gtsam/gtsam_unstable/slam/ProjectionFactorPPPC.h

174 lines
6.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactorPPPC.h
* @brief Derived from ProjectionFactor, but estimates body-camera transform
* and calibration in addition to body pose and 3D landmark
* @author Chris Beall
*/
#pragma once
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam_unstable/dllexport.h>
namespace gtsam {
/**
* Non-linear factor for a constraint derived from a 2D measurement. This factor
* estimates the body pose, body-camera transform, 3D landmark, and calibration.
* @ingroup slam
*/
template <class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
class ProjectionFactorPPPC
: public NoiseModelFactorN<POSE, POSE, LANDMARK, CALIBRATION> {
protected:
Point2 measured_; ///< 2D measurement
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
typedef NoiseModelFactor4<POSE, POSE, LANDMARK, CALIBRATION> Base;
// Provide access to the Matrix& version of evaluateError:
using Base::evaluateError;
/// shorthand for this class
typedef ProjectionFactorPPPC<POSE, LANDMARK, CALIBRATION> This;
/// shorthand for a smart pointer to a factor
typedef std::shared_ptr<This> shared_ptr;
/// Default constructor
ProjectionFactorPPPC() :
measured_(0.0, 0.0), throwCheirality_(false), verboseCheirality_(false) {
}
/**
* Constructor with exception-handling flags
* TODO: Mark argument order standard (keys, measurement, parameters)
* @param measured is the 2 dimensional location of point in image (the
* measurement)
* @param model is the standard deviation
* @param poseKey is the index of the camera
* @param transformKey is the index of the extrinsic calibration
* @param pointKey is the index of the landmark
* @param calibKey is the index of the intrinsic calibration
* @param throwCheirality determines whether Cheirality exceptions are
* rethrown
* @param verboseCheirality determines whether exceptions are printed for
* Cheirality
*/
ProjectionFactorPPPC(const Point2& measured, const SharedNoiseModel& model,
Key poseKey, Key transformKey, Key pointKey, Key calibKey,
bool throwCheirality = false, bool verboseCheirality = false) :
Base(model, poseKey, transformKey, pointKey, calibKey), measured_(measured),
throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
/** Virtual destructor */
~ProjectionFactorPPPC() override {}
/// @return a deep copy of this factor
NonlinearFactor::shared_ptr clone() const override {
return std::static_pointer_cast<NonlinearFactor>(
NonlinearFactor::shared_ptr(new This(*this))); }
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "ProjectionFactorPPPC, z = ";
traits<Point2>::Print(measured_);
Base::print("", keyFormatter);
}
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
const This *e = dynamic_cast<const This*>(&p);
return e
&& Base::equals(p, tol)
&& traits<Point2>::Equals(this->measured_, e->measured_, tol);
}
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(const Pose3& pose, const Pose3& transform, const Point3& point, const CALIBRATION& K,
OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3,
OptionalMatrixType H4) const override {
try {
if(H1 || H2 || H3 || H4) {
Matrix H0, H02;
const PinholeCamera<CALIBRATION> camera(pose.compose(transform, H0, H02), K);
const Point2 reprojectionError(camera.project(point, H1, H3, H4) - measured_);
*H2 = *H1 * H02;
*H1 = *H1 * H0;
return reprojectionError;
} else {
PinholeCamera<CALIBRATION> camera(pose.compose(transform), K);
return camera.project(point, H1, H3, H4) - measured_;
}
} catch( CheiralityException& e) {
if (H1) *H1 = Matrix::Zero(2,6);
if (H2) *H2 = Matrix::Zero(2,6);
if (H3) *H3 = Matrix::Zero(2,3);
if (H4) *H4 = Matrix::Zero(2,CALIBRATION::Dim());
if (verboseCheirality_)
std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->key2()) <<
" moved behind camera " << DefaultKeyFormatter(this->key1()) << std::endl;
if (throwCheirality_)
throw e;
}
return Vector::Ones(2) * 2.0 * K.fx();
}
/** return the measurement */
const Point2& measured() const {
return measured_;
}
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
private:
#if GTSAM_ENABLE_BOOST_SERIALIZATION ///
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
#endif
};
/// traits
template<class POSE, class LANDMARK, class CALIBRATION>
struct traits<ProjectionFactorPPPC<POSE, LANDMARK, CALIBRATION> > :
public Testable<ProjectionFactorPPPC<POSE, LANDMARK, CALIBRATION> > {
};
} // \ namespace gtsam