gtsam/gtsam/hybrid/HybridNonlinearFactor.h

193 lines
6.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridNonlinearFactor.h
* @brief A set of nonlinear factors indexed by a set of discrete keys.
* @author Kevin Doherty, kdoherty@mit.edu
* @author Varun Agrawal
* @date December 2021
*/
#pragma once
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Symbol.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
namespace gtsam {
/// Alias for a NonlinearFactor shared pointer and double scalar pair.
using NonlinearFactorValuePair = std::pair<NonlinearFactor::shared_ptr, double>;
/**
* @brief Implementation of a discrete-conditioned hybrid factor.
*
* Implements a joint discrete-continuous factor where the discrete variable
* serves to "select" a hybrid component corresponding to a NonlinearFactor.
*
* This class stores all factors as HybridFactors which can then be typecast to
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
* the correct operation.
*
* In factor graphs the error function typically returns 0.5*|h(x)-z|^2, i.e.,
* the negative log-likelihood for a Gaussian noise model.
* In hybrid factor graphs we allow *adding* an arbitrary scalar dependent on
* the discrete assignment.
* For example, adding a 70/30 mode probability is supported by providing the
* scalars $-log(.7)$ and $-log(.3)$.
* Note that adding a common constant will not make any difference in the
* optimization, so $-log(70)$ and $-log(30)$ work just as well.
*
* @ingroup hybrid
*/
class GTSAM_EXPORT HybridNonlinearFactor : public HybridFactor {
public:
using Base = HybridFactor;
using This = HybridNonlinearFactor;
using shared_ptr = std::shared_ptr<HybridNonlinearFactor>;
using sharedFactor = std::shared_ptr<NonlinearFactor>;
/**
* @brief typedef for DecisionTree which has Keys as node labels and
* pairs of NonlinearFactor & an arbitrary scalar as leaf nodes.
*/
using Factors = DecisionTree<Key, NonlinearFactorValuePair>;
private:
/// Decision tree of Gaussian factors indexed by discrete keys.
Factors factors_;
public:
HybridNonlinearFactor() = default;
/**
* @brief Construct from Decision tree.
*
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Decision tree with of shared factors.
*/
HybridNonlinearFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors);
/**
* @brief Convenience constructor that generates the underlying factor
* decision tree for us.
*
* Here it is important that the vector of factors has the correct number of
* elements based on the number of discrete keys and the cardinality of the
* keys, so that the decision tree is constructed appropriately.
*
* @tparam FACTOR The type of the factor shared pointers being passed in.
* Will be typecast to NonlinearFactor shared pointers.
* @param keys Vector of keys for continuous factors.
* @param discreteKey The discrete key indexing each component factor.
* @param factors Vector of nonlinear factor and scalar pairs.
* Same size as the cardinality of discreteKey.
*/
template <typename FACTOR>
HybridNonlinearFactor(
const KeyVector& keys, const DiscreteKey& discreteKey,
const std::vector<std::pair<std::shared_ptr<FACTOR>, double>>& factors)
: Base(keys, {discreteKey}) {
std::vector<NonlinearFactorValuePair> nonlinear_factors;
KeySet continuous_keys_set(keys.begin(), keys.end());
KeySet factor_keys_set;
for (auto&& [f, val] : factors) {
// Insert all factor continuous keys in the continuous keys set.
std::copy(f->keys().begin(), f->keys().end(),
std::inserter(factor_keys_set, factor_keys_set.end()));
if (auto nf = std::dynamic_pointer_cast<NonlinearFactor>(f)) {
nonlinear_factors.emplace_back(nf, val);
} else {
throw std::runtime_error(
"Factors passed into HybridNonlinearFactor need to be nonlinear!");
}
}
factors_ = Factors({discreteKey}, nonlinear_factors);
if (continuous_keys_set != factor_keys_set) {
throw std::runtime_error(
"The specified continuous keys and the keys in the factors don't "
"match!");
}
}
/**
* @brief Compute error of the HybridNonlinearFactor as a tree.
*
* @param continuousValues The continuous values for which to compute the
* error.
* @return AlgebraicDecisionTree<Key> A decision tree with the same keys
* as the factor, and leaf values as the error.
*/
AlgebraicDecisionTree<Key> errorTree(const Values& continuousValues) const;
/**
* @brief Compute error of factor given both continuous and discrete values.
*
* @param continuousValues The continuous Values.
* @param discreteValues The discrete Values.
* @return double The error of this factor.
*/
double error(const Values& continuousValues,
const DiscreteValues& discreteValues) const;
/**
* @brief Compute error of factor given hybrid values.
*
* @param values The continuous Values and the discrete assignment.
* @return double The error of this factor.
*/
double error(const HybridValues& values) const override;
/**
* @brief Get the dimension of the factor (number of rows on linearization).
* Returns the dimension of the first component factor.
* @return size_t
*/
size_t dim() const;
/// Testable
/// @{
/// print to stdout
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const override;
/// Check equality
bool equals(const HybridFactor& other, double tol = 1e-9) const override;
/// @}
/// Linearize specific nonlinear factors based on the assignment in
/// discreteValues.
GaussianFactor::shared_ptr linearize(
const Values& continuousValues,
const DiscreteValues& discreteValues) const;
/// Linearize all the continuous factors to get a HybridGaussianFactor.
std::shared_ptr<HybridGaussianFactor> linearize(
const Values& continuousValues) const;
};
} // namespace gtsam