237 lines
7.1 KiB
C++
237 lines
7.1 KiB
C++
/**
|
|
* @file Rot3.cpp
|
|
* @brief Rotation (internal: 3*3 matrix representation*)
|
|
* @author Alireza Fathi
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <gtsam/geometry/Rot3.h>
|
|
#include <gtsam/base/Lie-inl.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/** Explicit instantiation of base class to export members */
|
|
INSTANTIATE_LIE(Rot3);
|
|
|
|
static const Matrix I3 = eye(3);
|
|
|
|
/* ************************************************************************* */
|
|
// static member functions to construct rotations
|
|
|
|
Rot3 Rot3::Rx(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
1, 0, 0,
|
|
0, ct,-st,
|
|
0, st, ct);
|
|
}
|
|
|
|
Rot3 Rot3::Ry(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
ct, 0, st,
|
|
0, 1, 0,
|
|
-st, 0, ct);
|
|
}
|
|
|
|
Rot3 Rot3::Rz(double t) {
|
|
double st = sin(t), ct = cos(t);
|
|
return Rot3(
|
|
ct,-st, 0,
|
|
st, ct, 0,
|
|
0, 0, 1);
|
|
}
|
|
|
|
// Considerably faster than composing matrices above !
|
|
Rot3 Rot3::RzRyRx(double x, double y, double z) {
|
|
double cx=cos(x),sx=sin(x);
|
|
double cy=cos(y),sy=sin(y);
|
|
double cz=cos(z),sz=sin(z);
|
|
double ss_ = sx * sy;
|
|
double cs_ = cx * sy;
|
|
double sc_ = sx * cy;
|
|
double cc_ = cx * cy;
|
|
double c_s = cx * sz;
|
|
double s_s = sx * sz;
|
|
double _cs = cy * sz;
|
|
double _cc = cy * cz;
|
|
double s_c = sx * cz;
|
|
double c_c = cx * cz;
|
|
double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz;
|
|
return Rot3(
|
|
_cc,- c_s + ssc, s_s + csc,
|
|
_cs, c_c + sss, -s_c + css,
|
|
-sy, sc_, cc_
|
|
);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool Rot3::equals(const Rot3 & R, double tol) const {
|
|
return equal_with_abs_tol(matrix(), R.matrix(), tol);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Rot3::matrix() const {
|
|
double r[] = { r1_.x(), r2_.x(), r3_.x(),
|
|
r1_.y(), r2_.y(), r3_.y(),
|
|
r1_.z(), r2_.z(), r3_.z() };
|
|
return Matrix_(3,3, r);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Rot3::transpose() const {
|
|
double r[] = { r1_.x(), r1_.y(), r1_.z(),
|
|
r2_.x(), r2_.y(), r2_.z(),
|
|
r3_.x(), r3_.y(), r3_.z()};
|
|
return Matrix_(3,3, r);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 Rot3::column(int index) const{
|
|
if(index == 3)
|
|
return r3_;
|
|
else if (index == 2)
|
|
return r2_;
|
|
else
|
|
return r1_; // default returns r1
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector Rot3::xyz() const {
|
|
Matrix I;Vector q;
|
|
boost::tie(I,q)=RQ(matrix());
|
|
return q;
|
|
}
|
|
|
|
Vector Rot3::ypr() const {
|
|
Vector q = xyz();
|
|
return Vector_(3,q(2),q(1),q(0));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Log map at identity - return the canonical coordinates of this rotation
|
|
inline Vector logmap(const Rot3& R) {
|
|
double tr = R.r1().x()+R.r2().y()+R.r3().z();
|
|
if (fabs(tr-3.0) < 1e-10) { // when theta = 0, +-2pi, +-4pi, etc.
|
|
return zero(3);
|
|
} else if (tr==-1.0) { // when theta = +-pi, +-3pi, +-5pi, etc.
|
|
if(R.r3().z() != -1.0)
|
|
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r3().z())) *
|
|
Vector_(3, R.r3().x(), R.r3().y(), 1.0+R.r3().z());
|
|
else if(R.r2().y() != -1.0)
|
|
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r2().y())) *
|
|
Vector_(3, R.r2().x(), 1.0+R.r2().y(), R.r2().z());
|
|
else // if(R.r1().x() != -1.0) TODO: fix this?
|
|
return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r1().x())) *
|
|
Vector_(3, 1.0+R.r1().x(), R.r1().y(), R.r1().z());
|
|
} else {
|
|
double theta = acos((tr-1.0)/2.0);
|
|
return (theta/2.0/sin(theta))*Vector_(3,
|
|
R.r2().z()-R.r3().y(),
|
|
R.r3().x()-R.r1().z(),
|
|
R.r1().y()-R.r2().x());
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 rodriguez(const Vector& w, double theta) {
|
|
// get components of axis \omega
|
|
double wx = w(0), wy=w(1), wz=w(2);
|
|
double wwTxx = wx*wx, wwTyy = wy*wy, wwTzz = wz*wz;
|
|
#ifndef NDEBUG
|
|
double l_n = wwTxx + wwTyy + wwTzz;
|
|
if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
|
|
#endif
|
|
|
|
double c = cos(theta), s = sin(theta), c_1 = 1 - c;
|
|
|
|
double swx = wx * s, swy = wy * s, swz = wz * s;
|
|
double C00 = c_1*wwTxx, C01 = c_1*wx*wy, C02 = c_1*wx*wz;
|
|
double C11 = c_1*wwTyy, C12 = c_1*wy*wz;
|
|
double C22 = c_1*wwTzz;
|
|
|
|
return Rot3( c + C00, -swz + C01, swy + C02,
|
|
swz + C01, c + C11, -swx + C12,
|
|
-swy + C02, swx + C12, c + C22);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 rodriguez(const Vector& w) {
|
|
double t = norm_2(w);
|
|
if (t < 1e-5) return Rot3();
|
|
return rodriguez(w/t, t);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Drotate1(const Rot3& R, const Point3& p) {
|
|
return R.matrix() * skewSymmetric(-p.x(), -p.y(), -p.z());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Drotate2(const Rot3& R) {
|
|
return R.matrix();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Point3 unrotate(const Rot3& R, const Point3& p) {
|
|
const Matrix Rt(R.transpose());
|
|
return Rt*p.vector(); // q = Rt*p
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// see doc/math.lyx, SO(3) section
|
|
Point3 unrotate(const Rot3& R, const Point3& p,
|
|
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) {
|
|
const Matrix Rt(R.transpose());
|
|
Point3 q(Rt*p.vector()); // q = Rt*p
|
|
if (H1) *H1 = skewSymmetric(q.x(), q.y(), q.z());
|
|
if (H2) *H2 = Rt;
|
|
return q;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Dcompose1(const Rot3& R1, const Rot3& R2){
|
|
return R2.transpose();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Dcompose2(const Rot3& R1, const Rot3& R2){
|
|
return I3;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Dbetween1(const Rot3& R1, const Rot3& R2){
|
|
return -(R2.transpose()*R1.matrix());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Dbetween2(const Rot3& R1, const Rot3& R2){
|
|
return I3;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
pair<Matrix, Vector> RQ(const Matrix& A) {
|
|
|
|
double x = -atan2(-A(2, 1), A(2, 2));
|
|
Rot3 Qx = Rot3::Rx(-x);
|
|
Matrix B = A * Qx.matrix();
|
|
|
|
double y = -atan2(B(2, 0), B(2, 2));
|
|
Rot3 Qy = Rot3::Ry(-y);
|
|
Matrix C = B * Qy.matrix();
|
|
|
|
double z = -atan2(-C(1, 0), C(1, 1));
|
|
Rot3 Qz = Rot3::Rz(-z);
|
|
Matrix R = C * Qz.matrix();
|
|
|
|
Vector xyz = Vector_(3, x, y, z);
|
|
return make_pair(R, xyz);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
} // namespace gtsam
|