gtsam/gtsam_unstable/slam/tests/testProjectionFactorRolling...

378 lines
16 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactorRollingShutterRollingShutter.cpp
* @brief Unit tests for ProjectionFactorRollingShutter Class
* @author Luca Carlone
* @date July 2021
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/geometry/Cal3DS2.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
using namespace std::placeholders;
using namespace std;
using namespace gtsam;
// make a realistic calibration matrix
static double fov = 60; // degrees
static size_t w = 640, h = 480;
static Cal3_S2::shared_ptr K(new Cal3_S2(fov, w, h));
// Create a noise model for the pixel error
static SharedNoiseModel model(noiseModel::Unit::Create(2));
// Convenience for named keys
using symbol_shorthand::L;
using symbol_shorthand::T;
using symbol_shorthand::X;
// Convenience to define common variables across many tests
static Key poseKey1(X(1));
static Key poseKey2(X(2));
static Key pointKey(L(1));
static double interp_params = 0.5;
static Point2 measurement(323.0, 240.0);
static Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
Point3(0.25, -0.10, 1.0));
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, Constructor) {
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, ConstructorWithTransform) {
ProjectionFactorRollingShutter factor(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, Equals) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
CHECK(assert_equal(factor1, factor2));
}
{ // factors are NOT equal (keys are different)
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey1, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
}
{ // factors are NOT equal (different interpolation)
ProjectionFactorRollingShutter factor1(measurement, 0.1, model, poseKey1,
poseKey1, pointKey, K);
ProjectionFactorRollingShutter factor2(measurement, 0.5, model, poseKey1,
poseKey2, pointKey, K);
CHECK(!assert_equal(factor1, factor2)); // not equal
}
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, EqualsWithTransform) {
{ // factors are equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
CHECK(assert_equal(factor1, factor2));
}
{ // factors are NOT equal
ProjectionFactorRollingShutter factor1(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor);
Pose3 body_P_sensor2(
Rot3::RzRyRx(0.0, 0.0, 0.0),
Point3(0.25, -0.10, 1.0)); // rotation different from body_P_sensor
ProjectionFactorRollingShutter factor2(measurement, interp_params, model,
poseKey1, poseKey2, pointKey, K,
body_P_sensor2);
CHECK(!assert_equal(factor1, factor2));
}
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, Error) {
{
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose corresponds to the first camera
double t = 0.0;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0, 0, -6));
Pose3 pose2(Rot3(), Point3(0, 0, -4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector2(-3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
{
// Create the factor with a measurement that is 3 pixels off in x
// Camera pose is actually interpolated now
double t = 0.5;
ProjectionFactorRollingShutter factor(measurement, t, model, poseKey1,
poseKey2, pointKey, K);
// Set the linearization point
Pose3 pose1(Rot3(), Point3(0, 0, -8));
Pose3 pose2(Rot3(), Point3(0, 0, -4));
Point3 point(0.0, 0.0, 0.0);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is (-3.0, 0.0) pixels / UnitCovariance
Vector expectedError = Vector2(-3.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
{
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is zero
Vector expectedError = Vector2(0.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, ErrorWithTransform) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K, body_P_sensor3);
// Use the factor to calculate the error
Vector actualError(factor.evaluateError(pose1, pose2, point));
// The expected error is zero
Vector expectedError = Vector2(0.0, 0.0);
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, Jacobian) {
// Create measurement by projecting 3D landmark
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
auto f = [&factor](const Pose3& p1, const Pose3& p2, const Point3& p3) {
return factor.evaluateError(p1, p2, p3);
};
// Expected Jacobians via numerical derivatives
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, JacobianWithTransform) {
// Create measurement by projecting 3D landmark
double t = 0.6;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
Pose3 body_P_sensor3(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0.2, 0.1));
PinholeCamera<Cal3_S2> camera(poseInterp * body_P_sensor3, *K);
Point3 point(0.0, 0.0, 5.0); // 5 meters in front of the camera
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1, poseKey2,
pointKey, K, body_P_sensor3);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
auto f = [&factor](const Pose3& p1, const Pose3& p2, const Point3& p3) {
return factor.evaluateError(p1, p2, p3);
};
// Expected Jacobians via numerical derivatives
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(f, pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
}
/* ************************************************************************* */
TEST(ProjectionFactorRollingShutter, cheirality) {
// Create measurement by projecting 3D landmark behind camera
double t = 0.3;
Pose3 pose1(Rot3::RzRyRx(0.1, 0.0, 0.1), Point3(0, 0, 0));
Pose3 pose2(Rot3::RzRyRx(-0.1, -0.1, 0.0), Point3(0, 0, 1));
Pose3 poseInterp = interpolate<Pose3>(pose1, pose2, t);
PinholeCamera<Cal3_S2> camera(poseInterp, *K);
Point3 point(0.0, 0.0, -5.0); // 5 meters behind the camera
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
Point2 measured = Point2(0.0, 0.0); // project would throw an exception
{ // check that exception is thrown if we set throwCheirality = true
bool throwCheirality = true;
bool verboseCheirality = true;
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K,
throwCheirality, verboseCheirality);
CHECK_EXCEPTION(factor.evaluateError(pose1, pose2, point),
CheiralityException);
}
{ // check that exception is NOT thrown if we set throwCheirality = false,
// and outputs are correct
bool throwCheirality = false; // default
bool verboseCheirality = false; // default
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K,
throwCheirality, verboseCheirality);
// Use the factor to calculate the error
Matrix H1Actual, H2Actual, H3Actual;
Vector actualError(factor.evaluateError(pose1, pose2, point, H1Actual,
H2Actual, H3Actual));
// The expected error is zero
Vector expectedError = Vector2::Constant(
2.0 * K->fx()); // this is what we return when point is behind camera
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-9));
CHECK(assert_equal(Matrix::Zero(2, 6), H1Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2, 6), H2Actual, 1e-5));
CHECK(assert_equal(Matrix::Zero(2, 3), H3Actual, 1e-5));
}
#else
{
// everything is well defined, hence this matches the test "Jacobian" above:
Point2 measured = camera.project(point);
// create factor
ProjectionFactorRollingShutter factor(measured, t, model, poseKey1,
poseKey2, pointKey, K);
// Use the factor to calculate the Jacobians
Matrix H1Actual, H2Actual, H3Actual;
factor.evaluateError(pose1, pose2, point, H1Actual, H2Actual, H3Actual);
// Expected Jacobians via numerical derivatives
Matrix H1Expected = numericalDerivative31<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, {}, {},
{})),
pose1, pose2, point);
Matrix H2Expected = numericalDerivative32<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, {}, {},
{})),
pose1, pose2, point);
Matrix H3Expected = numericalDerivative33<Vector, Pose3, Pose3, Point3>(
std::function<Vector(const Pose3&, const Pose3&, const Point3&)>(
std::bind(&ProjectionFactorRollingShutter::evaluateError, &factor,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3, {}, {},
{})),
pose1, pose2, point);
CHECK(assert_equal(H1Expected, H1Actual, 1e-5));
CHECK(assert_equal(H2Expected, H2Actual, 1e-5));
CHECK(assert_equal(H3Expected, H3Actual, 1e-5));
}
#endif
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */