378 lines
16 KiB
C++
378 lines
16 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ProjectionFactorRollingShutterRollingShutter.cpp
|
|
* @brief Unit tests for ProjectionFactorRollingShutter Class
|
|
* @author Luca Carlone
|
|
* @date July 2021
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/geometry/Cal3DS2.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
|
|
|
|
using namespace std::placeholders;
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// make a realistic calibration matrix
|
|
static double fov = 60; // degrees
|
|
static size_t w = 640, h = 480;
|
|
static Cal3_S2::shared_ptr K(new Cal3_S2(fov, w, h));
|
|
|
|
// Create a noise model for the pixel error
|
|
static SharedNoiseModel model(noiseModel::Unit::Create(2));
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::L;
|
|
using symbol_shorthand::T;
|
|
using symbol_shorthand::X;
|
|
|
|
// Convenience to define common variables across many tests
|
|
static Key poseKey1(X(1));
|
|
static Key poseKey2(X(2));
|
|
static Key pointKey(L(1));
|
|
static double interp_params = 0.5;
|
|
static Point2 measurement(323.0, 240.0);
|
|
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
|
|
Point3(0.25, -0.10, 1.0));
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, Constructor) {
|
|
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, ConstructorWithTransform) {
|
|
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K,
|
|
body_P_sensor);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, Equals) {
|
|
{ // factors are equal
|
|
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K);
|
|
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K);
|
|
CHECK(assert_equal(factor1, factor2));
|
|
}
|
|
{ // factors are NOT equal (keys are different)
|
|
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K);
|
|
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
|
|
poseKey1, poseKey1, pointKey, K);
|
|
CHECK(!assert_equal(factor1, factor2)); // not equal
|
|
}
|
|
{ // factors are NOT equal (different interpolation)
|
|
ProjectionFactorRollingShutter factor1(measurement, 0.1, model, poseKey1,
|
|
poseKey1, pointKey, K);
|
|
ProjectionFactorRollingShutter factor2(measurement, 0.5, model, poseKey1,
|
|
poseKey2, pointKey, K);
|
|
CHECK(!assert_equal(factor1, factor2)); // not equal
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, EqualsWithTransform) {
|
|
{ // factors are equal
|
|
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K,
|
|
body_P_sensor);
|
|
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K,
|
|
body_P_sensor);
|
|
CHECK(assert_equal(factor1, factor2));
|
|
}
|
|
{ // factors are NOT equal
|
|
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K,
|
|
body_P_sensor);
|
|
Pose3 body_P_sensor2(
|
|
Rot3::RzRyRx(0.0, 0.0, 0.0),
|
|
Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor
|
|
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
|
|
poseKey1, poseKey2, pointKey, K,
|
|
body_P_sensor2);
|
|
CHECK(!assert_equal(factor1, factor2));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, Error) {
|
|
{
|
|
// Create the factor with a measurement that is 3 pixels off in x
|
|
// Camera pose corresponds to the first camera
|
|
double t = 0.0;
|
|
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
|
|
poseKey2, pointKey, K);
|
|
|
|
// Set the linearization point
|
|
Pose3 pose1(Rot3(), Point3(0, 0, -6));
|
|
Pose3 pose2(Rot3(), Point3(0, 0, -4));
|
|
Point3 point(0.0, 0.0, 0.0);
|
|
|
|
// Use the factor to calculate the error
|
|
Vector actualError(factor.evaluateError(pose1, pose2, point));
|
|
|
|
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
|
Vector expectedError = Vector2(-3.0, 0.0);
|
|
|
|
// Verify we get the expected error
|
|
CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
}
|
|
{
|
|
// Create the factor with a measurement that is 3 pixels off in x
|
|
// Camera pose is actually interpolated now
|
|
double t = 0.5;
|
|
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
|
|
poseKey2, pointKey, K);
|
|
|
|
// Set the linearization point
|
|
Pose3 pose1(Rot3(), Point3(0, 0, -8));
|
|
Pose3 pose2(Rot3(), Point3(0, 0, -4));
|
|
Point3 point(0.0, 0.0, 0.0);
|
|
|
|
// Use the factor to calculate the error
|
|
Vector actualError(factor.evaluateError(pose1, pose2, point));
|
|
|
|
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
|
Vector expectedError = Vector2(-3.0, 0.0);
|
|
|
|
// Verify we get the expected error
|
|
CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
}
|
|
{
|
|
// Create measurement by projecting 3D landmark
|
|
double t = 0.3;
|
|
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
|
|
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
|
|
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
|
|
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
|
|
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
|
|
Point2 measured = camera.project(point);
|
|
|
|
// create factor
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
|
|
poseKey2, pointKey, K);
|
|
|
|
// Use the factor to calculate the error
|
|
Vector actualError(factor.evaluateError(pose1, pose2, point));
|
|
|
|
// The expected error is zero
|
|
Vector expectedError = Vector2(0.0, 0.0);
|
|
|
|
// Verify we get the expected error
|
|
CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, ErrorWithTransform) {
|
|
// Create measurement by projecting 3D landmark
|
|
double t = 0.3;
|
|
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
|
|
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
|
|
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
|
|
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
|
|
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
|
|
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
|
|
Point2 measured = camera.project(point);
|
|
|
|
// create factor
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
|
|
pointKey, K, body_P_sensor3);
|
|
|
|
// Use the factor to calculate the error
|
|
Vector actualError(factor.evaluateError(pose1, pose2, point));
|
|
|
|
// The expected error is zero
|
|
Vector expectedError = Vector2(0.0, 0.0);
|
|
|
|
// Verify we get the expected error
|
|
CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, Jacobian) {
|
|
// Create measurement by projecting 3D landmark
|
|
double t = 0.3;
|
|
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
|
|
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
|
|
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
|
|
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
|
|
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
|
|
Point2 measured = camera.project(point);
|
|
|
|
// create factor
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
|
|
pointKey, K);
|
|
|
|
// Use the factor to calculate the Jacobians
|
|
Matrix H1Actual, H2Actual, H3Actual;
|
|
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
|
|
|
|
auto f = [&factor](const Pose3& p1, const Pose3& p2, const Point3& p3) {
|
|
return factor.evaluateError(p1, p2, p3);
|
|
};
|
|
// Expected Jacobians via numerical derivatives
|
|
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
|
|
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
|
|
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, JacobianWithTransform) {
|
|
// Create measurement by projecting 3D landmark
|
|
double t = 0.6;
|
|
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
|
|
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
|
|
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
|
|
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
|
|
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
|
|
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
|
|
Point2 measured = camera.project(point);
|
|
|
|
// create factor
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
|
|
pointKey, K, body_P_sensor3);
|
|
|
|
// Use the factor to calculate the Jacobians
|
|
Matrix H1Actual, H2Actual, H3Actual;
|
|
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
|
|
|
|
auto f = [&factor](const Pose3& p1, const Pose3& p2, const Point3& p3) {
|
|
return factor.evaluateError(p1, p2, p3);
|
|
};
|
|
// Expected Jacobians via numerical derivatives
|
|
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
|
|
|
|
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
|
|
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
|
|
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ProjectionFactorRollingShutter, cheirality) {
|
|
// Create measurement by projecting 3D landmark behind camera
|
|
double t = 0.3;
|
|
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
|
|
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
|
|
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
|
|
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
|
|
Point3 point(0.0, 0.0, -5.0); // 5 meters behind the camera
|
|
|
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
|
Point2 measured = Point2(0.0, 0.0); // project would throw an exception
|
|
{ // check that exception is thrown if we set throwCheirality = true
|
|
bool throwCheirality = true;
|
|
bool verboseCheirality = true;
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
|
|
poseKey2, pointKey, K,
|
|
throwCheirality, verboseCheirality);
|
|
CHECK_EXCEPTION(factor.evaluateError(pose1, pose2, point),
|
|
CheiralityException);
|
|
}
|
|
{ // check that exception is NOT thrown if we set throwCheirality = false,
|
|
// and outputs are correct
|
|
bool throwCheirality = false; // default
|
|
bool verboseCheirality = false; // default
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
|
|
poseKey2, pointKey, K,
|
|
throwCheirality, verboseCheirality);
|
|
|
|
// Use the factor to calculate the error
|
|
Matrix H1Actual, H2Actual, H3Actual;
|
|
Vector actualError(factor.evaluateError(pose1, pose2, point, H1Actual,
|
|
H2Actual, H3Actual));
|
|
|
|
// The expected error is zero
|
|
Vector expectedError = Vector2::Constant(
|
|
2.0 * K->fx()); // this is what we return when point is behind camera
|
|
|
|
// Verify we get the expected error
|
|
CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
CHECK(assert_equal(Matrix::Zero(2, 6), H1Actual, 1e-5));
|
|
CHECK(assert_equal(Matrix::Zero(2, 6), H2Actual, 1e-5));
|
|
CHECK(assert_equal(Matrix::Zero(2, 3), H3Actual, 1e-5));
|
|
}
|
|
#else
|
|
{
|
|
// everything is well defined, hence this matches the test "Jacobian" above:
|
|
Point2 measured = camera.project(point);
|
|
|
|
// create factor
|
|
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
|
|
poseKey2, pointKey, K);
|
|
|
|
// Use the factor to calculate the Jacobians
|
|
Matrix H1Actual, H2Actual, H3Actual;
|
|
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
|
|
|
|
// Expected Jacobians via numerical derivatives
|
|
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
|
|
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
|
|
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
|
|
std::placeholders::_1, std::placeholders::_2,
|
|
std::placeholders::_3, {}, {},
|
|
{})),
|
|
pose1, pose2, point);
|
|
|
|
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
|
|
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
|
|
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
|
|
std::placeholders::_1, std::placeholders::_2,
|
|
std::placeholders::_3, {}, {},
|
|
{})),
|
|
pose1, pose2, point);
|
|
|
|
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
|
|
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
|
|
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
|
|
std::placeholders::_1, std::placeholders::_2,
|
|
std::placeholders::_3, {}, {},
|
|
{})),
|
|
pose1, pose2, point);
|
|
|
|
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
|
|
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
|
|
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|