gtsam/gtsam/nonlinear/Values-inl.h

293 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Values.h
* @author Richard Roberts
*
* @brief A non-templated config holding any types of Manifold-group elements
*
* Detailed story:
* A values structure is a map from keys to values. It is used to specify the value of a bunch
* of variables in a factor graph. A Values is a values structure which can hold variables that
* are elements on manifolds, not just vectors. It then, as a whole, implements a aggregate type
* which is also a manifold element, and hence supports operations dim, retract, and localCoordinates.
*/
#pragma once
#include <utility>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Values.h> // Only so Eclipse finds class definition
namespace gtsam {
/* ************************************************************************* */
template<class ValueType>
struct _ValuesKeyValuePair {
const Key key; ///< The key
ValueType& value; ///< The value
_ValuesKeyValuePair(Key _key, ValueType& _value) : key(_key), value(_value) {}
};
/* ************************************************************************* */
template<class ValueType>
struct _ValuesConstKeyValuePair {
const Key key; ///< The key
const ValueType& value; ///< The value
_ValuesConstKeyValuePair(Key _key, const ValueType& _value) :
key(_key), value(_value) {
}
_ValuesConstKeyValuePair(const _ValuesKeyValuePair<ValueType>& rhs) :
key(rhs.key), value(rhs.value) {
}
};
/* ************************************************************************* */
// Cast helpers for making _Values[Const]KeyValuePair's from Values::[Const]KeyValuePair
// need to use a struct here for later partial specialization
template<class ValueType, class CastedKeyValuePairType, class KeyValuePairType>
struct ValuesCastHelper {
static CastedKeyValuePairType cast(KeyValuePairType key_value) {
// Static cast because we already checked the type during filtering
return CastedKeyValuePairType(key_value.key,
const_cast<GenericValue<ValueType>&>(static_cast<const GenericValue<
ValueType>&>(key_value.value)).value());
}
};
// partial specialized version for ValueType == Value
template<class CastedKeyValuePairType, class KeyValuePairType>
struct ValuesCastHelper<Value, CastedKeyValuePairType, KeyValuePairType> {
static CastedKeyValuePairType cast(KeyValuePairType key_value) {
// Static cast because we already checked the type during filtering
// in this case the casted and keyvalue pair are essentially the same type
// (key, Value&) so perhaps this could be done with just a cast of the key_value?
return CastedKeyValuePairType(key_value.key, key_value.value);
}
};
// partial specialized version for ValueType == Value
template<class CastedKeyValuePairType, class KeyValuePairType>
struct ValuesCastHelper<const Value, CastedKeyValuePairType, KeyValuePairType> {
static CastedKeyValuePairType cast(KeyValuePairType key_value) {
// Static cast because we already checked the type during filtering
// in this case the casted and keyvalue pair are essentially the same type
// (key, Value&) so perhaps this could be done with just a cast of the key_value?
return CastedKeyValuePairType(key_value.key, key_value.value);
}
};
/* ************************************************************************* */
template <class ValueType>
size_t Values::count() const {
size_t i = 0;
for (const auto& [_, value] : values_) {
if (dynamic_cast<const GenericValue<ValueType>*>(value.get())) ++i;
}
return i;
}
/* ************************************************************************* */
template <class ValueType>
std::map<Key, ValueType>
Values::extract(const std::function<bool(Key)>& filterFcn) const {
std::map<Key, ValueType> result;
for (const auto& [key,value] : values_) {
// Check if key matches
if (filterFcn(key)) {
// Check if type matches (typically does as symbols matched with types)
if (auto t =
dynamic_cast<const GenericValue<ValueType>*>(value.get()))
result[key] = t->value();
}
}
return result;
}
/* ************************************************************************* */
template<>
inline bool Values::filterHelper<Value>(const std::function<bool(Key)> filter,
const ConstKeyValuePair& key_value) {
// Filter and check the type
return filter(key_value.key);
}
/* ************************************************************************* */
namespace internal {
// Check the type and throw exception if incorrect
// Generic version, partially specialized below for various Eigen Matrix types
template <typename ValueType>
struct handle {
ValueType operator()(Key j, const Value* const pointer) {
auto ptr = dynamic_cast<const GenericValue<ValueType>*>(pointer);
if (ptr) {
// value returns a const ValueType&, and the return makes a copy !!!!!
return ptr->value();
} else {
throw ValuesIncorrectType(j, typeid(*pointer), typeid(ValueType));
}
}
};
template <typename MatrixType, bool isDynamic>
struct handle_matrix;
// Handle dynamic matrices
template <int M, int N>
struct handle_matrix<Eigen::Matrix<double, M, N>, true> {
inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) {
auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer);
if (ptr) {
// value returns a const Matrix&, and the return makes a copy !!!!!
return ptr->value();
} else {
// If a fixed matrix was stored, we end up here as well.
throw ValuesIncorrectType(j, typeid(*pointer), typeid(Eigen::Matrix<double, M, N>));
}
}
};
// Handle fixed matrices
template <int M, int N>
struct handle_matrix<Eigen::Matrix<double, M, N>, false> {
inline Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) {
auto ptr = dynamic_cast<const GenericValue<Eigen::Matrix<double, M, N>>*>(pointer);
if (ptr) {
// value returns a const MatrixMN&, and the return makes a copy !!!!!
return ptr->value();
} else {
Matrix A;
// Check if a dynamic matrix was stored
auto ptr = dynamic_cast<const GenericValue<Eigen::MatrixXd>*>(pointer);
if (ptr) {
A = ptr->value();
} else {
// Or a dynamic vector
A = handle_matrix<Eigen::VectorXd, true>()(j, pointer); // will throw if not....
}
// Yes: check size, and throw if not a match
if (A.rows() != M || A.cols() != N)
throw NoMatchFoundForFixed(M, N, A.rows(), A.cols());
else
return A; // copy but not malloc
}
}
};
// Handle matrices
template <int M, int N>
struct handle<Eigen::Matrix<double, M, N>> {
Eigen::Matrix<double, M, N> operator()(Key j, const Value* const pointer) {
return handle_matrix<Eigen::Matrix<double, M, N>,
(M == Eigen::Dynamic || N == Eigen::Dynamic)>()(j, pointer);
}
};
} // internal
/* ************************************************************************* */
template <typename ValueType>
const ValueType Values::at(Key j) const {
// Find the item
KeyValueMap::const_iterator item = values_.find(j);
// Throw exception if it does not exist
if (item == values_.end()) throw ValuesKeyDoesNotExist("at", j);
// Check the type and throw exception if incorrect
// h() split in two lines to avoid internal compiler error (MSVC2017)
auto h = internal::handle<ValueType>();
return h(j, item->second.get());
}
/* ************************************************************************* */
template<typename ValueType>
const ValueType * Values::exists(Key j) const {
// Find the item
KeyValueMap::const_iterator item = values_.find(j);
if(item != values_.end()) {
const Value* value = item->second.get();
// dynamic cast the type and throw exception if incorrect
auto ptr = dynamic_cast<const GenericValue<ValueType>*>(value);
if (ptr) {
return &ptr->value();
} else {
// NOTE(abe): clang warns about potential side effects if done in typeid
throw ValuesIncorrectType(j, typeid(*value), typeid(ValueType));
}
} else {
return nullptr;
}
}
/* ************************************************************************* */
// insert a templated value
template<typename ValueType>
void Values::insert(Key j, const ValueType& val) {
insert(j, static_cast<const Value&>(GenericValue<ValueType>(val)));
}
// partial specialization to insert an expression involving unary operators
template <typename UnaryOp, typename ValueType>
void Values::insert(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) {
insert(j, val.eval());
}
// partial specialization to insert an expression involving binary operators
template <typename BinaryOp, typename ValueType1, typename ValueType2>
void Values::insert(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) {
insert(j, val.eval());
}
// update with templated value
template <typename ValueType>
void Values::update(Key j, const ValueType& val) {
update(j, static_cast<const Value&>(GenericValue<ValueType>(val)));
}
// partial specialization to update with an expression involving unary operators
template <typename UnaryOp, typename ValueType>
void Values::update(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) {
update(j, val.eval());
}
// partial specialization to update with an expression involving binary operators
template <typename BinaryOp, typename ValueType1, typename ValueType2>
void Values::update(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) {
update(j, val.eval());
}
// insert_or_assign with templated value
template <typename ValueType>
void Values::insert_or_assign(Key j, const ValueType& val) {
insert_or_assign(j, static_cast<const Value&>(GenericValue<ValueType>(val)));
}
template <typename UnaryOp, typename ValueType>
void Values::insert_or_assign(Key j, const Eigen::CwiseUnaryOp<UnaryOp, const ValueType>& val) {
insert_or_assign(j, val.eval());
}
template <typename BinaryOp, typename ValueType1, typename ValueType2>
void Values::insert_or_assign(Key j, const Eigen::CwiseBinaryOp<BinaryOp, const ValueType1, const ValueType2>& val) {
insert_or_assign(j, val.eval());
}
}