161 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			161 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  TimeOfArrivalExample.cpp
 | |
|  *  @brief Track a moving object "Time of Arrival" measurements at 4
 | |
|  * microphones.
 | |
|  *  @author Frank Dellaert
 | |
|  *  @author Jay Chakravarty
 | |
|  *  @date March 2020
 | |
|  */
 | |
| 
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/expressions.h>
 | |
| #include <gtsam_unstable/geometry/Event.h>
 | |
| #include <gtsam_unstable/slam/TOAFactor.h>
 | |
| 
 | |
| #include <boost/bind.hpp>
 | |
| #include <boost/format.hpp>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // units
 | |
| static const double ms = 1e-3;
 | |
| static const double cm = 1e-2;
 | |
| 
 | |
| // Instantiate functor with speed of sound value
 | |
| static const TimeOfArrival kTimeOfArrival(330);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Create microphones
 | |
| vector<Point3> defineMicrophones() {
 | |
|   const double height = 0.5;
 | |
|   vector<Point3> microphones;
 | |
|   microphones.push_back(Point3(0, 0, height));
 | |
|   microphones.push_back(Point3(403 * cm, 0, height));
 | |
|   microphones.push_back(Point3(403 * cm, 403 * cm, height));
 | |
|   microphones.push_back(Point3(0, 403 * cm, 2 * height));
 | |
|   return microphones;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Create ground truth trajectory
 | |
| vector<Event> createTrajectory(size_t n) {
 | |
|   vector<Event> trajectory;
 | |
|   double timeOfEvent = 10;
 | |
|   // simulate emitting a sound every second while moving on straight line
 | |
|   for (size_t key = 0; key < n; key++) {
 | |
|     trajectory.push_back(
 | |
|         Event(timeOfEvent, 245 * cm + key * 1.0, 201.5 * cm, (212 - 45) * cm));
 | |
|     timeOfEvent += 1;
 | |
|   }
 | |
|   return trajectory;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Simulate time-of-arrival measurements for a single event
 | |
| vector<double> simulateTOA(const vector<Point3>& microphones,
 | |
|                            const Event& event) {
 | |
|   size_t K = microphones.size();
 | |
|   vector<double> simulatedTOA(K);
 | |
|   for (size_t i = 0; i < K; i++) {
 | |
|     simulatedTOA[i] = kTimeOfArrival(event, microphones[i]);
 | |
|   }
 | |
|   return simulatedTOA;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Simulate time-of-arrival measurements for an entire trajectory
 | |
| vector<vector<double>> simulateTOA(const vector<Point3>& microphones,
 | |
|                                    const vector<Event>& trajectory) {
 | |
|   vector<vector<double>> simulatedTOA;
 | |
|   for (auto event : trajectory) {
 | |
|     simulatedTOA.push_back(simulateTOA(microphones, event));
 | |
|   }
 | |
|   return simulatedTOA;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // create factor graph
 | |
| NonlinearFactorGraph createGraph(const vector<Point3>& microphones,
 | |
|                                  const vector<vector<double>>& simulatedTOA) {
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Create a noise model for the TOA error
 | |
|   auto model = noiseModel::Isotropic::Sigma(1, 0.5 * ms);
 | |
| 
 | |
|   size_t K = microphones.size();
 | |
|   size_t key = 0;
 | |
|   for (auto toa : simulatedTOA) {
 | |
|     for (size_t i = 0; i < K; i++) {
 | |
|       graph.emplace_shared<TOAFactor>(key, microphones[i], toa[i], model);
 | |
|     }
 | |
|     key += 1;
 | |
|   }
 | |
|   return graph;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // create initial estimate for n events
 | |
| Values createInitialEstimate(size_t n) {
 | |
|   Values initial;
 | |
| 
 | |
|   Event zero;
 | |
|   for (size_t key = 0; key < n; key++) {
 | |
|     initial.insert(key, zero);
 | |
|   }
 | |
|   return initial;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
|   // Create microphones
 | |
|   auto microphones = defineMicrophones();
 | |
|   size_t K = microphones.size();
 | |
|   for (size_t i = 0; i < K; i++) {
 | |
|     cout << "mic" << i << " = " << microphones[i] << endl;
 | |
|   }
 | |
| 
 | |
|   // Create a ground truth trajectory
 | |
|   const size_t n = 5;
 | |
|   auto groundTruth = createTrajectory(n);
 | |
| 
 | |
|   // Simulate time-of-arrival measurements
 | |
|   auto simulatedTOA = simulateTOA(microphones, groundTruth);
 | |
|   for (size_t key = 0; key < n; key++) {
 | |
|     for (size_t i = 0; i < K; i++) {
 | |
|       cout << "z_" << key << i << " = " << simulatedTOA[key][i] / ms << " ms"
 | |
|            << endl;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create factor graph
 | |
|   auto graph = createGraph(microphones, simulatedTOA);
 | |
| 
 | |
|   // Create initial estimate
 | |
|   auto initialEstimate = createInitialEstimate(n);
 | |
|   initialEstimate.print("Initial Estimate:\n");
 | |
| 
 | |
|   // Optimize using Levenberg-Marquardt optimization.
 | |
|   LevenbergMarquardtParams params;
 | |
|   params.setAbsoluteErrorTol(1e-10);
 | |
|   params.setVerbosityLM("SUMMARY");
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, params);
 | |
|   Values result = optimizer.optimize();
 | |
|   result.print("Final Result:\n");
 | |
| }
 | |
| /* ************************************************************************* */
 |