445 lines
15 KiB
C++
445 lines
15 KiB
C++
/**
|
|
* @file testPose3.cpp
|
|
* @brief Unit tests for Pose3 class
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <gtsam/CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
static Point3 P(0.2,0.7,-2);
|
|
static Rot3 R = rodriguez(0.3,0,0);
|
|
static Pose3 T(R,Point3(3.5,-8.2,4.2));
|
|
static Pose3 T2(rodriguez(0.3,0.2,0.1),Point3(3.5,-8.2,4.2));
|
|
static Pose3 T3(rodriguez(-90, 0, 0), Point3(1, 2, 3));
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, equals)
|
|
{
|
|
Pose3 pose2 = T3;
|
|
CHECK(T3.equals(pose2));
|
|
Pose3 origin;
|
|
CHECK(!T3.equals(origin));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, expmap_a)
|
|
{
|
|
Pose3 id;
|
|
Vector v(6);
|
|
fill(v.begin(), v.end(), 0);
|
|
v(0) = 0.3;
|
|
CHECK(assert_equal(expmap(id,v), Pose3(R, Point3())));
|
|
#ifdef CORRECT_POSE3_EXMAP
|
|
|
|
v(3)=0.2;v(4)=0.394742;v(5)=-2.08998;
|
|
#else
|
|
v(3)=0.2;v(4)=0.7;v(5)=-2;
|
|
#endif
|
|
CHECK(assert_equal(Pose3(R, P),expmap(id,v),1e-5));
|
|
}
|
|
|
|
TEST(Pose3, expmap_b)
|
|
{
|
|
Pose3 p1(Rot3(), Point3(100, 0, 0));
|
|
Pose3 p2 = expmap(p1, Vector_(6,
|
|
0.0, 0.0, 0.1, 0.0, 0.0, 0.0));
|
|
Pose3 expected(rodriguez(0.0, 0.0, 0.1), Point3(100.0, 0.0, 0.0));
|
|
CHECK(assert_equal(expected, p2));
|
|
}
|
|
|
|
#ifdef CORRECT_POSE3_EXMAP
|
|
|
|
/* ************************************************************************* */
|
|
// test case for screw motion in the plane
|
|
namespace screw {
|
|
double a=0.3, c=cos(a), s=sin(a), w=0.3;
|
|
Vector xi = Vector_(6, 0.0, 0.0, w, w, 0.0, 1.0);
|
|
Rot3 expectedR(c, -s, 0, s, c, 0, 0, 0, 1);
|
|
Point3 expectedT(0.29552, 0.0446635, 1);
|
|
Pose3 expected(expectedR, expectedT);
|
|
}
|
|
|
|
TEST(Pose3, expmap_c)
|
|
{
|
|
CHECK(assert_equal(screw::expected, expm<Pose3>(screw::xi),1e-6));
|
|
CHECK(assert_equal(screw::expected, expmap<Pose3>(screw::xi),1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// assert that T*exp(xi)*T^-1 is equal to exp(Ad_T(xi))
|
|
TEST(Pose3, Adjoint)
|
|
{
|
|
Pose3 expected = T * expmap<Pose3>(screw::xi) * inverse(T);
|
|
Vector xiprime = Adjoint(T, screw::xi);
|
|
CHECK(assert_equal(expected, expmap<Pose3>(xiprime), 1e-6));
|
|
|
|
Pose3 expected2 = T2 * expmap<Pose3>(screw::xi) * inverse(T2);
|
|
Vector xiprime2 = Adjoint(T2, screw::xi);
|
|
CHECK(assert_equal(expected2, expmap<Pose3>(xiprime2), 1e-6));
|
|
|
|
Pose3 expected3 = T3 * expmap<Pose3>(screw::xi) * inverse(T3);
|
|
Vector xiprime3 = Adjoint(T3, screw::xi);
|
|
CHECK(assert_equal(expected3, expmap<Pose3>(xiprime3), 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/** Agrawal06iros version */
|
|
using namespace boost::numeric::ublas;
|
|
Pose3 Agrawal06iros(const Vector& xi) {
|
|
Vector w = vector_range<const Vector>(xi, range(0,3));
|
|
Vector v = vector_range<const Vector>(xi, range(3,6));
|
|
double t = norm_2(w);
|
|
if (t < 1e-5)
|
|
return Pose3(Rot3(), expmap<Point3> (v));
|
|
else {
|
|
Matrix W = skewSymmetric(w/t);
|
|
Matrix A = eye(3) + ((1 - cos(t)) / t) * W + ((t - sin(t)) / t) * (W * W);
|
|
return Pose3(expmap<Rot3> (w), expmap<Point3> (A * v));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Pose3, expmaps_galore)
|
|
{
|
|
Vector xi; Pose3 actual;
|
|
xi = Vector_(6,0.1,0.2,0.3,0.4,0.5,0.6);
|
|
actual = expmap<Pose3>(xi);
|
|
CHECK(assert_equal(expm<Pose3>(xi), actual,1e-6));
|
|
CHECK(assert_equal(Agrawal06iros(xi), actual,1e-6));
|
|
CHECK(assert_equal(xi, logmap(actual),1e-6));
|
|
|
|
xi = Vector_(6,0.1,-0.2,0.3,-0.4,0.5,-0.6);
|
|
for (double theta=1.0;0.3*theta<=M_PI;theta*=2) {
|
|
Vector txi = xi*theta;
|
|
actual = expmap<Pose3>(txi);
|
|
CHECK(assert_equal(expm<Pose3>(txi,30), actual,1e-6));
|
|
CHECK(assert_equal(Agrawal06iros(txi), actual,1e-6));
|
|
Vector log = logmap(actual);
|
|
CHECK(assert_equal(actual, expmap<Pose3>(log),1e-6));
|
|
CHECK(assert_equal(txi,log,1e-6)); // not true once wraps
|
|
}
|
|
|
|
// Works with large v as well, but expm needs 10 iterations!
|
|
xi = Vector_(6,0.2,0.3,-0.8,100.0,120.0,-60.0);
|
|
actual = expmap<Pose3>(xi);
|
|
CHECK(assert_equal(expm<Pose3>(xi,10), actual,1e-5));
|
|
CHECK(assert_equal(Agrawal06iros(xi), actual,1e-6));
|
|
CHECK(assert_equal(xi, logmap(actual),1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Pose3, Adjoint_compose)
|
|
{
|
|
// To debug derivatives of compose, assert that
|
|
// T1*T2*exp(Adjoint(inv(T2),x) = T1*exp(x)*T2
|
|
const Pose3& T1 = T;
|
|
Vector x = Vector_(6,0.1,0.1,0.1,0.4,0.2,0.8);
|
|
Pose3 expected = T1 * expmap<Pose3>(x) * T2;
|
|
Vector y = Adjoint(inverse(T2), x);
|
|
Pose3 actual = T1 * T2 * expmap<Pose3>(y);
|
|
CHECK(assert_equal(expected, actual, 1e-6));
|
|
}
|
|
#endif // SLOW_BUT_CORRECT_EXMAP
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, compose )
|
|
{
|
|
Matrix actual = (T2*T2).matrix();
|
|
Matrix expected = T2.matrix()*T2.matrix();
|
|
CHECK(assert_equal(actual,expected,1e-8));
|
|
|
|
Matrix numericalH1 = numericalDerivative21<Pose3,Pose3,Pose3>(compose, T2, T2, 1e-5);
|
|
Matrix actualDcompose1 = Dcompose1(T2, T2);
|
|
CHECK(assert_equal(numericalH1,actualDcompose1,5e-5));
|
|
|
|
Matrix actualDcompose2 = Dcompose2(T2, T2);
|
|
Matrix numericalH2 = numericalDerivative22<Pose3,Pose3,Pose3>(compose, T2, T2, 1e-5);
|
|
CHECK(assert_equal(numericalH2,actualDcompose2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, compose2 )
|
|
{
|
|
const Pose3& T1 = T;
|
|
Matrix actual = (T1*T2).matrix();
|
|
Matrix expected = T1.matrix()*T2.matrix();
|
|
CHECK(assert_equal(actual,expected,1e-8));
|
|
|
|
Matrix numericalH1 = numericalDerivative21<Pose3,Pose3,Pose3>(compose, T1, T2, 1e-5);
|
|
Matrix actualDcompose1 = Dcompose1(T1, T2);
|
|
CHECK(assert_equal(numericalH1,actualDcompose1,5e-5));
|
|
|
|
Matrix actualDcompose2 = Dcompose2(T1, T2);
|
|
Matrix numericalH2 = numericalDerivative22<Pose3,Pose3,Pose3>(compose, T1, T2, 1e-5);
|
|
CHECK(assert_equal(numericalH2,actualDcompose2));
|
|
}
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, inverse)
|
|
{
|
|
Matrix actual = inverse(T).matrix();
|
|
Matrix expected = inverse(T.matrix());
|
|
CHECK(assert_equal(actual,expected,1e-8));
|
|
|
|
Matrix numericalH = numericalDerivative11<Pose3,Pose3>(inverse, T, 1e-5);
|
|
Matrix actualDinverse = Dinverse(T);
|
|
CHECK(assert_equal(numericalH,actualDinverse));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, inverseDerivatives2)
|
|
{
|
|
Rot3 R = rodriguez(0.3,0.4,-0.5);
|
|
Point3 t(3.5,-8.2,4.2);
|
|
Pose3 T(R,t);
|
|
|
|
Matrix numericalH = numericalDerivative11<Pose3,Pose3>(inverse, T, 1e-5);
|
|
Matrix actualDinverse = Dinverse(T);
|
|
CHECK(assert_equal(numericalH,actualDinverse,5e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, compose_inverse)
|
|
{
|
|
Matrix actual = (T*inverse(T)).matrix();
|
|
Matrix expected = eye(4,4);
|
|
CHECK(assert_equal(actual,expected,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, Dtransform_from1_a)
|
|
{
|
|
Matrix actualDtransform_from1 = Dtransform_from1(T, P);
|
|
Matrix numerical = numericalDerivative21(transform_from,T,P);
|
|
CHECK(assert_equal(numerical,actualDtransform_from1,1e-8));
|
|
}
|
|
|
|
TEST( Pose3, Dtransform_from1_b)
|
|
{
|
|
Pose3 origin;
|
|
Matrix actualDtransform_from1 = Dtransform_from1(origin, P);
|
|
Matrix numerical = numericalDerivative21(transform_from,origin,P);
|
|
CHECK(assert_equal(numerical,actualDtransform_from1,1e-8));
|
|
}
|
|
|
|
TEST( Pose3, Dtransform_from1_c)
|
|
{
|
|
Point3 origin;
|
|
Pose3 T0(R,origin);
|
|
Matrix actualDtransform_from1 = Dtransform_from1(T0, P);
|
|
Matrix numerical = numericalDerivative21(transform_from,T0,P);
|
|
CHECK(assert_equal(numerical,actualDtransform_from1,1e-8));
|
|
}
|
|
|
|
TEST( Pose3, Dtransform_from1_d)
|
|
{
|
|
Rot3 I;
|
|
Point3 t0(100,0,0);
|
|
Pose3 T0(I,t0);
|
|
Matrix actualDtransform_from1 = Dtransform_from1(T0, P);
|
|
//print(computed, "Dtransform_from1_d computed:");
|
|
Matrix numerical = numericalDerivative21(transform_from,T0,P);
|
|
//print(numerical, "Dtransform_from1_d numerical:");
|
|
CHECK(assert_equal(numerical,actualDtransform_from1,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, Dtransform_from2)
|
|
{
|
|
Matrix actualDtransform_from2 = Dtransform_from2(T);
|
|
Matrix numerical = numericalDerivative22(transform_from,T,P);
|
|
CHECK(assert_equal(numerical,actualDtransform_from2,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, Dtransform_to1)
|
|
{
|
|
Matrix computed = Dtransform_to1(T, P);
|
|
Matrix numerical = numericalDerivative21(transform_to,T,P);
|
|
CHECK(assert_equal(numerical,computed,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, Dtransform_to2)
|
|
{
|
|
Matrix computed = Dtransform_to2(T,P);
|
|
Matrix numerical = numericalDerivative22(transform_to,T,P);
|
|
CHECK(assert_equal(numerical,computed,1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_to_with_derivatives)
|
|
{
|
|
Matrix actH1, actH2;
|
|
transform_to(T,P,actH1,actH2);
|
|
Matrix expH1 = numericalDerivative21(transform_to, T,P),
|
|
expH2 = numericalDerivative22(transform_to, T,P);
|
|
CHECK(assert_equal(expH1, actH1, 1e-8));
|
|
CHECK(assert_equal(expH2, actH2, 1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_from_with_derivatives)
|
|
{
|
|
Matrix actH1, actH2;
|
|
transform_from(T,P,actH1,actH2);
|
|
Matrix expH1 = numericalDerivative21(transform_from, T,P),
|
|
expH2 = numericalDerivative22(transform_from, T,P);
|
|
CHECK(assert_equal(expH1, actH1, 1e-8));
|
|
CHECK(assert_equal(expH2, actH2, 1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_to_translate)
|
|
{
|
|
Point3 actual = transform_to(Pose3(Rot3(), Point3(1, 2, 3)), Point3(10.,20.,30.));
|
|
Point3 expected(9.,18.,27.);
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_to_rotate)
|
|
{
|
|
Pose3 transform(rodriguez(0,0,-1.570796), Point3());
|
|
Point3 actual = transform_to(transform, Point3(2,1,10));
|
|
Point3 expected(-1,2,10);
|
|
CHECK(assert_equal(expected, actual, 0.001));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_to)
|
|
{
|
|
Pose3 transform(rodriguez(0,0,-1.570796), Point3(2,4, 0));
|
|
Point3 actual = transform_to(transform, Point3(3,2,10));
|
|
Point3 expected(2,1,10);
|
|
CHECK(assert_equal(expected, actual, 0.001));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_from)
|
|
{
|
|
Point3 actual = transform_from(T3, Point3());
|
|
Point3 expected = Point3(1.,2.,3.);
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transform_roundtrip)
|
|
{
|
|
Point3 actual = transform_from(T3, transform_to(T3, Point3(12., -0.11,7.0)));
|
|
Point3 expected(12., -0.11,7.0);
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transformPose_to_origin)
|
|
{
|
|
// transform to origin
|
|
Pose3 actual = T3.transform_to(Pose3());
|
|
CHECK(assert_equal(T3, actual, 1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transformPose_to_itself)
|
|
{
|
|
// transform to itself
|
|
Pose3 actual = T3.transform_to(T3);
|
|
CHECK(assert_equal(Pose3(), actual, 1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transformPose_to_translation)
|
|
{
|
|
// transform translation only
|
|
Rot3 r = rodriguez(-1.570796,0,0);
|
|
Pose3 pose2(r, Point3(21.,32.,13.));
|
|
Pose3 actual = pose2.transform_to(Pose3(Rot3(), Point3(1,2,3)));
|
|
Pose3 expected(r, Point3(20.,30.,10.));
|
|
CHECK(assert_equal(expected, actual, 1e-8));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transformPose_to_simple_rotate)
|
|
{
|
|
// transform translation only
|
|
Rot3 r = rodriguez(0,0,-1.570796);
|
|
Pose3 pose2(r, Point3(21.,32.,13.));
|
|
Pose3 transform(r, Point3(1,2,3));
|
|
Pose3 actual = pose2.transform_to(transform);
|
|
Pose3 expected(Rot3(), Point3(-30.,20.,10.));
|
|
CHECK(assert_equal(expected, actual, 0.001));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, transformPose_to)
|
|
{
|
|
// transform to
|
|
Rot3 r = rodriguez(0,0,-1.570796); //-90 degree yaw
|
|
Rot3 r2 = rodriguez(0,0,0.698131701); //40 degree yaw
|
|
Pose3 pose2(r2, Point3(21.,32.,13.));
|
|
Pose3 transform(r, Point3(1,2,3));
|
|
Pose3 actual = pose2.transform_to(transform);
|
|
Pose3 expected(rodriguez(0,0,2.26892803), Point3(-30.,20.,10.));
|
|
CHECK(assert_equal(expected, actual, 0.001));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Pose3, manifold)
|
|
{
|
|
//cout << "manifold" << endl;
|
|
Pose3 t1 = T;
|
|
Pose3 t2 = T3;
|
|
Pose3 origin;
|
|
Vector d12 = logmap(t1, t2);
|
|
CHECK(assert_equal(t2, expmap(t1,d12)));
|
|
// todo: richard - commented out because this tests for "compose-style" (new) expmap
|
|
// CHECK(assert_equal(t2, expmap(origin,d12)*t1));
|
|
Vector d21 = logmap(t2, t1);
|
|
CHECK(assert_equal(t1, expmap(t2,d21)));
|
|
// todo: richard - commented out because this tests for "compose-style" (new) expmap
|
|
// CHECK(assert_equal(t1, expmap(origin,d21)*t2));
|
|
|
|
// Check that log(t1,t2)=-log(t2,t1) - this holds even for incorrect expmap :-)
|
|
CHECK(assert_equal(d12,-d21));
|
|
|
|
#ifdef CORRECT_POSE3_EXMAP
|
|
|
|
|
|
// todo: Frank - Below only works for correct "Agrawal06iros style expmap
|
|
// lines in canonical coordinates correspond to Abelian subgroups in SE(3)
|
|
Vector d = Vector_(6,0.1,0.2,0.3,0.4,0.5,0.6);
|
|
// exp(-d)=inverse(exp(d))
|
|
CHECK(assert_equal(expmap<Pose3>(-d),inverse(expmap<Pose3>(d))));
|
|
// exp(5d)=exp(2*d+3*d)=exp(2*d)exp(3*d)=exp(3*d)exp(2*d)
|
|
Pose3 T2 = expmap<Pose3>(2*d);
|
|
Pose3 T3 = expmap<Pose3>(3*d);
|
|
Pose3 T5 = expmap<Pose3>(5*d);
|
|
CHECK(assert_equal(T5,T2*T3));
|
|
CHECK(assert_equal(T5,T3*T2));
|
|
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Pose3, between )
|
|
{
|
|
Pose3 expected = inverse(T2) * T3;
|
|
Matrix actualDBetween1,actualDBetween2;
|
|
Pose3 actual = between(T2, T3, actualDBetween1,actualDBetween2);
|
|
CHECK(assert_equal(expected,actual));
|
|
|
|
Matrix numericalH1 = numericalDerivative21(between<Pose3> , T2, T3, 1e-5);
|
|
CHECK(assert_equal(numericalH1,actualDBetween1,5e-5));
|
|
|
|
Matrix numericalH2 = numericalDerivative22(between<Pose3> , T2, T3, 1e-5);
|
|
CHECK(assert_equal(numericalH2,actualDBetween2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main(){ TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|