720 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			720 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
#LyX 2.3 created this file. For more info see http://www.lyx.org/
 | 
						|
\lyxformat 544
 | 
						|
\begin_document
 | 
						|
\begin_header
 | 
						|
\save_transient_properties true
 | 
						|
\origin unavailable
 | 
						|
\textclass article
 | 
						|
\use_default_options true
 | 
						|
\maintain_unincluded_children false
 | 
						|
\language english
 | 
						|
\language_package default
 | 
						|
\inputencoding auto
 | 
						|
\fontencoding global
 | 
						|
\font_roman "default" "default"
 | 
						|
\font_sans "default" "default"
 | 
						|
\font_typewriter "default" "default"
 | 
						|
\font_math "auto" "auto"
 | 
						|
\font_default_family default
 | 
						|
\use_non_tex_fonts false
 | 
						|
\font_sc false
 | 
						|
\font_osf false
 | 
						|
\font_sf_scale 100 100
 | 
						|
\font_tt_scale 100 100
 | 
						|
\use_microtype false
 | 
						|
\use_dash_ligatures true
 | 
						|
\graphics default
 | 
						|
\default_output_format default
 | 
						|
\output_sync 0
 | 
						|
\bibtex_command default
 | 
						|
\index_command default
 | 
						|
\paperfontsize 11
 | 
						|
\spacing single
 | 
						|
\use_hyperref false
 | 
						|
\papersize default
 | 
						|
\use_geometry true
 | 
						|
\use_package amsmath 1
 | 
						|
\use_package amssymb 1
 | 
						|
\use_package cancel 1
 | 
						|
\use_package esint 1
 | 
						|
\use_package mathdots 1
 | 
						|
\use_package mathtools 1
 | 
						|
\use_package mhchem 1
 | 
						|
\use_package stackrel 1
 | 
						|
\use_package stmaryrd 1
 | 
						|
\use_package undertilde 1
 | 
						|
\cite_engine basic
 | 
						|
\cite_engine_type default
 | 
						|
\biblio_style plain
 | 
						|
\use_bibtopic false
 | 
						|
\use_indices false
 | 
						|
\paperorientation portrait
 | 
						|
\suppress_date false
 | 
						|
\justification true
 | 
						|
\use_refstyle 1
 | 
						|
\use_minted 0
 | 
						|
\index Index
 | 
						|
\shortcut idx
 | 
						|
\color #008000
 | 
						|
\end_index
 | 
						|
\leftmargin 1in
 | 
						|
\topmargin 1in
 | 
						|
\rightmargin 1in
 | 
						|
\bottommargin 1in
 | 
						|
\secnumdepth 3
 | 
						|
\tocdepth 3
 | 
						|
\paragraph_separation indent
 | 
						|
\paragraph_indentation default
 | 
						|
\is_math_indent 0
 | 
						|
\math_numbering_side default
 | 
						|
\quotes_style english
 | 
						|
\dynamic_quotes 0
 | 
						|
\papercolumns 1
 | 
						|
\papersides 1
 | 
						|
\paperpagestyle default
 | 
						|
\tracking_changes false
 | 
						|
\output_changes false
 | 
						|
\html_math_output 0
 | 
						|
\html_css_as_file 0
 | 
						|
\html_be_strict false
 | 
						|
\end_header
 | 
						|
 | 
						|
\begin_body
 | 
						|
 | 
						|
\begin_layout Title
 | 
						|
Hybrid Inference
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Author
 | 
						|
Frank Dellaert & Varun Agrawal
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Date
 | 
						|
January 2023
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Hybrid Conditionals
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Here we develop a hybrid conditional density, on continuous variables (typically
 | 
						|
 a measurement 
 | 
						|
\begin_inset Formula $x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
), given a mix of continuous variables 
 | 
						|
\begin_inset Formula $y$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and discrete variables 
 | 
						|
\begin_inset Formula $m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We start by reviewing a Gaussian conditional density and its invariants
 | 
						|
 (relationship between density, error, and normalization constant), and
 | 
						|
 then work out what needs to happen for a hybrid version.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
GaussianConditional
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
 is a properly normalized, multivariate Gaussian conditional density:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
P(x|y)=\frac{1}{\sqrt{|2\pi\Sigma|}}\exp\left\{ -\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}\right\} 
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where 
 | 
						|
\begin_inset Formula $R$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 is square and upper-triangular.
 | 
						|
 For every 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
, we have the following 
 | 
						|
\series bold
 | 
						|
invariant
 | 
						|
\series default
 | 
						|
,
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\log P(x|y)=K_{gc}-E_{gc}(x,y),\label{eq:gc_invariant}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with the 
 | 
						|
\series bold
 | 
						|
log-normalization constant
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $K_{gc}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 equal to
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
K_{gc}=\log\frac{1}{\sqrt{|2\pi\Sigma|}}\label{eq:log_constant}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and the 
 | 
						|
\series bold
 | 
						|
error
 | 
						|
\series default
 | 
						|
 
 | 
						|
\begin_inset Formula $E_{gc}(x,y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 equal to the negative log-density, up to a constant: 
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
GaussianMixture
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A 
 | 
						|
\emph on
 | 
						|
GaussianMixture
 | 
						|
\emph default
 | 
						|
 (maybe to be renamed to 
 | 
						|
\emph on
 | 
						|
GaussianMixtureComponent
 | 
						|
\emph default
 | 
						|
) just indexes into a number of 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
 instances, that are each properly normalized:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
P(x|y,m)=P_{m}(x|y).
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We store one 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
 
 | 
						|
\begin_inset Formula $P_{m}(x|y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for every possible assignment 
 | 
						|
\begin_inset Formula $m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to a set of discrete variables.
 | 
						|
 As 
 | 
						|
\emph on
 | 
						|
GaussianMixture
 | 
						|
\emph default
 | 
						|
 is a 
 | 
						|
\emph on
 | 
						|
Conditional
 | 
						|
\emph default
 | 
						|
, it needs to satisfy the a similar invariant to 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gc_invariant"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\log P(x|y,m)=K_{gm}-E_{gm}(x,y,m).\label{eq:gm_invariant}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
If we take the log of 
 | 
						|
\begin_inset Formula $P(x|y,m)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we get
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
\log P(x|y,m)=\log P_{m}(x|y)=K_{gcm}-E_{gcm}(x,y).\label{eq:gm_log}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Equating 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gm_invariant"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gm_log"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we see that this can be achieved by defining the error 
 | 
						|
\begin_inset Formula $E_{gm}(x,y,m)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
E_{gm}(x,y,m)=E_{gcm}(x,y)+K_{gm}-K_{gcm}\label{eq:gm_error}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
where choose 
 | 
						|
\begin_inset Formula $K_{gm}=\max K_{gcm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, as then the error will always be positive.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Section
 | 
						|
Hybrid Factors
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In GTSAM, we typically condition on known measurements, and factors encode
 | 
						|
 the resulting negative log-likelihood of the unknown variables 
 | 
						|
\begin_inset Formula $y$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 given the measurements 
 | 
						|
\begin_inset Formula $x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 We review how a Gaussian conditional density is converted into a Gaussian
 | 
						|
 factor, and then develop a hybrid version satisfying the correct invariants
 | 
						|
 as well.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
JacobianFactor
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
A 
 | 
						|
\emph on
 | 
						|
JacobianFactor
 | 
						|
\emph default
 | 
						|
 typically results from a 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
 by having known values 
 | 
						|
\begin_inset Formula $\bar{x}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for the 
 | 
						|
\begin_inset Quotes eld
 | 
						|
\end_inset
 | 
						|
 | 
						|
measurement
 | 
						|
\begin_inset Quotes erd
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Formula $x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
L(y)\propto P(\bar{x}|y)\label{eq:likelihood}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
In GTSAM factors represent the negative log-likelihood 
 | 
						|
\begin_inset Formula $E_{jf}(y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and hence we have
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{jf}(y)=-\log L(y)=C-\log P(\bar{x}|y),
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $C$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 the log of the proportionality constant in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:likelihood"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Substituting in 
 | 
						|
\begin_inset Formula $\log P(\bar{x}|y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 from the invariant 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gc_invariant"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we obtain
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{jf}(y)=C-K_{gc}+E_{gc}(\bar{x},y).
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
The 
 | 
						|
\emph on
 | 
						|
likelihood
 | 
						|
\emph default
 | 
						|
 function in 
 | 
						|
\emph on
 | 
						|
GaussianConditional
 | 
						|
\emph default
 | 
						|
 chooses 
 | 
						|
\begin_inset Formula $C=K_{gc}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, and the 
 | 
						|
\emph on
 | 
						|
JacobianFactor
 | 
						|
\emph default
 | 
						|
 does not store any constant; it just implements:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{jf}(y)=E_{gc}(\bar{x},y)=\frac{1}{2}\|R\bar{x}+Sy-d\|_{\Sigma}^{2}=\frac{1}{2}\|Ay-b\|_{\Sigma}^{2}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
with 
 | 
						|
\begin_inset Formula $A=S$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $b=d-R\bar{x}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Subsubsection*
 | 
						|
GaussianMixtureFactor
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
Analogously, a 
 | 
						|
\emph on
 | 
						|
GaussianMixtureFactor
 | 
						|
\emph default
 | 
						|
 typically results from a GaussianMixture by having known values 
 | 
						|
\begin_inset Formula $\bar{x}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for the 
 | 
						|
\begin_inset Quotes eld
 | 
						|
\end_inset
 | 
						|
 | 
						|
measurement
 | 
						|
\begin_inset Quotes erd
 | 
						|
\end_inset
 | 
						|
 | 
						|
 
 | 
						|
\begin_inset Formula $x$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
L(y,m)\propto P(\bar{x}|y,m).
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
We will similarly implement the negative log-likelihood 
 | 
						|
\begin_inset Formula $E_{mf}(y,m)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{mf}(y,m)=-\log L(y,m)=C-\log P(\bar{x}|y,m).
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Since we know the log-density from the invariant 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gm_invariant"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
, we obtain
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\log P(\bar{x}|y,m)=K_{gm}-E_{gm}(\bar{x},y,m),
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and hence
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{mf}(y,m)=C+E_{gm}(\bar{x},y,m)-K_{gm}.
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Substituting in 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gm_error"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we finally have an expression where 
 | 
						|
\begin_inset Formula $K_{gm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 canceled out, but we have a dependence on the individual component constants
 | 
						|
 
 | 
						|
\begin_inset Formula $K_{gcm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{mf}(y,m)=C+E_{gcm}(\bar{x},y)-K_{gcm}.
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Unfortunately, we can no longer choose 
 | 
						|
\begin_inset Formula $C$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 independently from 
 | 
						|
\begin_inset Formula $m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 to make the constant disappear.
 | 
						|
 There are two possibilities:
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
Implement likelihood to yield both a hybrid factor 
 | 
						|
\emph on
 | 
						|
and
 | 
						|
\emph default
 | 
						|
 a discrete factor.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Enumerate
 | 
						|
Hide the constant inside the collection of JacobianFactor instances, which
 | 
						|
 is the possibility we implement.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In either case, we implement the mixture factor 
 | 
						|
\begin_inset Formula $E_{mf}(y,m)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 as a set of 
 | 
						|
\emph on
 | 
						|
JacobianFactor
 | 
						|
\emph default
 | 
						|
 instances 
 | 
						|
\begin_inset Formula $E_{mf}(y,m)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
, indexed by the discrete assignment 
 | 
						|
\begin_inset Formula $m$
 | 
						|
\end_inset
 | 
						|
 | 
						|
:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
E_{mf}(y,m)=E_{jfm}(y)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}.
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
In GTSAM, we define 
 | 
						|
\begin_inset Formula $A_{m}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $b_{m}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 strategically to make the 
 | 
						|
\emph on
 | 
						|
JacobianFactor
 | 
						|
\emph default
 | 
						|
 compute the constant, as well:
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+E_{gcm}(\bar{x},y)-K_{gcm}.
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
Substituting in the definition 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gc_error"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
 for 
 | 
						|
\begin_inset Formula $E_{gcm}(\bar{x},y)$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 we need
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+\frac{1}{2}\|R_{m}\bar{x}+S_{m}y-d_{m}\|_{\Sigma_{m}}^{2}-K_{gcm}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which can achieved by setting
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
A_{m}=\left[\begin{array}{c}
 | 
						|
S_{m}\\
 | 
						|
0
 | 
						|
\end{array}\right],~b_{m}=\left[\begin{array}{c}
 | 
						|
d_{m}-R_{m}\bar{x}\\
 | 
						|
c_{m}
 | 
						|
\end{array}\right],~\Sigma_{mfm}=\left[\begin{array}{cc}
 | 
						|
\Sigma_{m}\\
 | 
						|
 & 1
 | 
						|
\end{array}\right]
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
and setting the mode-dependent scalar 
 | 
						|
\begin_inset Formula $c_{m}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 such that 
 | 
						|
\begin_inset Formula $c_{m}^{2}=C-K_{gcm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 This can be achieved by 
 | 
						|
\begin_inset Formula $C=\max K_{gcm}=K_{gm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and 
 | 
						|
\begin_inset Formula $c_{m}=\sqrt{2(C-K_{gcm})}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
 Note that in case that all constants 
 | 
						|
\begin_inset Formula $K_{gcm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 are equal, we can just use 
 | 
						|
\begin_inset Formula $C=K_{gm}$
 | 
						|
\end_inset
 | 
						|
 | 
						|
 and
 | 
						|
\begin_inset Formula 
 | 
						|
\[
 | 
						|
A_{m}=S_{m},~b_{m}=d_{m}-R_{m}\bar{x},~\Sigma_{mfm}=\Sigma_{m}
 | 
						|
\]
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
as before.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\begin_layout Standard
 | 
						|
In summary, we have
 | 
						|
\begin_inset Formula 
 | 
						|
\begin{equation}
 | 
						|
E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_{gm}-K_{gcm}.\label{eq:mf_invariant}
 | 
						|
\end{equation}
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
which is identical to the GaussianMixture error 
 | 
						|
\begin_inset CommandInset ref
 | 
						|
LatexCommand eqref
 | 
						|
reference "eq:gm_error"
 | 
						|
plural "false"
 | 
						|
caps "false"
 | 
						|
noprefix "false"
 | 
						|
 | 
						|
\end_inset
 | 
						|
 | 
						|
.
 | 
						|
\end_layout
 | 
						|
 | 
						|
\end_body
 | 
						|
\end_document
 |