173 lines
4.7 KiB
C++
173 lines
4.7 KiB
C++
/*
|
|
* Rot2.h
|
|
*
|
|
* Created on: Dec 9, 2009
|
|
* Author: Frank Dellaert
|
|
*/
|
|
|
|
#ifndef ROT2_H_
|
|
#define ROT2_H_
|
|
|
|
#include <boost/optional.hpp>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/base/Lie.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/** Rotation matrix
|
|
* NOTE: the angle theta is in radians unless explicitly stated
|
|
*/
|
|
class Rot2: Testable<Rot2>, public Lie<Rot2> {
|
|
|
|
private:
|
|
|
|
/** we store cos(theta) and sin(theta) */
|
|
double c_, s_;
|
|
|
|
/** private constructor from cos/sin */
|
|
inline Rot2(double c, double s) : c_(c), s_(s) {}
|
|
|
|
/** normalize to make sure cos and sin form unit vector */
|
|
Rot2& normalize();
|
|
|
|
public:
|
|
|
|
/** default constructor, zero rotation */
|
|
Rot2() : c_(1.0), s_(0.0) {}
|
|
|
|
/** "named constructors" */
|
|
|
|
/** Named constructor from angle == exponential map at identity - theta is in radians*/
|
|
static Rot2 fromAngle(double theta);
|
|
|
|
/** Named constructor from angle in degrees */
|
|
static Rot2 fromDegrees(double theta) {
|
|
const double degree = M_PI / 180;
|
|
return fromAngle(theta * degree);
|
|
}
|
|
|
|
/** Named constructor from cos(theta),sin(theta) pair, will *not* normalize! */
|
|
static Rot2 fromCosSin(double c, double s);
|
|
|
|
/** Named constructor that behaves as atan2, i.e., y,x order (!) and normalizes */
|
|
static Rot2 atan2(double y, double x);
|
|
|
|
/** return angle (RADIANS) */
|
|
double theta() const { return ::atan2(s_,c_); }
|
|
|
|
/** return angle (DEGREES) */
|
|
double degrees() const {
|
|
const double degree = M_PI / 180;
|
|
return theta() / degree;
|
|
}
|
|
|
|
/** return cos */
|
|
inline double c() const { return c_; }
|
|
|
|
/** return sin */
|
|
inline double s() const { return s_; }
|
|
|
|
/** print */
|
|
void print(const std::string& s = "theta") const;
|
|
|
|
/** equals with an tolerance */
|
|
bool equals(const Rot2& R, double tol = 1e-9) const;
|
|
|
|
/** return 2*2 rotation matrix */
|
|
Matrix matrix() const;
|
|
|
|
/** return 2*2 transpose (inverse) rotation matrix */
|
|
Matrix transpose() const;
|
|
|
|
/** The inverse rotation - negative angle */
|
|
Rot2 inverse() const { return Rot2(c_, -s_);}
|
|
|
|
/** Compose - make a new rotation by adding angles */
|
|
Rot2 operator*(const Rot2& R) const {
|
|
return fromCosSin(c_ * R.c_ - s_ * R.s_, s_ * R.c_ + c_ * R.s_);
|
|
}
|
|
|
|
/** rotate from world to rotated = R*p */
|
|
Point2 rotate(const Point2& p) const;
|
|
|
|
/** rotate from world to rotated = R'*p */
|
|
Point2 unrotate(const Point2& p) const;
|
|
|
|
/** get the dimension by the type */
|
|
static inline size_t dim() { return 1; };
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class Archive>
|
|
void serialize(Archive & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_NVP(c_);
|
|
ar & BOOST_SERIALIZATION_NVP(s_);
|
|
}
|
|
|
|
}; // Rot2
|
|
|
|
/* inline named constructor implementation */
|
|
inline Rot2 Rot2::fromAngle(double theta) {
|
|
return Rot2(cos(theta), sin(theta));
|
|
}
|
|
|
|
// Lie group functions
|
|
|
|
/** Global print calls member function */
|
|
inline void print(const Rot2& r, const std::string& s = "") { r.print(s); }
|
|
|
|
/** Dimensionality of the tangent space */
|
|
inline size_t dim(const Rot2&) { return 1; }
|
|
|
|
/** Expmap around identity - create a rotation from an angle */
|
|
template<> inline Rot2 expmap(const Vector& v) {
|
|
if (zero(v)) return (Rot2());
|
|
else return Rot2::fromAngle(v(0));
|
|
}
|
|
|
|
/** Logmap around identity - return the angle of the rotation */
|
|
inline Vector logmap(const Rot2& r) {
|
|
return Vector_(1, r.theta());
|
|
}
|
|
|
|
/** Compose - make a new rotation by adding angles */
|
|
inline Rot2 compose(const Rot2& R1, const Rot2& R2) { return R1*R2;}
|
|
|
|
/** The inverse rotation - negative angle */
|
|
inline Rot2 inverse(const Rot2& R) { return R.inverse();}
|
|
|
|
/**
|
|
* rotate point from rotated coordinate frame to
|
|
* world = R*p
|
|
*/
|
|
inline Point2 operator*(const Rot2& R, const Point2& p) {return R.rotate(p);}
|
|
Point2 rotate(const Rot2 & R, const Point2& p, boost::optional<Matrix&> H1 =
|
|
boost::none, boost::optional<Matrix&> H2 = boost::none);
|
|
|
|
/**
|
|
* rotate point from world to rotated
|
|
* frame = R'*p
|
|
*/
|
|
Point2 unrotate(const Rot2 & R, const Point2& p, boost::optional<Matrix&> H1 =
|
|
boost::none, boost::optional<Matrix&> H2 = boost::none);
|
|
|
|
/**
|
|
* Calculate relative bearing to a landmark in local coordinate frame
|
|
* @param point 2D location of landmark
|
|
* @param H optional reference for Jacobian
|
|
* @return 2D rotation \in SO(2)
|
|
*/
|
|
Rot2 relativeBearing(const Point2& d);
|
|
|
|
/**
|
|
* Calculate relative bearing and optional derivative
|
|
*/
|
|
Rot2 relativeBearing(const Point2& d, boost::optional<Matrix&> H);
|
|
|
|
} // gtsam
|
|
|
|
#endif /* ROT2_H_ */
|