gtsam/geometry/Cal3_S2.h

142 lines
3.3 KiB
C++

/**
* @file Cal3_S2.h
* @brief The most common 5DOF 3D->2D calibration
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/geometry/Point2.h>
#include <math.h>
namespace gtsam {
/** The most common 5DOF 3D->2D calibration */
class Cal3_S2: Testable<Cal3_S2> {
private:
double fx_, fy_, s_, u0_, v0_;
public:
/**
* default calibration leaves coordinates unchanged
*/
Cal3_S2() :
fx_(1), fy_(1), s_(0), u0_(0), v0_(0) {
}
/**
* constructor from doubles
*/
Cal3_S2(double fx, double fy, double s, double u0, double v0) :
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0) {
}
/**
* Easy constructor, takes fov in degrees, asssumes zero skew, unit aspect
* @param fov field of view in degrees
* @param w image width
* @param h image height
*/
Cal3_S2(double fov, int w, int h) :
s_(0), u0_((double)w/2.0), v0_((double)h/2.0) {
double a = fov*M_PI/360.0; // fov/2 in radians
fx_=(double)w*tan(a);
fy_=fx_;
}
void print(const std::string& s = "") const {
gtsam::print(matrix(), s);
}
/**
* Check if equal up to specified tolerance
*/
bool equals(const Cal3_S2& K, double tol = 10e-9) const;
/**
* load calibration from location (default name is calibration_info.txt)
*/
Cal3_S2(const std::string &path);
/**
* return the principal point
*/
Point2 principalPoint() const {
return Point2(u0_,v0_);
}
/**
* return vectorized form (column-wise)
*/
Vector vector() const {
double r[] = { fx_, fy_, s_, u0_, v0_ };
Vector v(5);
copy(r, r + 5, v.begin());
return v;
}
/**
* return calibration matrix K
*/
Matrix matrix() const {
return Matrix_(3, 3, fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
}
/**
* convert intrinsic coordinates xy to image coordinates uv
*/
Point2 uncalibrate(const Point2& p) const {
const double x = p.x(), y = p.y();
return Point2(fx_ * x + s_ * y + u0_, fy_ * y + v0_);
}
/**
* convert image coordinates uv to intrinsic coordinates xy
*/
Point2 calibrate(const Point2& p) const {
const double u = p.x(), v = p.y();
return Point2((1/fx_)*(u-u0_ - (s_/fy_)*(v-v0_)), (1/fy_)*(v-v0_));
}
/** friends */
friend Matrix Duncalibrate2(const Cal3_S2& K, const Point2& p);
friend Cal3_S2 expmap(const Cal3_S2& cal, const Vector& d);
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(fx_);
ar & BOOST_SERIALIZATION_NVP(fy_);
ar & BOOST_SERIALIZATION_NVP(s_);
ar & BOOST_SERIALIZATION_NVP(u0_);
ar & BOOST_SERIALIZATION_NVP(v0_);
}
};
typedef boost::shared_ptr<Cal3_S2> shared_ptrK;
/**
* return DOF, dimensionality of tangent space
*/
inline size_t dim(const Cal3_S2&) { return 5; }
/**
* Given 5-dim tangent vector, create new calibration
*/
inline Cal3_S2 expmap(const Cal3_S2& cal, const Vector& d) {
return Cal3_S2(cal.fx_ + d(0), cal.fy_ + d(1),
cal.s_ + d(2), cal.u0_ + d(3), cal.v0_ + d(4));
}
/**
* convert intrinsic coordinates xy to image coordinates uv
*/
Point2 uncalibrate(const Cal3_S2& K, const Point2& p);
Matrix Duncalibrate1(const Cal3_S2& K, const Point2& p);
Matrix Duncalibrate2(const Cal3_S2& K, const Point2& p);
}