501 lines
16 KiB
C++
501 lines
16 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Pose3.cpp
|
|
* @brief 3D Pose
|
|
*/
|
|
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/geometry/concepts.h>
|
|
#include <gtsam/base/concepts.h>
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
namespace gtsam {
|
|
|
|
using std::vector;
|
|
using Point3Pairs = vector<Point3Pair>;
|
|
|
|
/** instantiate concept checks */
|
|
GTSAM_CONCEPT_POSE_INST(Pose3)
|
|
|
|
/* ************************************************************************* */
|
|
Pose3::Pose3(const Pose2& pose2) :
|
|
R_(Rot3::Rodrigues(0, 0, pose2.theta())), t_(
|
|
Point3(pose2.x(), pose2.y(), 0)) {
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 Pose3::Create(const Rot3& R, const Point3& t, OptionalJacobian<6, 3> HR,
|
|
OptionalJacobian<6, 3> Ht) {
|
|
if (HR) *HR << I_3x3, Z_3x3;
|
|
if (Ht) *Ht << Z_3x3, R.transpose();
|
|
return Pose3(R, t);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 Pose3::inverse() const {
|
|
Rot3 Rt = R_.inverse();
|
|
return Pose3(Rt, Rt * (-t_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Calculate Adjoint map
|
|
// Ad_pose is 6*6 matrix that when applied to twist xi, returns Ad_pose(xi)
|
|
Matrix6 Pose3::AdjointMap() const {
|
|
const Matrix3 R = R_.matrix();
|
|
Matrix3 A = skewSymmetric(t_.x(), t_.y(), t_.z()) * R;
|
|
Matrix6 adj;
|
|
adj << R, Z_3x3, A, R; // Gives [R 0; A R]
|
|
return adj;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Calculate AdjointMap applied to xi_b, with Jacobians
|
|
Vector6 Pose3::Adjoint(const Vector6& xi_b, OptionalJacobian<6, 6> H_pose,
|
|
OptionalJacobian<6, 6> H_xib) const {
|
|
const Matrix6 Ad = AdjointMap();
|
|
|
|
// Jacobians
|
|
// D1 Ad_T(xi_b) = D1 Ad_T Ad_I(xi_b) = Ad_T * D1 Ad_I(xi_b) = Ad_T * ad_xi_b
|
|
// D2 Ad_T(xi_b) = Ad_T
|
|
// See docs/math.pdf for more details.
|
|
// In D1 calculation, we could be more efficient by writing it out, but do not
|
|
// for readability
|
|
if (H_pose) *H_pose = -Ad * adjointMap(xi_b);
|
|
if (H_xib) *H_xib = Ad;
|
|
|
|
return Ad * xi_b;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/// The dual version of Adjoint
|
|
Vector6 Pose3::AdjointTranspose(const Vector6& x, OptionalJacobian<6, 6> H_pose,
|
|
OptionalJacobian<6, 6> H_x) const {
|
|
const Matrix6 Ad = AdjointMap();
|
|
const Vector6 AdTx = Ad.transpose() * x;
|
|
|
|
// Jacobians
|
|
// See docs/math.pdf for more details.
|
|
if (H_pose) {
|
|
const auto w_T_hat = skewSymmetric(AdTx.head<3>()),
|
|
v_T_hat = skewSymmetric(AdTx.tail<3>());
|
|
*H_pose << w_T_hat, v_T_hat, //
|
|
/* */ v_T_hat, Z_3x3;
|
|
}
|
|
if (H_x) {
|
|
*H_x = Ad.transpose();
|
|
}
|
|
|
|
return AdTx;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix6 Pose3::adjointMap(const Vector6& xi) {
|
|
Matrix3 w_hat = skewSymmetric(xi(0), xi(1), xi(2));
|
|
Matrix3 v_hat = skewSymmetric(xi(3), xi(4), xi(5));
|
|
Matrix6 adj;
|
|
adj << w_hat, Z_3x3, v_hat, w_hat;
|
|
|
|
return adj;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
|
|
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
|
|
if (Hxi) {
|
|
Hxi->setZero();
|
|
for (int i = 0; i < 6; ++i) {
|
|
Vector6 dxi;
|
|
dxi.setZero();
|
|
dxi(i) = 1.0;
|
|
Matrix6 Gi = adjointMap(dxi);
|
|
Hxi->col(i) = Gi * y;
|
|
}
|
|
}
|
|
const Matrix6& ad_xi = adjointMap(xi);
|
|
if (H_y) *H_y = ad_xi;
|
|
return ad_xi * y;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
|
|
OptionalJacobian<6, 6> Hxi, OptionalJacobian<6, 6> H_y) {
|
|
if (Hxi) {
|
|
Hxi->setZero();
|
|
for (int i = 0; i < 6; ++i) {
|
|
Vector6 dxi;
|
|
dxi.setZero();
|
|
dxi(i) = 1.0;
|
|
Matrix6 GTi = adjointMap(dxi).transpose();
|
|
Hxi->col(i) = GTi * y;
|
|
}
|
|
}
|
|
const Matrix6& adT_xi = adjointMap(xi).transpose();
|
|
if (H_y) *H_y = adT_xi;
|
|
return adT_xi * y;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void Pose3::print(const std::string& s) const {
|
|
std::cout << (s.empty() ? s : s + " ") << *this << std::endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool Pose3::equals(const Pose3& pose, double tol) const {
|
|
return R_.equals(pose.R_, tol) && traits<Point3>::Equals(t_, pose.t_, tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Modified from Murray94book version (which assumes w and v normalized?) */
|
|
Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi) {
|
|
if (Hxi) *Hxi = ExpmapDerivative(xi);
|
|
|
|
// get angular velocity omega and translational velocity v from twist xi
|
|
Vector3 omega(xi(0), xi(1), xi(2)), v(xi(3), xi(4), xi(5));
|
|
|
|
Rot3 R = Rot3::Expmap(omega);
|
|
double theta2 = omega.dot(omega);
|
|
if (theta2 > std::numeric_limits<double>::epsilon()) {
|
|
Vector3 t_parallel = omega * omega.dot(v); // translation parallel to axis
|
|
Vector3 omega_cross_v = omega.cross(v); // points towards axis
|
|
Vector3 t = (omega_cross_v - R * omega_cross_v + t_parallel) / theta2;
|
|
return Pose3(R, t);
|
|
} else {
|
|
return Pose3(R, v);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector6 Pose3::Logmap(const Pose3& pose, OptionalJacobian<6, 6> Hpose) {
|
|
if (Hpose) *Hpose = LogmapDerivative(pose);
|
|
const Vector3 w = Rot3::Logmap(pose.rotation());
|
|
const Vector3 T = pose.translation();
|
|
const double t = w.norm();
|
|
if (t < 1e-10) {
|
|
Vector6 log;
|
|
log << w, T;
|
|
return log;
|
|
} else {
|
|
const Matrix3 W = skewSymmetric(w / t);
|
|
// Formula from Agrawal06iros, equation (14)
|
|
// simplified with Mathematica, and multiplying in T to avoid matrix math
|
|
const double Tan = tan(0.5 * t);
|
|
const Vector3 WT = W * T;
|
|
const Vector3 u = T - (0.5 * t) * WT + (1 - t / (2. * Tan)) * (W * WT);
|
|
Vector6 log;
|
|
log << w, u;
|
|
return log;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 Pose3::ChartAtOrigin::Retract(const Vector6& xi, ChartJacobian Hxi) {
|
|
#ifdef GTSAM_POSE3_EXPMAP
|
|
return Expmap(xi, Hxi);
|
|
#else
|
|
Matrix3 DR;
|
|
Rot3 R = Rot3::Retract(xi.head<3>(), Hxi ? &DR : 0);
|
|
if (Hxi) {
|
|
*Hxi = I_6x6;
|
|
Hxi->topLeftCorner<3, 3>() = DR;
|
|
}
|
|
return Pose3(R, Point3(xi.tail<3>()));
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector6 Pose3::ChartAtOrigin::Local(const Pose3& pose, ChartJacobian Hpose) {
|
|
#ifdef GTSAM_POSE3_EXPMAP
|
|
return Logmap(pose, Hpose);
|
|
#else
|
|
Matrix3 DR;
|
|
Vector3 omega = Rot3::LocalCoordinates(pose.rotation(), Hpose ? &DR : 0);
|
|
if (Hpose) {
|
|
*Hpose = I_6x6;
|
|
Hpose->topLeftCorner<3, 3>() = DR;
|
|
}
|
|
Vector6 xi;
|
|
xi << omega, pose.translation();
|
|
return xi;
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix3 Pose3::ComputeQforExpmapDerivative(const Vector6& xi, double nearZeroThreshold) {
|
|
const auto w = xi.head<3>();
|
|
const auto v = xi.tail<3>();
|
|
const Matrix3 V = skewSymmetric(v);
|
|
const Matrix3 W = skewSymmetric(w);
|
|
|
|
Matrix3 Q;
|
|
|
|
#ifdef NUMERICAL_EXPMAP_DERIV
|
|
Matrix3 Qj = Z_3x3;
|
|
double invFac = 1.0;
|
|
Q = Z_3x3;
|
|
Matrix3 Wj = I_3x3;
|
|
for (size_t j=1; j<10; ++j) {
|
|
Qj = Qj*W + Wj*V;
|
|
invFac = -invFac/(j+1);
|
|
Q = Q + invFac*Qj;
|
|
Wj = Wj*W;
|
|
}
|
|
#else
|
|
// The closed-form formula in Barfoot14tro eq. (102)
|
|
double phi = w.norm();
|
|
const Matrix3 WVW = W * V * W;
|
|
if (std::abs(phi) > nearZeroThreshold) {
|
|
const double s = sin(phi), c = cos(phi);
|
|
const double phi2 = phi * phi, phi3 = phi2 * phi, phi4 = phi3 * phi,
|
|
phi5 = phi4 * phi;
|
|
// Invert the sign of odd-order terms to have the right Jacobian
|
|
Q = -0.5 * V + (phi - s) / phi3 * (W * V + V * W - WVW) +
|
|
(1 - phi2 / 2 - c) / phi4 * (W * W * V + V * W * W - 3 * WVW) -
|
|
0.5 * ((1 - phi2 / 2 - c) / phi4 - 3 * (phi - s - phi3 / 6.) / phi5) *
|
|
(WVW * W + W * WVW);
|
|
} else {
|
|
Q = -0.5 * V + 1. / 6. * (W * V + V * W - WVW) -
|
|
1. / 24. * (W * W * V + V * W * W - 3 * WVW) +
|
|
1. / 120. * (WVW * W + W * WVW);
|
|
}
|
|
#endif
|
|
|
|
return Q;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix6 Pose3::ExpmapDerivative(const Vector6& xi) {
|
|
const Vector3 w = xi.head<3>();
|
|
const Matrix3 Jw = Rot3::ExpmapDerivative(w);
|
|
const Matrix3 Q = ComputeQforExpmapDerivative(xi);
|
|
Matrix6 J;
|
|
J << Jw, Z_3x3, Q, Jw;
|
|
return J;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix6 Pose3::LogmapDerivative(const Pose3& pose) {
|
|
const Vector6 xi = Logmap(pose);
|
|
const Vector3 w = xi.head<3>();
|
|
const Matrix3 Jw = Rot3::LogmapDerivative(w);
|
|
const Matrix3 Q = ComputeQforExpmapDerivative(xi);
|
|
const Matrix3 Q2 = -Jw*Q*Jw;
|
|
Matrix6 J;
|
|
J << Jw, Z_3x3, Q2, Jw;
|
|
return J;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
const Point3& Pose3::translation(OptionalJacobian<3, 6> Hself) const {
|
|
if (Hself) *Hself << Z_3x3, rotation().matrix();
|
|
return t_;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
const Rot3& Pose3::rotation(OptionalJacobian<3, 6> Hself) const {
|
|
if (Hself) {
|
|
*Hself << I_3x3, Z_3x3;
|
|
}
|
|
return R_;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix4 Pose3::matrix() const {
|
|
static const auto A14 = Eigen::RowVector4d(0,0,0,1);
|
|
Matrix4 mat;
|
|
mat << R_.matrix(), t_, A14;
|
|
return mat;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 Pose3::transformPoseFrom(const Pose3& aTb, OptionalJacobian<6, 6> Hself,
|
|
OptionalJacobian<6, 6> HaTb) const {
|
|
const Pose3& wTa = *this;
|
|
return wTa.compose(aTb, Hself, HaTb);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Pose3 Pose3::transformPoseTo(const Pose3& wTb, OptionalJacobian<6, 6> Hself,
|
|
OptionalJacobian<6, 6> HwTb) const {
|
|
if (Hself) *Hself = -wTb.inverse().AdjointMap() * AdjointMap();
|
|
if (HwTb) *HwTb = I_6x6;
|
|
const Pose3& wTa = *this;
|
|
return wTa.inverse() * wTb;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Pose3::transformFrom(const Point3& point, OptionalJacobian<3, 6> Hself,
|
|
OptionalJacobian<3, 3> Hpoint) const {
|
|
// Only get matrix once, to avoid multiple allocations,
|
|
// as well as multiple conversions in the Quaternion case
|
|
const Matrix3 R = R_.matrix();
|
|
if (Hself) {
|
|
Hself->leftCols<3>() = R * skewSymmetric(-point.x(), -point.y(), -point.z());
|
|
Hself->rightCols<3>() = R;
|
|
}
|
|
if (Hpoint) {
|
|
*Hpoint = R;
|
|
}
|
|
return R_ * point + t_;
|
|
}
|
|
|
|
Matrix Pose3::transformFrom(const Matrix& points) const {
|
|
if (points.rows() != 3) {
|
|
throw std::invalid_argument("Pose3:transformFrom expects 3*N matrix.");
|
|
}
|
|
const Matrix3 R = R_.matrix();
|
|
return (R * points).colwise() + t_; // Eigen broadcasting!
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Pose3::transformTo(const Point3& point, OptionalJacobian<3, 6> Hself,
|
|
OptionalJacobian<3, 3> Hpoint) const {
|
|
// Only get transpose once, to avoid multiple allocations,
|
|
// as well as multiple conversions in the Quaternion case
|
|
const Matrix3 Rt = R_.transpose();
|
|
const Point3 q(Rt*(point - t_));
|
|
if (Hself) {
|
|
const double wx = q.x(), wy = q.y(), wz = q.z();
|
|
(*Hself) <<
|
|
0.0, -wz, +wy,-1.0, 0.0, 0.0,
|
|
+wz, 0.0, -wx, 0.0,-1.0, 0.0,
|
|
-wy, +wx, 0.0, 0.0, 0.0,-1.0;
|
|
}
|
|
if (Hpoint) {
|
|
*Hpoint = Rt;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
Matrix Pose3::transformTo(const Matrix& points) const {
|
|
if (points.rows() != 3) {
|
|
throw std::invalid_argument("Pose3:transformTo expects 3*N matrix.");
|
|
}
|
|
const Matrix3 Rt = R_.transpose();
|
|
return Rt * (points.colwise() - t_); // Eigen broadcasting!
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double Pose3::range(const Point3& point, OptionalJacobian<1, 6> Hself,
|
|
OptionalJacobian<1, 3> Hpoint) const {
|
|
Matrix36 D_local_pose;
|
|
Matrix3 D_local_point;
|
|
Point3 local = transformTo(point, Hself ? &D_local_pose : 0, Hpoint ? &D_local_point : 0);
|
|
if (!Hself && !Hpoint) {
|
|
return local.norm();
|
|
} else {
|
|
Matrix13 D_r_local;
|
|
const double r = norm3(local, D_r_local);
|
|
if (Hself) *Hself = D_r_local * D_local_pose;
|
|
if (Hpoint) *Hpoint = D_r_local * D_local_point;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double Pose3::range(const Pose3& pose, OptionalJacobian<1, 6> Hself,
|
|
OptionalJacobian<1, 6> Hpose) const {
|
|
Matrix13 D_local_point;
|
|
double r = range(pose.translation(), Hself, Hpose ? &D_local_point : 0);
|
|
if (Hpose) *Hpose << Matrix13::Zero(), D_local_point * pose.rotation().matrix();
|
|
return r;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Unit3 Pose3::bearing(const Point3& point, OptionalJacobian<2, 6> Hself,
|
|
OptionalJacobian<2, 3> Hpoint) const {
|
|
Matrix36 D_local_pose;
|
|
Matrix3 D_local_point;
|
|
Point3 local = transformTo(point, Hself ? &D_local_pose : 0, Hpoint ? &D_local_point : 0);
|
|
if (!Hself && !Hpoint) {
|
|
return Unit3(local);
|
|
} else {
|
|
Matrix23 D_b_local;
|
|
Unit3 b = Unit3::FromPoint3(local, D_b_local);
|
|
if (Hself) *Hself = D_b_local * D_local_pose;
|
|
if (Hpoint) *Hpoint = D_b_local * D_local_point;
|
|
return b;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Unit3 Pose3::bearing(const Pose3& pose, OptionalJacobian<2, 6> Hself,
|
|
OptionalJacobian<2, 6> Hpose) const {
|
|
if (Hpose) {
|
|
Hpose->setZero();
|
|
return bearing(pose.translation(), Hself, Hpose.cols<3>(3));
|
|
}
|
|
return bearing(pose.translation(), Hself, boost::none);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
boost::optional<Pose3> Pose3::Align(const Point3Pairs &abPointPairs) {
|
|
const size_t n = abPointPairs.size();
|
|
if (n < 3) {
|
|
return boost::none; // we need at least three pairs
|
|
}
|
|
|
|
// calculate centroids
|
|
const auto centroids = means(abPointPairs);
|
|
|
|
// Add to form H matrix
|
|
Matrix3 H = Z_3x3;
|
|
for (const Point3Pair &abPair : abPointPairs) {
|
|
const Point3 da = abPair.first - centroids.first;
|
|
const Point3 db = abPair.second - centroids.second;
|
|
H += da * db.transpose();
|
|
}
|
|
|
|
// ClosestTo finds rotation matrix closest to H in Frobenius sense
|
|
const Rot3 aRb = Rot3::ClosestTo(H);
|
|
const Point3 aTb = centroids.first - aRb * centroids.second;
|
|
return Pose3(aRb, aTb);
|
|
}
|
|
|
|
boost::optional<Pose3> Pose3::Align(const Matrix& a, const Matrix& b) {
|
|
if (a.rows() != 3 || b.rows() != 3 || a.cols() != b.cols()) {
|
|
throw std::invalid_argument(
|
|
"Pose3:Align expects 3*N matrices of equal shape.");
|
|
}
|
|
Point3Pairs abPointPairs;
|
|
for (Eigen::Index j = 0; j < a.cols(); j++) {
|
|
abPointPairs.emplace_back(a.col(j), b.col(j));
|
|
}
|
|
return Pose3::Align(abPointPairs);
|
|
}
|
|
|
|
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V42
|
|
boost::optional<Pose3> align(const Point3Pairs &baPointPairs) {
|
|
Point3Pairs abPointPairs;
|
|
for (const Point3Pair &baPair : baPointPairs) {
|
|
abPointPairs.emplace_back(baPair.second, baPair.first);
|
|
}
|
|
return Pose3::Align(abPointPairs);
|
|
}
|
|
#endif
|
|
|
|
/* ************************************************************************* */
|
|
std::ostream &operator<<(std::ostream &os, const Pose3& pose) {
|
|
// Both Rot3 and Point3 have ostream definitions so we use them.
|
|
os << "R: " << pose.rotation() << "\n";
|
|
os << "t: " << pose.translation().transpose();
|
|
return os;
|
|
}
|
|
|
|
} // namespace gtsam
|