gtsam/nonlinear/ConstraintOptimizer.cpp

73 lines
2.0 KiB
C++

/**
* @file ConstraintOptimizer.cpp
* @author Alex Cunningham
*/
/** IMPORTANT NOTE: this file is only compiled when LDL is available */
#include <gtsam/nonlinear/ConstraintOptimizer.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
void gtsam::BFGSEstimator::update(const Vector& dfx, const boost::optional<Vector&> step) {
if (step) {
Vector Bis = B_ * *step,
y = dfx - prev_dfx_;
B_ = B_ + outer_prod(y, y) / inner_prod(y, *step)
- outer_prod(Bis, Bis) / inner_prod(*step, Bis);
}
prev_dfx_ = dfx;
}
/* ************************************************************************* */
pair<Vector, Vector> gtsam::solveCQP(const Matrix& B, const Matrix& A,
const Vector& g, const Vector& h) {
// find the dimensions
size_t n = B.size1(), p = A.size2();
// verify matrices
if (n != B.size2())
throw invalid_argument("solveCQP: B matrix is not square!");
if (A.size1() != n)
throw invalid_argument("solveCQP: A matrix needs m = B.size1()");
// construct G matrix
Matrix G = zeros(n+p, n+p);
insertSub(G, B, 0, 0);
insertSub(G, A, 0, n);
insertSub(G, trans(A), n, 0);
Vector rhs = zero(n+p);
subInsert(rhs, -1.0*g, 0);
subInsert(rhs, -1.0*h, n);
// solve the system with the LDL solver
Vector fullResult = solve_ldl(G, rhs);
return make_pair(sub(fullResult, 0, n), sub(fullResult, n, n+p));
}
/* ************************************************************************* */
Vector gtsam::linesearch(const Vector& x0, const Vector& delta,
double (*penalty)(const Vector&), size_t maxIt) {
// calculate the initial error
double init_error = penalty(x0);
Vector step = delta;
for (size_t i=0; i<maxIt; ++i) {
Vector x = x0 + step;
double cur_error = penalty(x);
if (cur_error < init_error) // if we have improved, return the step
return step;
else { // otherwise, make a smaller step
step = 0.5 * step;
}
}
// TODO: should do something clever here
return step;
}