107 lines
3.1 KiB
Matlab
107 lines
3.1 KiB
Matlab
function pts2dTracksMono = points2DTrackMonocular(cameras, imageSize, cylinders)
|
|
% Assess how accurately we can reconstruct points from a particular monocular camera setup.
|
|
% After creation of the factor graph for each track, linearize it around ground truth.
|
|
% There is no optimization
|
|
% @author: Zhaoyang Lv
|
|
|
|
import gtsam.*
|
|
|
|
%% create graph
|
|
graph = NonlinearFactorGraph;
|
|
|
|
%% create the noise factors
|
|
pointNoiseSigma = 0.1;
|
|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
|
measurementNoiseSigma = 1.0;
|
|
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
|
|
pointPriorNoise = noiseModel.Isotropic.Sigma(3, pointNoiseSigma);
|
|
measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
|
|
|
|
cameraPosesNum = length(cameras);
|
|
|
|
%% add measurements and initial camera & points values
|
|
pointsNum = 0;
|
|
cylinderNum = length(cylinders);
|
|
for i = 1:cylinderNum
|
|
pointsNum = pointsNum + length(cylinders{i}.Points);
|
|
end
|
|
|
|
pts3d = {};
|
|
initialEstimate = Values;
|
|
initialized = false;
|
|
for i = 1:cameraPosesNum
|
|
% add a constraint on the starting pose
|
|
camera = cameras{i};
|
|
|
|
pts3d.pts{i} = cylinderSampleProjection(camera, imageSize, cylinders);
|
|
pts3d.camera{i} = camera;
|
|
|
|
if ~initialized
|
|
graph.add(PriorFactorPose3(symbol('x', 1), camera.pose, posePriorNoise));
|
|
k = 0;
|
|
if ~isempty(pts3d.pts{i}.data{1+k})
|
|
graph.add(PriorFactorPoint3(symbol('p', 1), ...
|
|
pts3d.pts{i}.data{1+k}, pointPriorNoise));
|
|
else
|
|
k = k+1;
|
|
end
|
|
initialized = true;
|
|
end
|
|
|
|
for j = 1:length(pts3d.pts{i}.Z)
|
|
if isempty(pts3d.pts{i}.Z{j})
|
|
continue;
|
|
end
|
|
graph.add(GenericProjectionFactorCal3_S2(pts3d.pts{i}.Z{j}, ...
|
|
measurementNoise, symbol('x', i), symbol('p', j), camera.calibration) );
|
|
end
|
|
|
|
end
|
|
|
|
%% initialize cameras and points close to ground truth
|
|
for i = 1:cameraPosesNum
|
|
pose_i = camera.pose.retract(0.1*randn(6,1));
|
|
initialEstimate.insert(symbol('x', i), pose_i);
|
|
end
|
|
ptsIdx = 0;
|
|
for i = 1:length(cylinders)
|
|
for j = 1:length(cylinders{i}.Points)
|
|
ptsIdx = ptsIdx + 1;
|
|
point_j = cylinders{i}.Points{j}.retract(0.1*randn(3,1));
|
|
initialEstimate.insert(symbol('p', ptsIdx), point_j);
|
|
end
|
|
end
|
|
|
|
%% Print the graph
|
|
graph.print(sprintf('\nFactor graph:\n'));
|
|
|
|
marginals = Marginals(graph, initialEstimate);
|
|
|
|
%% get all the points track information
|
|
% currently throws the Indeterminant linear system exception
|
|
ptx = 0;
|
|
for k = 1:cameraPosesNum
|
|
|
|
for i = 1:length(cylinders)
|
|
for j = 1:length(cylinders{i}.Points)
|
|
if isempty(pts3d.pts{k}.index{i}{j})
|
|
continue;
|
|
end
|
|
ptx = ptx + 1;
|
|
|
|
idx = pts3d.pts{k}.index{i}{j};
|
|
pts2dTracksMono.pt3d{ptx} = pts3d.pts{k}.data{idx};
|
|
pts2dTracksMono.Z{ptx} = pts3d.pts{k}.Z{idx};
|
|
pts2dTracksMono.cov{ptx} = marginals.marginalCovariance(symbol('p',idx));
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
%% plot the result with covariance ellipses
|
|
hold on;
|
|
plot3DPoints(initialEstimate, [], marginals);
|
|
plot3DTrajectory(initialEstimate, '*', 1, 8, marginals);
|
|
|
|
end
|