121 lines
4.3 KiB
C++
121 lines
4.3 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file DiscreteBayesNet_FG.cpp
|
|
* @brief Discrete Bayes Net example using Factor Graphs
|
|
* @author Abhijit
|
|
* @date Jun 4, 2012
|
|
*
|
|
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
|
|
* p529] You may be familiar with other graphical model packages like BNT
|
|
* (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
|
|
* is used as an example. The following demo is same as that in the above link,
|
|
* except that everything is using GTSAM.
|
|
*/
|
|
|
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
|
#include <gtsam/discrete/DiscreteMarginals.h>
|
|
|
|
#include <iomanip>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
int main(int argc, char **argv) {
|
|
// Define keys and a print function
|
|
Key C(1), S(2), R(3), W(4);
|
|
auto print = [=](const DiscreteFactor::Values& values) {
|
|
cout << boolalpha << "Cloudy = " << static_cast<bool>(values.at(C))
|
|
<< " Sprinkler = " << static_cast<bool>(values.at(S))
|
|
<< " Rain = " << boolalpha << static_cast<bool>(values.at(R))
|
|
<< " WetGrass = " << static_cast<bool>(values.at(W)) << endl;
|
|
};
|
|
|
|
// We assume binary state variables
|
|
// we have 0 == "False" and 1 == "True"
|
|
const size_t nrStates = 2;
|
|
|
|
// define variables
|
|
DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
|
|
WetGrass(W, nrStates);
|
|
|
|
// create Factor Graph of the bayes net
|
|
DiscreteFactorGraph graph;
|
|
|
|
// add factors
|
|
graph.add(Cloudy, "0.5 0.5"); // P(Cloudy)
|
|
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); // P(Sprinkler | Cloudy)
|
|
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); // P(Rain | Cloudy)
|
|
graph.add(Sprinkler & Rain & WetGrass,
|
|
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
|
|
|
|
// Alternatively we can also create a DiscreteBayesNet, add
|
|
// DiscreteConditional factors and create a FactorGraph from it. (See
|
|
// testDiscreteBayesNet.cpp)
|
|
|
|
// Since this is a relatively small distribution, we can as well print
|
|
// the whole distribution..
|
|
cout << "Distribution of Example: " << endl;
|
|
cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
|
|
<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
|
|
<< endl;
|
|
for (size_t a = 0; a < nrStates; a++)
|
|
for (size_t m = 0; m < nrStates; m++)
|
|
for (size_t h = 0; h < nrStates; h++)
|
|
for (size_t c = 0; c < nrStates; c++) {
|
|
DiscreteFactor::Values values;
|
|
values[C] = c;
|
|
values[S] = h;
|
|
values[R] = m;
|
|
values[W] = a;
|
|
double prodPot = graph(values);
|
|
cout << setw(8) << static_cast<bool>(c) << setw(14)
|
|
<< static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
|
|
<< setw(13) << static_cast<bool>(a) << setw(16) << prodPot
|
|
<< endl;
|
|
}
|
|
|
|
// "Most Probable Explanation", i.e., configuration with largest value
|
|
auto mpe = graph.optimize();
|
|
cout << "\nMost Probable Explanation (MPE):" << endl;
|
|
print(mpe);
|
|
|
|
// "Inference" We show an inference query like: probability that the Sprinkler
|
|
// was on; given that the grass is wet i.e. P( S | C=0) = ?
|
|
|
|
// add evidence that it is not Cloudy
|
|
graph.add(Cloudy, "1 0");
|
|
|
|
// solve again, now with evidence
|
|
auto mpe_with_evidence = graph.optimize();
|
|
|
|
cout << "\nMPE given C=0:" << endl;
|
|
print(mpe_with_evidence);
|
|
|
|
// we can also calculate arbitrary marginals:
|
|
DiscreteMarginals marginals(graph);
|
|
cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
|
|
<< endl;
|
|
cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
|
|
cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
|
|
<< endl;
|
|
|
|
// We can also sample from the eliminated graph
|
|
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
|
cout << "\n10 samples:" << endl;
|
|
for (size_t i = 0; i < 10; i++) {
|
|
auto sample = chordal->sample();
|
|
print(sample);
|
|
}
|
|
return 0;
|
|
}
|