399 lines
12 KiB
C++
399 lines
12 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testBayesTree.cpp
|
|
* @brief Unit tests for Bayes Tree
|
|
* @author Frank Dellaert
|
|
* @author Michael Kaess
|
|
* @author Viorela Ila
|
|
*/
|
|
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
using namespace boost::assign;
|
|
|
|
#include <gtsam/CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
|
|
#include <gtsam/inference/SymbolicFactorGraph.h>
|
|
#include <gtsam/inference/BayesTree-inl.h>
|
|
#include <gtsam/inference/IndexFactor.h>
|
|
#include <gtsam/inference/inference-inl.h>
|
|
|
|
using namespace gtsam;
|
|
|
|
typedef BayesTree<IndexConditional> SymbolicBayesTree;
|
|
|
|
///* ************************************************************************* */
|
|
//// SLAM example from RSS sqrtSAM paper
|
|
static const Index _x3_=0, _x2_=1, _x1_=2, _l2_=3, _l1_=4;
|
|
//IndexConditional::shared_ptr
|
|
// x3(new IndexConditional(_x3_)),
|
|
// x2(new IndexConditional(_x2_,_x3_)),
|
|
// x1(new IndexConditional(_x1_,_x2_,_x3_)),
|
|
// l1(new IndexConditional(_l1_,_x1_,_x2_)),
|
|
// l2(new IndexConditional(_l2_,_x1_,_x3_));
|
|
//
|
|
//// Bayes Tree for sqrtSAM example
|
|
//SymbolicBayesTree createSlamSymbolicBayesTree(){
|
|
// // Create using insert
|
|
//// Ordering slamOrdering; slamOrdering += _x3_, _x2_, _x1_, _l2_, _l1_;
|
|
// SymbolicBayesTree bayesTree_slam;
|
|
// bayesTree_slam.insert(x3);
|
|
// bayesTree_slam.insert(x2);
|
|
// bayesTree_slam.insert(x1);
|
|
// bayesTree_slam.insert(l2);
|
|
// bayesTree_slam.insert(l1);
|
|
// return bayesTree_slam;
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
// Conditionals for ASIA example from the tutorial with A and D evidence
|
|
static const Index _X_=0, _T_=1, _S_=2, _E_=3, _L_=4, _B_=5;
|
|
IndexConditional::shared_ptr
|
|
B(new IndexConditional(_B_)),
|
|
L(new IndexConditional(_L_, _B_)),
|
|
E(new IndexConditional(_E_, _L_, _B_)),
|
|
S(new IndexConditional(_S_, _L_, _B_)),
|
|
T(new IndexConditional(_T_, _E_, _L_)),
|
|
X(new IndexConditional(_X_, _E_));
|
|
|
|
// Bayes Tree for Asia example
|
|
SymbolicBayesTree createAsiaSymbolicBayesTree() {
|
|
SymbolicBayesTree bayesTree;
|
|
// Ordering asiaOrdering; asiaOrdering += _X_, _T_, _S_, _E_, _L_, _B_;
|
|
bayesTree.insert(B);
|
|
bayesTree.insert(L);
|
|
bayesTree.insert(E);
|
|
bayesTree.insert(S);
|
|
bayesTree.insert(T);
|
|
bayesTree.insert(X);
|
|
return bayesTree;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, constructor )
|
|
{
|
|
// Create using insert
|
|
SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
|
|
// Check Size
|
|
LONGS_EQUAL(4,bayesTree.size());
|
|
|
|
// Check root
|
|
BayesNet<IndexConditional> expected_root;
|
|
expected_root.push_back(E);
|
|
expected_root.push_back(L);
|
|
expected_root.push_back(B);
|
|
boost::shared_ptr<BayesNet<IndexConditional> > actual_root = bayesTree.root();
|
|
CHECK(assert_equal(expected_root,*actual_root));
|
|
|
|
// Create from symbolic Bayes chain in which we want to discover cliques
|
|
BayesNet<IndexConditional> ASIA;
|
|
ASIA.push_back(X);
|
|
ASIA.push_back(T);
|
|
ASIA.push_back(S);
|
|
ASIA.push_back(E);
|
|
ASIA.push_back(L);
|
|
ASIA.push_back(B);
|
|
SymbolicBayesTree bayesTree2(ASIA);
|
|
|
|
// Check whether the same
|
|
CHECK(assert_equal(bayesTree,bayesTree2));
|
|
|
|
// CHECK findParentClique, should *not depend on order of parents*
|
|
// Ordering ordering; ordering += _X_, _T_, _S_, _E_, _L_, _B_;
|
|
// IndexTable<Symbol> index(ordering);
|
|
|
|
list<Index> parents1; parents1 += _E_, _L_;
|
|
CHECK(assert_equal(_E_, bayesTree.findParentClique(parents1)));
|
|
|
|
list<Index> parents2; parents2 += _L_, _E_;
|
|
CHECK(assert_equal(_E_, bayesTree.findParentClique(parents2)));
|
|
|
|
list<Index> parents3; parents3 += _L_, _B_;
|
|
CHECK(assert_equal(_L_, bayesTree.findParentClique(parents3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, clear)
|
|
{
|
|
// SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
// bayesTree.clear();
|
|
//
|
|
// SymbolicBayesTree expected;
|
|
//
|
|
// // Check whether cleared BayesTree is equal to a new BayesTree
|
|
// CHECK(assert_equal(expected, bayesTree));
|
|
}
|
|
|
|
/* ************************************************************************* *
|
|
Bayes Tree for testing conversion to a forest of orphans needed for incremental.
|
|
A,B
|
|
C|A E|B
|
|
D|C F|E
|
|
*/
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removePath )
|
|
{
|
|
const Index _A_=5, _B_=4, _C_=3, _D_=2, _E_=1, _F_=0;
|
|
IndexConditional::shared_ptr
|
|
A(new IndexConditional(_A_)),
|
|
B(new IndexConditional(_B_, _A_)),
|
|
C(new IndexConditional(_C_, _A_)),
|
|
D(new IndexConditional(_D_, _C_)),
|
|
E(new IndexConditional(_E_, _B_)),
|
|
F(new IndexConditional(_F_, _E_));
|
|
SymbolicBayesTree bayesTree;
|
|
// Ordering ord; ord += _A_,_B_,_C_,_D_,_E_,_F_;
|
|
bayesTree.insert(A);
|
|
bayesTree.insert(B);
|
|
bayesTree.insert(C);
|
|
bayesTree.insert(D);
|
|
bayesTree.insert(E);
|
|
bayesTree.insert(F);
|
|
|
|
// remove C, expected outcome: factor graph with ABC,
|
|
// Bayes Tree now contains two orphan trees: D|C and E|B,F|E
|
|
SymbolicFactorGraph expected;
|
|
expected.push_factor(_B_,_A_);
|
|
expected.push_factor(_A_);
|
|
expected.push_factor(_C_,_A_);
|
|
SymbolicBayesTree::Cliques expectedOrphans;
|
|
expectedOrphans += bayesTree[_D_], bayesTree[_E_];
|
|
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_C_], bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
CHECK(assert_equal((SymbolicFactorGraph)expected, factors));
|
|
CHECK(assert_equal(expectedOrphans, orphans));
|
|
|
|
// remove E: factor graph with EB; E|B removed from second orphan tree
|
|
SymbolicFactorGraph expected2;
|
|
expected2.push_factor(_E_,_B_);
|
|
SymbolicBayesTree::Cliques expectedOrphans2;
|
|
expectedOrphans2 += bayesTree[_F_];
|
|
|
|
BayesNet<IndexConditional> bn2;
|
|
SymbolicBayesTree::Cliques orphans2;
|
|
bayesTree.removePath(bayesTree[_E_], bn2, orphans2);
|
|
SymbolicFactorGraph factors2(bn2);
|
|
CHECK(assert_equal((SymbolicFactorGraph)expected2, factors2));
|
|
CHECK(assert_equal(expectedOrphans2, orphans2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removePath2 )
|
|
{
|
|
SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
|
|
// Call remove-path with clique B
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_B_], bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.push_factor(_E_,_L_,_B_);
|
|
expected.push_factor(_L_,_B_);
|
|
expected.push_factor(_B_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans;
|
|
expectedOrphans += bayesTree[_S_], bayesTree[_T_], bayesTree[_X_];
|
|
CHECK(assert_equal(expectedOrphans, orphans));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removePath3 )
|
|
{
|
|
SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
|
|
// Call remove-path with clique S
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_S_], bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.push_factor(_E_,_L_,_B_);
|
|
expected.push_factor(_L_,_B_);
|
|
expected.push_factor(_B_);
|
|
expected.push_factor(_S_,_L_,_B_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans;
|
|
expectedOrphans += bayesTree[_T_], bayesTree[_X_];
|
|
CHECK(assert_equal(expectedOrphans, orphans));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removeTop )
|
|
{
|
|
SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
|
|
// create a new factor to be inserted
|
|
boost::shared_ptr<IndexFactor> newFactor(new IndexFactor(_S_,_B_));
|
|
|
|
// Remove the contaminated part of the Bayes tree
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
list<Index> keys; keys += _B_,_S_;
|
|
bayesTree.removeTop(keys, bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.push_factor(_E_,_L_,_B_);
|
|
expected.push_factor(_L_,_B_);
|
|
expected.push_factor(_B_);
|
|
expected.push_factor(_S_,_L_,_B_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans;
|
|
expectedOrphans += bayesTree[_T_], bayesTree[_X_];
|
|
CHECK(assert_equal(expectedOrphans, orphans));
|
|
|
|
// Try removeTop again with a factor that should not change a thing
|
|
boost::shared_ptr<IndexFactor> newFactor2(new IndexFactor(_B_));
|
|
BayesNet<IndexConditional> bn2;
|
|
SymbolicBayesTree::Cliques orphans2;
|
|
keys.clear(); keys += _B_;
|
|
bayesTree.removeTop(keys, bn2, orphans2);
|
|
SymbolicFactorGraph factors2(bn2);
|
|
SymbolicFactorGraph expected2;
|
|
CHECK(assert_equal(expected2, factors2));
|
|
SymbolicBayesTree::Cliques expectedOrphans2;
|
|
CHECK(assert_equal(expectedOrphans2, orphans2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removeTop2 )
|
|
{
|
|
SymbolicBayesTree bayesTree = createAsiaSymbolicBayesTree();
|
|
|
|
// create two factors to be inserted
|
|
SymbolicFactorGraph newFactors;
|
|
newFactors.push_factor(_B_);
|
|
newFactors.push_factor(_S_);
|
|
|
|
// Remove the contaminated part of the Bayes tree
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
list<Index> keys; keys += _B_,_S_;
|
|
bayesTree.removeTop(keys, bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.push_factor(_E_,_L_,_B_);
|
|
expected.push_factor(_L_,_B_);
|
|
expected.push_factor(_B_);
|
|
expected.push_factor(_S_,_L_,_B_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans;
|
|
expectedOrphans += bayesTree[_T_], bayesTree[_X_];
|
|
CHECK(assert_equal(expectedOrphans, orphans));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( BayesTree, removeTop3 )
|
|
{
|
|
const Index _x4_=5, _l5_=6;
|
|
// simple test case that failed after COLAMD was fixed/activated
|
|
IndexConditional::shared_ptr
|
|
X(new IndexConditional(_l5_)),
|
|
A(new IndexConditional(_x4_, _l5_)),
|
|
B(new IndexConditional(_x2_, _x4_)),
|
|
C(new IndexConditional(_x3_, _x2_));
|
|
|
|
// Ordering newOrdering;
|
|
// newOrdering += _x3_, _x2_, _x1_, _l2_, _l1_, _x4_, _l5_;
|
|
SymbolicBayesTree bayesTree;
|
|
bayesTree.insert(X);
|
|
bayesTree.insert(A);
|
|
bayesTree.insert(B);
|
|
bayesTree.insert(C);
|
|
|
|
// remove all
|
|
list<Index> keys;
|
|
keys += _l5_, _x2_, _x3_, _x4_;
|
|
BayesNet<IndexConditional> bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(keys, bn, orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
CHECK(orphans.size() == 0);
|
|
}
|
|
/* ************************************************************************* */
|
|
/**
|
|
* x2 - x3 - x4 - x5
|
|
* | / \ |
|
|
* x1 / \ x6
|
|
*/
|
|
TEST( BayesTree, insert )
|
|
{
|
|
// construct bayes tree by split the graph along the separator x3 - x4
|
|
const Index _x1_=0, _x2_=1, _x6_=2, _x5_=3, _x3_=4, _x4_=5;
|
|
SymbolicFactorGraph fg1, fg2, fg3;
|
|
fg1.push_factor(_x3_, _x4_);
|
|
fg2.push_factor(_x1_, _x2_);
|
|
fg2.push_factor(_x2_, _x3_);
|
|
fg2.push_factor(_x1_, _x3_);
|
|
fg3.push_factor(_x5_, _x4_);
|
|
fg3.push_factor(_x6_, _x5_);
|
|
fg3.push_factor(_x6_, _x4_);
|
|
|
|
// Ordering ordering1; ordering1 += _x3_, _x4_;
|
|
// Ordering ordering2; ordering2 += _x1_, _x2_;
|
|
// Ordering ordering3; ordering3 += _x6_, _x5_;
|
|
|
|
BayesNet<IndexConditional> bn1, bn2, bn3;
|
|
bn1 = *Inference::EliminateUntil(fg1, _x4_+1);
|
|
bn2 = *Inference::EliminateUntil(fg2, _x2_+1);
|
|
bn3 = *Inference::EliminateUntil(fg3, _x5_+1);
|
|
|
|
// insert child cliques
|
|
SymbolicBayesTree actual;
|
|
list<SymbolicBayesTree::sharedClique> children;
|
|
SymbolicBayesTree::sharedClique r1 = actual.insert(bn2, children);
|
|
SymbolicBayesTree::sharedClique r2 = actual.insert(bn3, children);
|
|
|
|
// insert root clique
|
|
children.push_back(r1);
|
|
children.push_back(r2);
|
|
actual.insert(bn1, children, true);
|
|
|
|
// traditional way
|
|
SymbolicFactorGraph fg;
|
|
fg.push_factor(_x3_, _x4_);
|
|
fg.push_factor(_x1_, _x2_);
|
|
fg.push_factor(_x2_, _x3_);
|
|
fg.push_factor(_x1_, _x3_);
|
|
fg.push_factor(_x5_, _x4_);
|
|
fg.push_factor(_x6_, _x5_);
|
|
fg.push_factor(_x6_, _x4_);
|
|
|
|
// Ordering ordering; ordering += _x1_, _x2_, _x6_, _x5_, _x3_, _x4_;
|
|
BayesNet<IndexConditional> bn;
|
|
bn = *Inference::Eliminate(fg);
|
|
SymbolicBayesTree expected(bn);
|
|
CHECK(assert_equal(expected, actual));
|
|
|
|
}
|
|
/* ************************************************************************* */
|
|
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|