322 lines
11 KiB
C++
322 lines
11 KiB
C++
/**
|
|
* @file BayesTree.cpp
|
|
* @brief Bayes Tree is a tree of cliques of a Bayes Chain
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
|
|
#include "BayesTree.h"
|
|
#include "inference-inl.h"
|
|
|
|
namespace gtsam {
|
|
|
|
using namespace std;
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::Clique::Clique(const sharedConditional& conditional) {
|
|
separator_ = conditional->parents();
|
|
this->push_back(conditional);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
Ordering BayesTree<Conditional>::Clique::keys() const {
|
|
Ordering frontal_keys = this->ordering(), keys = separator_;
|
|
keys.splice(keys.begin(),frontal_keys);
|
|
return keys;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::Clique::print(const string& s) const {
|
|
cout << s;
|
|
BOOST_REVERSE_FOREACH(const sharedConditional& conditional, this->conditionals_)
|
|
cout << " " << conditional->key();
|
|
if (!separator_.empty()) {
|
|
cout << " :";
|
|
BOOST_FOREACH(string key, separator_)
|
|
cout << " " << key;
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
size_t BayesTree<Conditional>::Clique::treeSize() const {
|
|
size_t size = 1;
|
|
BOOST_FOREACH(shared_ptr child, children_)
|
|
size += child->treeSize();
|
|
return size;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::Clique::printTree(const string& indent) const {
|
|
print(indent);
|
|
BOOST_FOREACH(shared_ptr child, children_)
|
|
child->printTree(indent+" ");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// The shortcut density is a conditional P(S|R) of the separator of this
|
|
// clique on the root. We can compute it recursively from the parent shortcut
|
|
// P(Sp|R) as \int P(Fp|Sp) P(Sp|R), where Fp are the frontal nodes in p
|
|
// TODO, why do we actually return a shared pointer, why does eliminate?
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
BayesNet<Conditional>
|
|
BayesTree<Conditional>::Clique::shortcut(shared_ptr R) {
|
|
// A first base case is when this clique or its parent is the root,
|
|
// in which case we return an empty Bayes net.
|
|
|
|
if (R.get()==this || parent_==R) {
|
|
BayesNet<Conditional> empty;
|
|
return empty;
|
|
}
|
|
|
|
// The parent clique has a Conditional for each frontal node in Fp
|
|
// so we can obtain P(Fp|Sp) in factor graph form
|
|
FactorGraph<Factor> p_Fp_Sp(*parent_);
|
|
|
|
// If not the base case, obtain the parent shortcut P(Sp|R) as factors
|
|
FactorGraph<Factor> p_Sp_R(parent_->shortcut<Factor>(R));
|
|
|
|
// now combine P(Cp|R) = P(Fp|Sp) * P(Sp|R)
|
|
FactorGraph<Factor> p_Cp_R = combine(p_Fp_Sp, p_Sp_R);
|
|
|
|
// Eliminate into a Bayes net with ordering designed to integrate out
|
|
// any variables not in *our* separator. Variables to integrate out must be
|
|
// eliminated first hence the desired ordering is [Cp\S S].
|
|
// However, an added wrinkle is that Cp might overlap with the root.
|
|
// Keys corresponding to the root should not be added to the ordering at all.
|
|
|
|
// Get the key list Cp=Fp+Sp, which will form the basis for the integrands
|
|
Ordering integrands = parent_->keys();
|
|
|
|
// Start ordering with the separator
|
|
Ordering ordering = separator_;
|
|
|
|
// remove any variables in the root, after this integrands = Cp\R, ordering = S\R
|
|
BOOST_FOREACH(string key, R->ordering()) {
|
|
integrands.remove(key);
|
|
ordering.remove(key);
|
|
}
|
|
|
|
// remove any variables in the separator, after this integrands = Cp\R\S
|
|
BOOST_FOREACH(string key, separator_) integrands.remove(key);
|
|
|
|
// form the ordering as [Cp\R\S S\R]
|
|
BOOST_REVERSE_FOREACH(string key, integrands) ordering.push_front(key);
|
|
|
|
// eliminate to get marginal
|
|
BayesNet<Conditional> p_S_R = eliminate<Factor,Conditional>(p_Cp_R,ordering);
|
|
|
|
// remove all integrands
|
|
BOOST_FOREACH(string key, integrands) p_S_R.pop_front();
|
|
|
|
// return the parent shortcut P(Sp|R)
|
|
return p_S_R;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// P(C) = \int_R P(F|S) P(S|R) P(R)
|
|
// TODO: Maybe we should integrate given parent marginal P(Cp),
|
|
// \int(Cp\S) P(F|S)P(S|Cp)P(Cp)
|
|
// Because the root clique could be very big.
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
FactorGraph<Factor>
|
|
BayesTree<Conditional>::Clique::marginal(shared_ptr R) {
|
|
// If we are the root, just return this root
|
|
if (R.get()==this) return *R;
|
|
|
|
// Combine P(F|S), P(S|R), and P(R)
|
|
BayesNet<Conditional> p_FSR = this->shortcut<Factor>(R);
|
|
p_FSR.push_front(*this);
|
|
p_FSR.push_back(*R);
|
|
|
|
// Find marginal on the keys we are interested in
|
|
return marginalize<Factor,Conditional>(p_FSR,keys());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// P(C1,C2) = \int_R P(F1|S1) P(S1|R) P(F2|S1) P(S2|R) P(R)
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
FactorGraph<Factor>
|
|
BayesTree<Conditional>::Clique::joint(shared_ptr C2, shared_ptr R) {
|
|
// For now, assume neither is the root
|
|
|
|
// Combine P(F1|S1), P(S1|R), P(F2|S2), P(S2|R), and P(R)
|
|
sharedBayesNet bn(new BayesNet<Conditional>);
|
|
if (!isRoot()) bn->push_back(*this); // P(F1|S1)
|
|
if (!isRoot()) bn->push_back(shortcut<Factor>(R)); // P(S1|R)
|
|
if (!C2->isRoot()) bn->push_back(*C2); // P(F2|S2)
|
|
if (!C2->isRoot()) bn->push_back(C2->shortcut<Factor>(R)); // P(S2|R)
|
|
bn->push_back(*R); // P(R)
|
|
|
|
// Find the keys of both C1 and C2
|
|
Ordering keys12 = keys();
|
|
BOOST_FOREACH(string key,C2->keys()) keys12.push_back(key);
|
|
keys12.unique();
|
|
|
|
// Calculate the marginal
|
|
return marginalize<Factor,Conditional>(*bn,keys12);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::BayesTree() {
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
BayesTree<Conditional>::BayesTree(const BayesNet<Conditional>& bayesNet) {
|
|
typename BayesNet<Conditional>::const_reverse_iterator rit;
|
|
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
|
|
insert(*rit);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::print(const string& s) const {
|
|
cout << s << ": size == " << size() << endl;
|
|
if (nodes_.empty()) return;
|
|
root_->printTree("");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// binary predicate to test equality of a pair for use in equals
|
|
template<class Conditional>
|
|
bool check_pair(
|
|
const pair<string,typename BayesTree<Conditional>::sharedClique >& v1,
|
|
const pair<string,typename BayesTree<Conditional>::sharedClique >& v2
|
|
) {
|
|
return v1.first == v2.first && v1.second->equals(*(v2.second));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
bool BayesTree<Conditional>::equals(const BayesTree<Conditional>& other,
|
|
double tol) const {
|
|
return size()==other.size() &&
|
|
equal(nodes_.begin(),nodes_.end(),other.nodes_.begin(),check_pair<Conditional>);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
void BayesTree<Conditional>::insert(const sharedConditional& conditional)
|
|
{
|
|
// get key and parents
|
|
string key = conditional->key();
|
|
list<string> parents = conditional->parents();
|
|
|
|
// if no parents, start a new root clique
|
|
if (parents.empty()) {
|
|
root_ = addClique(conditional);
|
|
return;
|
|
}
|
|
|
|
// otherwise, find the parent clique
|
|
string parent = parents.front();
|
|
sharedClique parent_clique = (*this)[parent];
|
|
|
|
// if the parents and parent clique have the same size, add to parent clique
|
|
if (parent_clique->size() == parents.size()) {
|
|
nodes_.insert(make_pair(key, parent_clique));
|
|
parent_clique->push_front(conditional);
|
|
return;
|
|
}
|
|
|
|
// otherwise, start a new clique and add it to the tree
|
|
addClique(conditional,parent_clique);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// First finds clique marginal then marginalizes that
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
FactorGraph<Factor>
|
|
BayesTree<Conditional>::marginal(const string& key) const {
|
|
|
|
// get clique containing key
|
|
sharedClique clique = (*this)[key];
|
|
|
|
// calculate or retrieve its marginal
|
|
FactorGraph<Factor> cliqueMarginal = clique->marginal<Factor>(root_);
|
|
|
|
// create an ordering where only the requested key is not eliminated
|
|
Ordering ord = clique->keys();
|
|
ord.remove(key);
|
|
|
|
// partially eliminate, remaining factor graph is requested marginal
|
|
eliminate<Factor,Conditional>(cliqueMarginal,ord);
|
|
return cliqueMarginal;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
BayesNet<Conditional>
|
|
BayesTree<Conditional>::marginalBayesNet(const string& key) const {
|
|
|
|
// calculate marginal as a factor graph
|
|
FactorGraph<Factor> fg = this->marginal<Factor>(key);
|
|
|
|
// eliminate further to Bayes net
|
|
return eliminate<Factor,Conditional>(fg,Ordering(key));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Find two cliques, their joint, then marginalizes
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
FactorGraph<Factor>
|
|
BayesTree<Conditional>::joint(const std::string& key1, const std::string& key2) const {
|
|
|
|
// get clique C1 and C2
|
|
sharedClique C1 = (*this)[key1], C2 = (*this)[key2];
|
|
|
|
// calculate joint
|
|
FactorGraph<Factor> p_C1C2 = C1->joint<Factor>(C2,root_);
|
|
|
|
// create an ordering where both requested keys are not eliminated
|
|
Ordering ord = p_C1C2.keys();
|
|
ord.remove(key1);
|
|
ord.remove(key2);
|
|
|
|
// partially eliminate, remaining factor graph is requested joint
|
|
// TODO, make eliminate functional
|
|
eliminate<Factor,Conditional>(p_C1C2,ord);
|
|
return p_C1C2;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Conditional>
|
|
template<class Factor>
|
|
BayesNet<Conditional>
|
|
BayesTree<Conditional>::jointBayesNet(const std::string& key1, const std::string& key2) const {
|
|
|
|
// calculate marginal as a factor graph
|
|
FactorGraph<Factor> fg = this->joint<Factor>(key1,key2);
|
|
|
|
// eliminate further to Bayes net
|
|
Ordering ordering;
|
|
ordering += key1, key2;
|
|
return eliminate<Factor,Conditional>(fg,ordering);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
}
|
|
/// namespace gtsam
|