386 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			386 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file testConstraintOptimizer.cpp
 | |
|  * @brief Tests the optimization engine for SQP and BFGS Quadratic programming techniques
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits>
 | |
| 
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/optional.hpp>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <Ordering.h>
 | |
| #include <ConstraintOptimizer.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Example of a single Constrained QP problem from the matlab testCQP.m file.
 | |
| TEST( matrix, CQP_example ) {
 | |
| 
 | |
| 	Matrix A = Matrix_(3, 2,
 | |
| 			-1.0,  -1.0,
 | |
| 			-2.0,   1.0,
 | |
| 			 1.0,  -1.0);
 | |
| 	Matrix At = trans(A),
 | |
| 		   B = 2.0 * eye(3,3);
 | |
| 
 | |
| 	Vector b = Vector_(2, 4.0, -2.0),
 | |
| 	 	   g = zero(3);
 | |
| 
 | |
| 	Matrix G = zeros(5,5);
 | |
| 	insertSub(G, B, 0, 0);
 | |
| 	insertSub(G, A, 0, 3);
 | |
| 	insertSub(G, At, 3, 0);
 | |
| 
 | |
| 	Vector rhs = zero(5);
 | |
| 	subInsert(rhs, -1.0*g, 0);
 | |
| 	subInsert(rhs, -1.0*b, 3);
 | |
| 
 | |
| 	// solve the system with the LDL solver
 | |
| 	Vector actualFull = solve_ldl(G, rhs);
 | |
| 	Vector actual = sub(actualFull, 0, 3);
 | |
| 
 | |
| 	Vector expected = Vector_(3, 2.0/7.0, 10.0/7.0, -6.0/7.0);
 | |
| 
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, CQP_example_automatic ) {
 | |
| 
 | |
| 	Matrix A = Matrix_(3, 2,
 | |
| 			-1.0,  -1.0,
 | |
| 			-2.0,   1.0,
 | |
| 			 1.0,  -1.0);
 | |
| 	Matrix At = trans(A),
 | |
| 		   B = 2.0 * eye(3,3);
 | |
| 
 | |
| 	Vector g = zero(3),
 | |
| 		   h = Vector_(2, 4.0, -2.0);
 | |
| 
 | |
| 	Vector actState, actLam;
 | |
| 	boost::tie(actState, actLam) = solveCQP(B, A, g, h);
 | |
| 
 | |
| 	Vector expected = Vector_(3, 2.0/7.0, 10.0/7.0, -6.0/7.0);
 | |
| 
 | |
| 	CHECK(assert_equal(expected, actState));
 | |
| 	CHECK(actLam.size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| /** SQP example from SQP tutorial */
 | |
| namespace sqp_example1 {
 | |
| 
 | |
| 	/**
 | |
| 	 * objective function with gradient and hessian
 | |
| 	 * fx = (x2-2)^2 + x1^2;
 | |
| 	 */
 | |
| 	double objective(const Vector& x, boost::optional<Vector&> g = boost::none,
 | |
| 			  boost::optional<Matrix&> B = boost::none) {
 | |
| 		double x1 = x(0), x2 = x(1);
 | |
| 		if (g) *g = Vector_(2, 2.0*x1, 2.0*(x2-2.0));
 | |
| 		if (B) *B = 2.0 * eye(2,2);
 | |
| 		return (x2-2)*(x2-2) + x1*x1;
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * constraint function with gradient and hessian
 | |
| 	 * cx = 4*x1^2 + x2^2 - 1;
 | |
| 	 */
 | |
| 	Vector constraint(const Vector& x, boost::optional<Matrix&> A = boost::none,
 | |
| 			  boost::optional<Matrix&> B = boost::none) {
 | |
| 		double x1 = x(0), x2 = x(1);
 | |
| 		if (A) *A = Matrix_(2,1, 8.0*x1, 2.0*x2);
 | |
| 		if (B) *B = Matrix_(2,2,
 | |
| 				8.0, 0.0,
 | |
| 				0.0, 2.0);
 | |
| 		return Vector_(1, 4.0*x1*x1 + x2*x2 - 1.0);
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * evaluates a penalty function at a given point
 | |
| 	 */
 | |
| 	double penalty(const Vector& x) {
 | |
| 		double constraint_gain = 1.0;
 | |
| 		return objective(x) + constraint_gain*sum(abs(constraint(x)));
 | |
| 	}
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| /** SQP example from SQP tutorial (real saddle point) */
 | |
| namespace sqp_example2 {
 | |
| 
 | |
| 	/**
 | |
| 	 * objective function with gradient and hessian
 | |
| 	 * fx = (x2-2)^2 - x1^2;
 | |
| 	 */
 | |
| 	double objective(const Vector& x, boost::optional<Vector&> g = boost::none,
 | |
| 			  boost::optional<Matrix&> B = boost::none) {
 | |
| 		double x1 = x(0), x2 = x(1);
 | |
| 		if (g) *g = Vector_(2, -2.0*x1, 2.0*(x2-2.0));
 | |
| 		if (B) *B = Matrix_(2,2, -2.0, 0.0, 0.0, 2.0);
 | |
| 		return (x2-2)*(x2-2) - x1*x1;
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * constraint function with gradient and hessian
 | |
| 	 * cx = 4*x1^2 + x2^2 - 1;
 | |
| 	 */
 | |
| 	Vector constraint(const Vector& x, boost::optional<Matrix&> A = boost::none,
 | |
| 			  boost::optional<Matrix&> B = boost::none) {
 | |
| 		double x1 = x(0), x2 = x(1);
 | |
| 		if (A) *A = Matrix_(2,1, 8.0*x1, 2.0*x2);
 | |
| 		if (B) *B = Matrix_(2,2,
 | |
| 				8.0, 0.0,
 | |
| 				0.0, 2.0);
 | |
| 		return Vector_(1, 4.0*x1*x1 + x2*x2 - 1.0);
 | |
| 	}
 | |
| 
 | |
| 	/**
 | |
| 	 * evaluates a penalty function at a given point
 | |
| 	 */
 | |
| 	double penalty(const Vector& x) {
 | |
| 		double constraint_gain = 1.0;
 | |
| 		return objective(x) + constraint_gain*sum(abs(constraint(x)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, SQP_simple_analytic ) {
 | |
| 	using namespace sqp_example1;
 | |
| 
 | |
| 	// parameters
 | |
| 	double stepsize = 0.25;
 | |
| 	size_t maxIt = 50;
 | |
| 
 | |
| 	// initial conditions
 | |
| 	Vector x0 = Vector_(2, 2.0, 4.0),
 | |
| 		   lam0 = Vector_(1, -0.5);
 | |
| 
 | |
| 	// current state
 | |
| 	Vector x = x0, lam = lam0;
 | |
| 
 | |
| 	for (size_t i =0; i<maxIt; ++i) {
 | |
| 
 | |
| 		// evaluate functions
 | |
| 		Vector dfx;
 | |
| 		Matrix dcx, ddfx, ddcx;
 | |
| 		objective(x, dfx, ddfx);
 | |
| 		Vector cx = constraint(x, dcx, ddcx);
 | |
| 
 | |
| 		// use analytic hessian
 | |
| 		Matrix B = ddfx - lam(0)*ddcx;
 | |
| 
 | |
| 		// solve subproblem
 | |
| 		Vector delta, lambda;
 | |
| 		boost::tie(delta, lambda) = solveCQP(B, -dcx, dfx, -cx);
 | |
| 
 | |
| 		// update
 | |
| 		Vector step = stepsize * delta;
 | |
| 		x = x + step;
 | |
| 		lam = lambda;
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	Vector expX = Vector_(2, 0.0, 1.0),
 | |
| 		   expLambda = Vector_(1, -1.0);
 | |
| 
 | |
| 	CHECK(assert_equal(expX, x, 1e-4));
 | |
| 	CHECK(assert_equal(expLambda, lam, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, SQP_simple_manual_bfgs ) {
 | |
| 	using namespace sqp_example1;
 | |
| 
 | |
| 	// parameters
 | |
| 	double stepsize = 0.25;
 | |
| 	size_t maxIt = 50;
 | |
| 
 | |
| 	// initial conditions
 | |
| 	Vector x0 = Vector_(2, 2.0, 4.0),
 | |
| 		   lam0 = Vector_(1, -0.5);
 | |
| 
 | |
| 	// current state
 | |
| 	Vector x = x0, lam = lam0;
 | |
| 	Matrix Bi = eye(2,2);
 | |
| 	Vector step, prev_dfx;
 | |
| 
 | |
| 	for (size_t i=0; i<maxIt; ++i) {
 | |
| 
 | |
| 		// evaluate functions
 | |
| 		Vector dfx; Matrix dcx;
 | |
| 		objective(x, dfx);
 | |
| 		Vector cx = constraint(x, dcx);
 | |
| 
 | |
| 		// Just use dfx for the Hessian
 | |
| 	    if (i>0) {
 | |
| 	        Vector Bis = Bi * step,
 | |
| 	        	   y = dfx - prev_dfx;
 | |
| 	        Bi = Bi + outer_prod(y, y) / inner_prod(y, step)
 | |
| 	        		- outer_prod(Bis, Bis) / inner_prod(step, Bis);
 | |
| 	    }
 | |
| 	    prev_dfx = dfx;
 | |
| 
 | |
| 	    // solve subproblem
 | |
| 		Vector delta, lambda;
 | |
| 		boost::tie(delta, lambda) = solveCQP(Bi, -dcx, dfx, -cx);
 | |
| 
 | |
| 		// update
 | |
| 		step = stepsize * delta;
 | |
| 		x = x + step;
 | |
| 		lam = lambda;
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	Vector expX = Vector_(2, 0.0, 1.0),
 | |
| 		   expLambda = Vector_(1, -1.0);
 | |
| 
 | |
| 	CHECK(assert_equal(expX, x, 1e-4));
 | |
| 	CHECK(assert_equal(expLambda, lam, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, SQP_simple_bfgs1 ) {
 | |
| 	using namespace sqp_example1;
 | |
| 
 | |
| 	// parameters
 | |
| 	size_t maxIt = 25;
 | |
| 
 | |
| 	// initial conditions
 | |
| 	Vector x0 = Vector_(2, 2.0, 4.0),
 | |
| 		   lam0 = Vector_(1, -0.5);
 | |
| 
 | |
| 	// create a BFGSEstimator
 | |
| 	BFGSEstimator hessian(2);
 | |
| 
 | |
| 	// current state
 | |
| 	Vector x = x0, lam = lam0;
 | |
| 	Vector step;
 | |
| 
 | |
| 	for (size_t i=0; i<maxIt; ++i) {
 | |
| 
 | |
| 		// evaluate functions
 | |
| 		Vector dfx; Matrix dcx;
 | |
| 		objective(x, dfx);
 | |
| 		Vector cx = constraint(x, dcx);
 | |
| 
 | |
| 		// Just use dfx for the Hessian
 | |
| 	    if (i>0) {
 | |
| 	    	hessian.update(dfx, step);
 | |
| 	    } else {
 | |
| 	    	hessian.update(dfx);
 | |
| 	    }
 | |
| 
 | |
| 		// solve subproblem
 | |
| 		Vector delta, lambda;
 | |
| 		boost::tie(delta, lambda) = solveCQP(hessian.getB(), -dcx, dfx, -cx);
 | |
| //		if (i == 0) print(delta, "delta1");
 | |
| 
 | |
| 		// update
 | |
| 		step = linesearch(x,delta,penalty);
 | |
| //		step = stepsize * delta;
 | |
| 		x = x + step;
 | |
| 		lam = lambda;
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	Vector expX = Vector_(2, 0.0, 1.0),
 | |
| 		   expLambda = Vector_(1, -1.0);
 | |
| 
 | |
| 	CHECK(assert_equal(expX, x, 1e-4));
 | |
| 	CHECK(assert_equal(expLambda, lam, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, SQP_simple_bfgs2 ) {
 | |
| 	using namespace sqp_example2;
 | |
| 
 | |
| 	// parameters
 | |
| 	double stepsize = 0.25;
 | |
| 	size_t maxIt = 50;
 | |
| 
 | |
| 	// initial conditions
 | |
| 	Vector x0 = Vector_(2, 2.0, 4.0),
 | |
| 		   lam0 = Vector_(1, -0.5);
 | |
| 
 | |
| 	// create a BFGSEstimator
 | |
| 	BFGSEstimator hessian(2);
 | |
| 
 | |
| 	// current state
 | |
| 	Vector x = x0, lam = lam0;
 | |
| 	Vector step;
 | |
| 
 | |
| 	for (size_t i=0; i<maxIt; ++i) {
 | |
| 
 | |
| 		// evaluate functions
 | |
| 		Vector dfx; Matrix dcx;
 | |
| 		objective(x, dfx);
 | |
| 		Vector cx = constraint(x, dcx);
 | |
| 
 | |
| 		// Just use dfx for the Hessian
 | |
| 	    if (i>0) {
 | |
| 	    	hessian.update(dfx, step);
 | |
| 	    } else {
 | |
| 	    	hessian.update(dfx);
 | |
| 	    }
 | |
| 
 | |
| 		// solve subproblem
 | |
| 		Vector delta, lambda;
 | |
| 		boost::tie(delta, lambda) = solveCQP(hessian.getB(), -dcx, dfx, -cx);
 | |
| //		if (i == 0) print(delta, "delta2");
 | |
| 
 | |
| 		// update
 | |
| //		step = linesearch(x,delta,penalty);
 | |
| 		step = stepsize * delta;
 | |
| 		x = x + step;
 | |
| 		lam = lambda;
 | |
| 	}
 | |
| 
 | |
| 	// verify
 | |
| 	Vector expX = Vector_(2, 0.0, 1.0),
 | |
| 		   expLambda = Vector_(1, -1.0);
 | |
| 
 | |
| 	// should determine the actual values for this one
 | |
| //	CHECK(assert_equal(expX, x, 1e-4));
 | |
| //	CHECK(assert_equal(expLambda, lam, 1e-4));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( matrix, line_search ) {
 | |
| 	using namespace sqp_example2;
 | |
| 
 | |
| 	// initial conditions
 | |
| 	Vector x0 = Vector_(2, 2.0, 4.0),
 | |
| 		   delta = Vector_(2, 0.85, -5.575);
 | |
| 
 | |
| 	Vector actual = linesearch(x0,delta,penalty);
 | |
| 
 | |
| 	// check that error goes down
 | |
| 	double init_error = penalty(x0),
 | |
| 		   final_error = penalty(x0 + actual);
 | |
| 
 | |
| 	//double actual_stepsize = dot(actual, delta)/dot(delta, delta);
 | |
| //	cout << "actual_stepsize: " << actual_stepsize << endl;
 | |
| 
 | |
| 	CHECK(final_error <= init_error);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |