gtsam/gtsam/base/Lie.h

317 lines
9.3 KiB
C++
Raw Blame History

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Lie.h
* @brief Base class and basic functions for Lie types
* @author Richard Roberts
* @author Alex Cunningham
* @author Frank Dellaert
* @author Mike Bosse
* @author Duy Nguyen Ta
*/
#pragma once
#include <gtsam/base/Manifold.h>
#include <gtsam/base/Group.h>
namespace gtsam {
/// A CRTP helper class that implements Lie group methods
/// Prerequisites: methods operator*, inverse, and AdjointMap, as well as a
/// ChartAtOrigin struct that will be used to define the manifold Chart
/// To use, simply derive, but also say "using LieGroup<Class,N>::inverse"
/// For derivative math, see doc/math.pdf
template <class Class, int N>
struct LieGroup {
BOOST_STATIC_ASSERT_MSG(N != Eigen::Dynamic,
"LieGroup not yet specialized for dynamically sized types.");
enum { dimension = N };
typedef OptionalJacobian<N, N> ChartJacobian;
typedef Eigen::Matrix<double, N, N> Jacobian;
typedef Eigen::Matrix<double, N, 1> TangentVector;
const Class & derived() const {
return static_cast<const Class&>(*this);
}
Class compose(const Class& g) const {
return derived() * g;
}
Class between(const Class& g) const {
return derived().inverse() * g;
}
Class compose(const Class& g, ChartJacobian H1,
ChartJacobian H2 = boost::none) const {
if (H1) *H1 = g.inverse().AdjointMap();
if (H2) *H2 = Eigen::Matrix<double, N, N>::Identity();
return derived() * g;
}
Class between(const Class& g, ChartJacobian H1,
ChartJacobian H2 = boost::none) const {
Class result = derived().inverse() * g;
if (H1) *H1 = - result.inverse().AdjointMap();
if (H2) *H2 = Eigen::Matrix<double, N, N>::Identity();
return result;
}
Class inverse(ChartJacobian H) const {
if (H) *H = - derived().AdjointMap();
return derived().inverse();
}
Class expmap(const TangentVector& v) const {
return compose(Class::Expmap(v));
}
TangentVector logmap(const Class& g) const {
return Class::Logmap(between(g));
}
static Class Retract(const TangentVector& v) {
return Class::ChartAtOrigin::Retract(v);
}
static TangentVector LocalCoordinates(const Class& g) {
return Class::ChartAtOrigin::Local(g);
}
static Class Retract(const TangentVector& v, ChartJacobian H) {
return Class::ChartAtOrigin::Retract(v,H);
}
static TangentVector LocalCoordinates(const Class& g, ChartJacobian H) {
return Class::ChartAtOrigin::Local(g,H);
}
Class retract(const TangentVector& v) const {
return compose(Class::ChartAtOrigin::Retract(v));
}
TangentVector localCoordinates(const Class& g) const {
return Class::ChartAtOrigin::Local(between(g));
}
Class retract(const TangentVector& v, //
ChartJacobian H1, ChartJacobian H2 = boost::none) const {
Jacobian D_g_v;
Class g = Class::ChartAtOrigin::Retract(v,D_g_v);
Class h = compose(g,H1,H2);
if (H2) *H2 = (*H2) * D_g_v;
return h;
}
TangentVector localCoordinates(const Class& g, //
ChartJacobian H1, ChartJacobian H2 = boost::none) const {
Class h = between(g,H1,H2);
Jacobian D_v_h;
TangentVector v = Class::ChartAtOrigin::Local(h, D_v_h);
if (H1) *H1 = D_v_h * (*H1);
if (H2) *H2 = D_v_h * (*H2);
return v;
}
};
/// tag to assert a type is a Lie group
struct lie_group_tag: public manifold_tag, public group_tag {};
namespace internal {
/// A helper class that implements the traits interface for GTSAM lie groups.
/// To use this for your gtsam type, define:
/// template<> struct traits<Class> : public internal::LieGroupTraits<Class> {};
template<class Class>
struct LieGroupTraits : Testable<Class> {
typedef lie_group_tag structure_category;
/// @name Group
/// @{
typedef multiplicative_group_tag group_flavor;
static Class Identity() { return Class::identity();}
static Class Compose(const Class& m1, const Class& m2) { return m1 * m2;}
static Class Between(const Class& m1, const Class& m2) { return m1.inverse() * m2;}
static Class Inverse(const Class& m) { return m.inverse();}
/// @}
/// @name Manifold
/// @{
typedef Class ManifoldType;
enum { dimension = Class::dimension };
typedef Eigen::Matrix<double, dimension, 1> TangentVector;
typedef OptionalJacobian<dimension, dimension> ChartJacobian;
BOOST_STATIC_ASSERT_MSG(dimension != Eigen::Dynamic,
"LieGroupTraits not yet specialized for dynamically sized types.");
static int GetDimension(const Class&) {return dimension;}
static TangentVector Local(const Class& origin, const Class& other) {
return origin.localCoordinates(other);
}
static Class Retract(const Class& origin, const TangentVector& v) {
return origin.retract(v);
}
static TangentVector Local(const Class& origin, const Class& other,
ChartJacobian Horigin, ChartJacobian Hother = boost::none) {
return origin.localCoordinates(other, Horigin, Hother);
}
static Class Retract(const Class& origin, const TangentVector& v,
ChartJacobian Horigin, ChartJacobian Hv = boost::none) {
return origin.retract(v, Horigin, Hv);
}
/// @}
/// @name Lie Group
/// @{
static TangentVector Logmap(const Class& m, ChartJacobian Hm = boost::none) {
return Class::Logmap(m, Hm);
}
static Class Expmap(const TangentVector& v, ChartJacobian Hv = boost::none) {
return Class::Expmap(v, Hv);
}
static Class Compose(const Class& m1, const Class& m2, ChartJacobian H1,
ChartJacobian H2 = boost::none) {
return m1.compose(m2, H1, H2);
}
static Class Between(const Class& m1, const Class& m2, ChartJacobian H1,
ChartJacobian H2 = boost::none) {
return m1.between(m2, H1, H2);
}
static Class Inverse(const Class& m, ChartJacobian H) {
return m.inverse(H);
}
/// @}
};
} // \ namepsace internal
/**
* These core global functions can be specialized by new Lie types
* for better performance.
*/
/** Compute l0 s.t. l2=l1*l0 */
template<class Class>
inline Class between_default(const Class& l1, const Class& l2) {
return l1.inverse().compose(l2);
}
/** Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp */
template<class Class>
inline Vector logmap_default(const Class& l0, const Class& lp) {
return Class::Logmap(l0.between(lp));
}
/** Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */
template<class Class>
inline Class expmap_default(const Class& t, const Vector& d) {
return t.compose(Class::Expmap(d));
}
/**
* Lie Group Concept
*/
template<typename T>
class IsLieGroup: public IsGroup<T>, public IsManifold<T> {
public:
typedef typename traits<T>::structure_category structure_category_tag;
typedef typename traits<T>::ManifoldType ManifoldType;
typedef typename traits<T>::TangentVector TangentVector;
typedef typename traits<T>::ChartJacobian ChartJacobian;
BOOST_CONCEPT_USAGE(IsLieGroup) {
BOOST_STATIC_ASSERT_MSG(
(boost::is_base_of<lie_group_tag, structure_category_tag>::value),
"This type's trait does not assert it is a Lie group (or derived)");
// group opertations with Jacobians
g = traits<T>::Compose(g, h, Hg, Hh);
g = traits<T>::Between(g, h, Hg, Hh);
g = traits<T>::Inverse(g, Hg);
// log and exp map without Jacobians
g = traits<T>::Expmap(v);
v = traits<T>::Logmap(g);
// log and expnential map with Jacobians
g = traits<T>::Expmap(v, Hg);
v = traits<T>::Logmap(g, Hg);
}
private:
T g, h;
TangentVector v;
ChartJacobian Hg, Hh;
};
/**
* Three term approximation of the Baker<65>Campbell<6C>Hausdorff formula
* In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y)
* it is not true that Z = X+Y. Instead, Z can be calculated using the BCH
* formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24
* http://en.wikipedia.org/wiki/Baker<65>Campbell<6C>Hausdorff_formula
*/
/// AGC: bracket() only appears in Rot3 tests, should this be used elsewhere?
template<class T>
T BCH(const T& X, const T& Y) {
static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.;
T X_Y = bracket(X, Y);
return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y,
bracket(X, X_Y));
}
/**
* Declaration of wedge (see Murray94book) used to convert
* from n exponential coordinates to n*n element of the Lie algebra
*/
template <class T> Matrix wedge(const Vector& x);
/**
* Exponential map given exponential coordinates
* class T needs a wedge<> function and a constructor from Matrix
* @param x exponential coordinates, vector of size n
* @ return a T
*/
template <class T>
T expm(const Vector& x, int K=7) {
Matrix xhat = wedge<T>(x);
return T(expm(xhat,K));
}
} // namespace gtsam
/**
* Macros for using the LieConcept
* - An instantiation for use inside unit tests
* - A typedef for use inside generic algorithms
*
* NOTE: intentionally not in the gtsam namespace to allow for classes not in
* the gtsam namespace to be more easily enforced as testable
*/
#define GTSAM_CONCEPT_LIE_INST(T) template class gtsam::IsLieGroup<T>;
#define GTSAM_CONCEPT_LIE_TYPE(T) typedef gtsam::IsLieGroup<T> _gtsam_IsLieGroup_##T;