equals(*factor2));
EXPECT(!factor1->equals(*factor3));
}
}
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from
///< which the observation pose is interpolated
static const int ZDim = 2; ///< Measurement dimension (Point2)
typedef Eigen::Matrix<double, ZDim, DimBlock>
MatrixZD; // F blocks (derivatives wrt camera)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
FBlocks; // vector of F blocks
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
using namespace vanillaPoseRS;
// Project two landmarks into two cameras
Point2 level_uv = cam1.project(landmark1);
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorId = Pose3::Identity();
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedK));
SmartFactorRS factor(model, cameraRig, params);
factor.add(level_uv, x1, x2, interp_factor1);
factor.add(level_uv_right, x2, x3, interp_factor2);
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above);
double actualError = factor.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
// Check triangulation
factor.triangulateSafe(factor.cameras(values));
TriangulationResult point = factor.point();
EXPECT(point.valid()); // check triangulated point is valid
EXPECT(assert_equal(
landmark1,
*point)); // check triangulation result matches expected 3D landmark
// Check Jacobians
// -- actual Jacobians
FBlocks actualFs;
Matrix actualE;
Vector actualb;
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
values);
EXPECT(actualE.rows() == 4);
EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4);
EXPECT(actualb.cols() == 1);
EXPECT(actualFs.size() == 2);
// -- expected Jacobians from ProjectionFactorsRollingShutter
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
x2, l0, sharedK, body_P_sensorId);
Matrix expectedF11, expectedF12, expectedE1;
Vector expectedb1 = factor1.evaluateError(
level_pose, pose_right, landmark1, expectedF11, expectedF12, expectedE1);
EXPECT(
assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
x2, x3, l0, sharedK, body_P_sensorId);
Matrix expectedF21, expectedF22, expectedE2;
Vector expectedb2 = factor2.evaluateError(
pose_right, pose_above, landmark1, expectedF21, expectedF22, expectedE2);
EXPECT(
assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians) {
// also includes non-identical extrinsic calibration
using namespace vanillaPoseRS;
// Project two landmarks into two cameras
Point2 pixelError(0.5, 1.0);
Point2 level_uv = cam1.project(landmark1) + pixelError;
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorNonId = body_P_sensor;
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorNonId, sharedK));
SmartFactorRS factor(model, cameraRig, params);
factor.add(level_uv, x1, x2, interp_factor1);
factor.add(level_uv_right, x2, x3, interp_factor2);
Values values; // it's a pose factor, hence these are poses
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above);
// Perform triangulation
factor.triangulateSafe(factor.cameras(values));
TriangulationResult point = factor.point();
EXPECT(point.valid()); // check triangulated point is valid
Point3 landmarkNoisy = *point;
// Check Jacobians
// -- actual Jacobians
FBlocks actualFs;
Matrix actualE;
Vector actualb;
factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
values);
EXPECT(actualE.rows() == 4);
EXPECT(actualE.cols() == 3);
EXPECT(actualb.rows() == 4);
EXPECT(actualb.cols() == 1);
EXPECT(actualFs.size() == 2);
// -- expected Jacobians from ProjectionFactorsRollingShutter
ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
x2, l0, sharedK, body_P_sensorNonId);
Matrix expectedF11, expectedF12, expectedE1;
Vector expectedb1 =
factor1.evaluateError(level_pose, pose_right, landmarkNoisy, expectedF11,
expectedF12, expectedE1);
EXPECT(
assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
x2, x3, l0, sharedK,
body_P_sensorNonId);
Matrix expectedF21, expectedF22, expectedE2;
Vector expectedb2 =
factor2.evaluateError(pose_right, pose_above, landmarkNoisy, expectedF21,
expectedF22, expectedE2);
EXPECT(
assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
EXPECT(
assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
// by definition computeJacobiansWithTriangulatedPoint returns minus
// reprojectionError
EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
// Check errors
double actualError = factor.error(values); // from smart factor
NonlinearFactorGraph nfg;
nfg.add(factor1);
nfg.add(factor2);
values.insert(l0, landmarkNoisy);
double expectedError = nfg.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {1, 1, 1});
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {1, 1, 1});
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {1, 1, 1});
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam2) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor1 = Pose3(Rot3::Ypr(-0.03, 0., 0.01), Point3(1, 1, 1));
Pose3 body_T_sensor2 = Pose3(Rot3::Ypr(-0.1, 0., 0.05), Point3(0, 0, 1));
Pose3 body_T_sensor3 = Pose3(Rot3::Ypr(-0.3, 0., -0.05), Point3(0, 1, 1));
Camera camera1(interp_pose1 * body_T_sensor1, sharedK);
Camera camera2(interp_pose2 * body_T_sensor2, sharedK);
Camera camera3(interp_pose3 * body_T_sensor3, sharedK);
// Project three landmarks into three cameras
projectToMultipleCameras(camera1, camera2, camera3, landmark1,
measurements_lmk1);
projectToMultipleCameras(camera1, camera2, camera3, landmark2,
measurements_lmk2);
projectToMultipleCameras(camera1, camera2, camera3, landmark3,
measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_T_sensor1, sharedK));
cameraRig->push_back(Camera(body_T_sensor2, sharedK));
cameraRig->push_back(Camera(body_T_sensor3, sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {0, 1, 2});
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {0, 1, 2});
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {0, 1, 2});
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-4));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// here we replicate a test in SmartProjectionPoseFactor by setting
// interpolation factors to 0 and 1 (such that the rollingShutter measurements
// falls back to standard pixel measurements) Note: this is a quite extreme
// test since in typical camera you would not have more than 1 measurement per
// landmark at each interpolated pose
using namespace vanillaPoseRS;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_lmk1;
// Project 2 landmarks into 2 cameras
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor);
SmartFactorRS::Cameras cameras;
cameras.push_back(cam1);
cameras.push_back(cam2);
// Make sure triangulation works
EXPECT(smartFactor1->triangulateSafe(cameras));
EXPECT(!smartFactor1->isDegenerate());
EXPECT(!smartFactor1->isPointBehindCamera());
std::optional<Point3> p = smartFactor1->point();
EXPECT(p);
EXPECT(assert_equal(landmark1, *p));
VectorValues zeroDelta;
Vector6 delta;
delta.setZero();
zeroDelta.insert(x1, delta);
zeroDelta.insert(x2, delta);
VectorValues perturbedDelta;
delta.setOnes();
perturbedDelta.insert(x1, delta);
perturbedDelta.insert(x2, delta);
double expectedError = 2500;
// After eliminating the point, A1 and A2 contain 2-rank information on
// cameras:
Matrix16 A1, A2;
A1 << -10, 0, 0, 0, 1, 0;
A2 << 10, 0, 1, 0, -1, 0;
A1 *= 10. / sigma;
A2 *= 10. / sigma;
Matrix expectedInformation; // filled below
// createHessianFactor
Matrix66 G11 = 0.5 * A1.transpose() * A1;
Matrix66 G12 = 0.5 * A1.transpose() * A2;
Matrix66 G22 = 0.5 * A2.transpose() * A2;
Vector6 g1;
g1.setZero();
Vector6 g2;
g2.setZero();
double f = 0;
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
expectedInformation = expected.information();
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
std::shared_ptr<RegularHessianFactor<6>> actual =
smartFactor1->createHessianFactor(values);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
EXPECT(assert_equal(expected, *actual, 1e-6));
EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
double excludeLandmarksFutherThanDist = 1e10; // very large
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::HESSIAN);
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(true);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS smartFactor2(model, cameraRig, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, cameraRig, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// Optimization should correct 3rd pose
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_landmarkDistance) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
double excludeLandmarksFutherThanDist = 2;
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::HESSIAN);
// params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY); // this would give an
// exception as expected
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setEnableEPI(false);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS smartFactor2(model, cameraRig, params);
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS smartFactor3(model, cameraRig, params);
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// All factors are disabled (due to the distance threshold) and pose should
// remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_dynamicOutlierRejection) {
using namespace vanillaPoseRS;
// add fourth landmark
Point3 landmark4(5, -0.5, 1);
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3,
measurements_lmk4;
// Project 4 landmarks into cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_lmk4);
measurements_lmk4.at(0) =
measurements_lmk4.at(0) + Point2(10, 10); // add outlier
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold =
3; // max 3 pixel of average reprojection error
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setLinearizationMode(gtsam::HESSIAN);
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
params.setEnableEPI(false);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor4(
new SmartFactorRS(model, cameraRig, params));
smartFactor4->add(measurements_lmk4, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Pose3 noise_pose = Pose3(
Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.01, 0.01,
0.01)); // smaller noise, otherwise outlier rejection will kick in
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
// Optimization should correct 3rd pose
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
std::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use the factor to calculate the Jacobians
Matrix F = Matrix::Zero(2 * 3, 6 * 3);
Matrix E = Matrix::Zero(2 * 3, 3);
Vector b = Vector::Zero(6);
// create projection factors rolling shutter
ProjectionFactorRollingShutter factor11(measurements_lmk1[0], interp_factor1,
model, x1, x2, l0, sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1[1], interp_factor2,
model, x2, x3, l0, sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1[2], interp_factor3,
model, x3, x1, l0, sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactorsRS;
nfg_projFactorsRS.add(factor11);
nfg_projFactorsRS.add(factor12);
nfg_projFactorsRS.add(factor13);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactorsRS.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
// in this test we make sure the fact works even if we have multiple pixel
// measurements of the same landmark at a single pose, a setup that occurs in
// multi-camera systems
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
// create redundant measurements:
Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
key_pairs.push_back(std::make_pair(x1, x2));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
interp_factors.push_back(interp_factor1);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors);
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise to get a nontrivial linearization
// point
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
// linearization point for the poses
Pose3 pose1 = level_pose;
Pose3 pose2 = pose_right;
Pose3 pose3 = pose_above * noise_pose;
// ==== check Hessian of smartFactor1 =====
// -- compute actual Hessian
std::shared_ptr<GaussianFactor> linearfactor1 =
smartFactor1->linearize(values);
Matrix actualHessian = linearfactor1->information();
// -- compute expected Hessian from manual Schur complement from Jacobians
// linearization point for the 3D point
smartFactor1->triangulateSafe(smartFactor1->cameras(values));
TriangulationResult point = smartFactor1->point();
EXPECT(point.valid()); // check triangulated point is valid
// Use standard ProjectionFactorRollingShutter factor to calculate the
// Jacobians
Matrix F = Matrix::Zero(2 * 4, 6 * 3);
Matrix E = Matrix::Zero(2 * 4, 3);
Vector b = Vector::Zero(8);
// create projection factors rolling shutter
ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0],
interp_factor1, model, x1, x2, l0,
sharedK);
Matrix H1Actual, H2Actual, H3Actual;
// note: b is minus the reprojection error, cf the smart factor jacobian
// computation
b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(0, 0) = H1Actual;
F.block<2, 6>(0, 6) = H2Actual;
E.block<2, 3>(0, 0) = H3Actual;
ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1],
interp_factor2, model, x2, x3, l0,
sharedK);
b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(2, 6) = H1Actual;
F.block<2, 6>(2, 12) = H2Actual;
E.block<2, 3>(2, 0) = H3Actual;
ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2],
interp_factor3, model, x3, x1, l0,
sharedK);
b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(4, 12) = H1Actual;
F.block<2, 6>(4, 0) = H2Actual;
E.block<2, 3>(4, 0) = H3Actual;
ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3],
interp_factor1, model, x1, x2, l0,
sharedK);
b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
H2Actual, H3Actual);
F.block<2, 6>(6, 0) = H1Actual;
F.block<2, 6>(6, 6) = H2Actual;
E.block<2, 3>(6, 0) = H3Actual;
// whiten
F = (1 / sigma) * F;
E = (1 / sigma) * E;
b = (1 / sigma) * b;
//* G = F' * F - F' * E * P * E' * F
Matrix P = (E.transpose() * E).inverse();
Matrix expectedHessian =
F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
// ==== check Information vector of smartFactor1 =====
GaussianFactorGraph gfg;
gfg.add(linearfactor1);
Matrix actualHessian_v2 = gfg.hessian().first;
EXPECT(assert_equal(actualHessian_v2, actualHessian,
1e-6)); // sanity check on hessian
// -- compute actual information vector
Vector actualInfoVector = gfg.hessian().second;
// -- compute expected information vector from manual Schur complement from
// Jacobians
//* g = F' * (b - E * P * E' * b)
Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
// ==== check error of smartFactor1 (again) =====
NonlinearFactorGraph nfg_projFactorsRS;
nfg_projFactorsRS.add(factor11);
nfg_projFactorsRS.add(factor12);
nfg_projFactorsRS.add(factor13);
nfg_projFactorsRS.add(factor14);
values.insert(l0, *point);
double actualError = smartFactor1->error(values);
double expectedError = nfg_projFactorsRS.error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_measurementsFromSamePose) {
using namespace vanillaPoseRS;
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
// For first factor, we create redundant measurement (taken by the same keys
// as factor 1, to make sure the redundancy in the keys does not create
// problems)
Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
measurements_lmk1_redundant.push_back(
measurements_lmk1.at(0)); // we readd the first measurement
std::vector<std::pair<Key, Key>> key_pairs_redundant = key_pairs;
key_pairs_redundant.push_back(
key_pairs.at(0)); // we readd the first pair of keys
std::vector<double> interp_factors_redundant = interp_factors;
interp_factors_redundant.push_back(
interp_factors.at(0)); // we readd the first interp factor
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
interp_factors_redundant);
SmartFactorRS::shared_ptr smartFactor2(
new SmartFactorRS(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS::shared_ptr smartFactor3(
new SmartFactorRS(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
}
#ifndef DISABLE_TIMING
#include <gtsam/base/timing.h>
//-Total: 0 CPU (0 times, 0 wall, 0.21 children, min: 0 max: 0)
//| -SF RS LINEARIZE: 0.14 CPU
//(10000 times, 0.131202 wall, 0.14 children, min: 0 max: 0)
//| -RS LINEARIZE: 0.06 CPU
//(10000 times, 0.066951 wall, 0.06 children, min: 0 max: 0)
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter, timing) {
using namespace vanillaPose;
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
SmartProjectionParams params(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
Point2Vector measurements_lmk1;
// Project 2 landmarks into 2 cameras
measurements_lmk1.push_back(cam1.project(landmark1));
measurements_lmk1.push_back(cam2.project(landmark1));
size_t nrTests = 10000;
for (size_t i = 0; i < nrTests; i++) {
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(
model, cameraRig, params));
double interp_factor = 0; // equivalent to measurement taken at pose 1
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor);
interp_factor = 1; // equivalent to measurement taken at pose 2
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(SF_RS_LINEARIZE);
smartFactorRS->linearize(values);
gttoc_(SF_RS_LINEARIZE);
}
for (size_t i = 0; i < nrTests; i++) {
SmartFactor::shared_ptr smartFactor(
new SmartFactor(model, sharedKSimple, params));
smartFactor->add(measurements_lmk1[0], x1);
smartFactor->add(measurements_lmk1[1], x2);
Values values;
values.insert(x1, pose1);
values.insert(x2, pose2);
gttic_(RS_LINEARIZE);
smartFactor->linearize(values);
gttoc_(RS_LINEARIZE);
}
tictoc_print_();
}
#endif
#include <gtsam/geometry/SphericalCamera.h>
/* ************************************************************************* */
// spherical Camera with rolling shutter effect
namespace sphericalCameraRS {
typedef SphericalCamera Camera;
typedef CameraSet<Camera> Cameras;
typedef SmartProjectionPoseFactorRollingShutter<Camera> SmartFactorRS_spherical;
Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
static EmptyCal::shared_ptr emptyK(new EmptyCal());
Camera cam1(interp_pose1, emptyK);
Camera cam2(interp_pose2, emptyK);
Camera cam3(interp_pose3, emptyK);
} // namespace sphericalCameraRS
/* *************************************************************************/
TEST(SmartProjectionPoseFactorRollingShutter,
optimization_3poses_sphericalCameras) {
using namespace sphericalCameraRS;
std::vector<Unit3> measurements_lmk1, measurements_lmk2, measurements_lmk3;
// Project three landmarks into three cameras
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark1,
measurements_lmk1);
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark2,
measurements_lmk2);
projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark3,
measurements_lmk3);
// create inputs
std::vector<std::pair<Key, Key>> key_pairs;
key_pairs.push_back(std::make_pair(x1, x2));
key_pairs.push_back(std::make_pair(x2, x3));
key_pairs.push_back(std::make_pair(x3, x1));
std::vector<double> interp_factors;
interp_factors.push_back(interp_factor1);
interp_factors.push_back(interp_factor2);
interp_factors.push_back(interp_factor3);
SmartProjectionParams params(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
params.setRankTolerance(0.1);
std::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::Identity(), emptyK));
SmartFactorRS_spherical::shared_ptr smartFactor1(
new SmartFactorRS_spherical(model, cameraRig, params));
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
SmartFactorRS_spherical::shared_ptr smartFactor2(
new SmartFactorRS_spherical(model, cameraRig, params));
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
SmartFactorRS_spherical::shared_ptr smartFactor3(
new SmartFactorRS_spherical(model, cameraRig, params));
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.addPrior(x1, level_pose, noisePrior);
graph.addPrior(x2, pose_right, noisePrior);
Values groundTruth;
groundTruth.insert(x1, level_pose);
groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to
// original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591,
-0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)),
values.at<Pose3>(x3)));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */