190 lines
5.5 KiB
C++
190 lines
5.5 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testGaussianBayesNet.cpp
|
|
* @brief Unit tests for GaussianBayesNet
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
// STL/C++
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/foreach.hpp>
|
|
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/inference/BayesNet.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <tests/smallExample.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
|
|
static const Index _x_=0, _y_=1, _z_=2;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, constructor )
|
|
{
|
|
// small Bayes Net x <- y
|
|
// x y d
|
|
// 1 1 9
|
|
// 1 5
|
|
Matrix R11 = Matrix_(1,1,1.0), S12 = Matrix_(1,1,1.0);
|
|
Matrix R22 = Matrix_(1,1,1.0);
|
|
Vector d1(1), d2(1);
|
|
d1(0) = 9; d2(0) = 5;
|
|
Vector sigmas(1);
|
|
sigmas(0) = 1.;
|
|
|
|
// define nodes and specify in reverse topological sort (i.e. parents last)
|
|
GaussianConditional x(_x_,d1,R11,_y_,S12, sigmas), y(_y_,d2,R22, sigmas);
|
|
|
|
// check small example which uses constructor
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
EXPECT( x.equals(*cbn[_x_]) );
|
|
EXPECT( y.equals(*cbn[_y_]) );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, matrix )
|
|
{
|
|
// Create a test graph
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
|
|
Matrix R; Vector d;
|
|
boost::tie(R,d) = matrix(cbn); // find matrix and RHS
|
|
|
|
Matrix R1 = Matrix_(2,2,
|
|
1.0, 1.0,
|
|
0.0, 1.0
|
|
);
|
|
Vector d1 = Vector_(2, 9.0, 5.0);
|
|
|
|
EXPECT(assert_equal(R,R1));
|
|
EXPECT(assert_equal(d,d1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, optimize )
|
|
{
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
VectorValues actual = optimize(cbn);
|
|
|
|
VectorValues expected(vector<size_t>(2,1));
|
|
expected[_x_] = Vector_(1,4.);
|
|
expected[_y_] = Vector_(1,5.);
|
|
|
|
EXPECT(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, optimize2 )
|
|
{
|
|
|
|
// Create empty graph
|
|
GaussianFactorGraph fg;
|
|
SharedDiagonal noise = noiseModel::Unit::Create(1);
|
|
|
|
fg.add(_y_, eye(1), 2*ones(1), noise);
|
|
|
|
fg.add(_x_, eye(1),_y_, -eye(1), -ones(1), noise);
|
|
|
|
fg.add(_y_, eye(1),_z_, -eye(1), -ones(1), noise);
|
|
|
|
fg.add(_x_, -eye(1), _z_, eye(1), 2*ones(1), noise);
|
|
|
|
VectorValues actual = *GaussianSequentialSolver(fg).optimize();
|
|
|
|
VectorValues expected(vector<size_t>(3,1));
|
|
expected[_x_] = Vector_(1,1.);
|
|
expected[_y_] = Vector_(1,2.);
|
|
expected[_z_] = Vector_(1,3.);
|
|
|
|
EXPECT(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, optimize3 )
|
|
{
|
|
// y=R*x, x=inv(R)*y
|
|
// 9 = 1 1 4
|
|
// 5 1 5
|
|
// NOTE: we are supplying a new RHS here
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
|
|
VectorValues expected(vector<size_t>(2,1)), x(vector<size_t>(2,1));
|
|
expected[_x_] = Vector_(1, 4.);
|
|
expected[_y_] = Vector_(1, 5.);
|
|
|
|
// test functional version
|
|
VectorValues actual = optimize(cbn);
|
|
EXPECT(assert_equal(expected,actual));
|
|
|
|
// test imperative version
|
|
optimizeInPlace(cbn,x);
|
|
EXPECT(assert_equal(expected,x));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianBayesNet, backSubstituteTranspose )
|
|
{
|
|
// x=R'*y, y=inv(R')*x
|
|
// 2 = 1 2
|
|
// 5 1 1 3
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
|
|
VectorValues y(vector<size_t>(2,1)), x(vector<size_t>(2,1));
|
|
x[_x_] = Vector_(1,2.);
|
|
x[_y_] = Vector_(1,5.);
|
|
y[_x_] = Vector_(1,2.);
|
|
y[_y_] = Vector_(1,3.);
|
|
|
|
// test functional version
|
|
VectorValues actual = backSubstituteTranspose(cbn,x);
|
|
EXPECT(assert_equal(y,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Tests computing Determinant
|
|
TEST( GaussianBayesNet, DeterminantTest )
|
|
{
|
|
GaussianBayesNet cbn;
|
|
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
|
|
0, Vector_( 2, 3.0, 4.0 ), Matrix_(2, 2, 1.0, 3.0, 0.0, 4.0 ),
|
|
1, Matrix_(2, 2, 2.0, 1.0, 2.0, 3.0),
|
|
ones(2)));
|
|
|
|
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
|
|
1, Vector_( 2, 5.0, 6.0 ), Matrix_(2, 2, 1.0, 1.0, 0.0, 3.0 ),
|
|
2, Matrix_(2, 2, 1.0, 0.0, 5.0, 2.0),
|
|
ones(2)));
|
|
|
|
cbn += boost::shared_ptr<GaussianConditional>(new GaussianConditional(
|
|
3, Vector_( 2, 7.0, 8.0 ), Matrix_(2, 2, 1.0, 1.0, 0.0, 5.0 ),
|
|
ones(2)));
|
|
|
|
double expectedDeterminant = 60;
|
|
double actualDeterminant = determinant(cbn);
|
|
|
|
EXPECT_DOUBLES_EQUAL( expectedDeterminant, actualDeterminant, 1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|