gtsam/gtsam/nonlinear/NonlinearOptimizer.h

257 lines
9.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NonlinearOptimizer.h
* @brief Base class and parameters for nonlinear optimization algorithms
* @author Richard Roberts
* @date Sep 7, 2009
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
namespace gtsam {
class NonlinearOptimizer;
/** The common parameters for Nonlinear optimizers. Most optimizers
* deriving from NonlinearOptimizer also subclass the parameters.
*/
class NonlinearOptimizerParams {
public:
/** See NonlinearOptimizerParams::verbosity */
enum Verbosity {
SILENT,
ERROR,
VALUES,
DELTA,
LINEAR
};
size_t maxIterations; ///< The maximum iterations to stop iterating (default 100)
double relativeErrorTol; ///< The maximum relative error decrease to stop iterating (default 1e-5)
double absoluteErrorTol; ///< The maximum absolute error decrease to stop iterating (default 1e-5)
double errorTol; ///< The maximum total error to stop iterating (default 0.0)
Verbosity verbosity; ///< The printing verbosity during optimization (default SILENT)
NonlinearOptimizerParams() :
maxIterations(100), relativeErrorTol(1e-5), absoluteErrorTol(1e-5),
errorTol(0.0), verbosity(SILENT) {}
virtual ~NonlinearOptimizerParams() {}
virtual void print(const std::string& str = "") const ;
size_t getMaxIterations() const { return maxIterations; }
double getRelativeErrorTol() const { return relativeErrorTol; }
double getAbsoluteErrorTol() const { return absoluteErrorTol; }
double getErrorTol() const { return errorTol; }
std::string getVerbosity() const { return verbosityTranslator(verbosity); }
void setMaxIterations(size_t value) { maxIterations = value; }
void setRelativeErrorTol(double value) { relativeErrorTol = value; }
void setAbsoluteErrorTol(double value) { absoluteErrorTol = value; }
void setErrorTol(double value) { errorTol = value ; }
void setVerbosity(const std::string &src) { verbosity = verbosityTranslator(src); }
private:
Verbosity verbosityTranslator(const std::string &s) const;
std::string verbosityTranslator(Verbosity value) const;
};
/**
* Base class for a nonlinear optimization state, including the current estimate
* of the variable values, error, and number of iterations. Optimizers derived
* from NonlinearOptimizer usually also define a derived state class containing
* additional state specific to the algorithm (for example, Dogleg state
* contains the current trust region radius).
*/
class NonlinearOptimizerState {
public:
/** The current estimate of the variable values. */
Values values;
/** The factor graph error on the current values. */
double error;
/** The number of optimization iterations performed. */
unsigned int iterations;
NonlinearOptimizerState() {}
/** Virtual destructor */
virtual ~NonlinearOptimizerState() {}
protected:
NonlinearOptimizerState(const NonlinearFactorGraph& graph, const Values& values, unsigned int iterations = 0) :
values(values), error(graph.error(values)), iterations(iterations) {}
NonlinearOptimizerState(const Values& values, double error, unsigned int iterations) :
values(values), error(error), iterations(iterations) {}
friend class NonlinearOptimizer;
};
/**
* This is the abstract interface for classes that can optimize for the
* maximum-likelihood estimate of a NonlinearFactorGraph.
*
* To use a class derived from this interface, construct the class with a
* NonlinearFactorGraph and an initial Values variable assignment. Next, call the
* optimize() method, which returns a new NonlinearOptimizer object containing
* the optimized variable assignment. Call the values() method to retrieve the
* optimized estimate. Alternatively, to take a shortcut, instead of calling
* optimize(), call optimized(), which performs full optimization and returns
* the resulting Values instead of the new optimizer.
*
* Note: This class is immutable, optimize() and iterate() return new
* NonlinearOptimizer objects, so be sure to use the returned object and not
* simply keep the unchanged original.
*
* Simple and compact example:
* \code
// One-liner to do full optimization and use the result.
// Note use of "optimized()" to directly return Values, instead of "optimize()" that returns a new optimizer.
Values::const_shared_ptr result = DoglegOptimizer(graph, initialValues).optimized();
\endcode
*
* Example exposing more functionality and details:
* \code
// Create initial optimizer
DoglegOptimizer initial(graph, initialValues);
// Run full optimization until convergence.
// Note use of "optimize()" to return a new optimizer, instead of "optimized()" that returns only the Values.
// NonlinearOptimizer pointers are always returned, though they are actually a derived optimizer type.
NonlinearOptimizer::auto_ptr final = initial->optimize();
// The new optimizer has results and statistics
cout << "Converged in " << final->iterations() << " iterations "
"with final error " << final->error() << endl;
// The values are a const_shared_ptr (boost::shared_ptr<const Values>)
Values::const_shared_ptr result = final->values();
// Use the results
useTheResult(result);
\endcode
*
* Example of setting parameters before optimization:
* \code
// Each derived optimizer type has its own parameters class, which inherits from NonlinearOptimizerParams
DoglegParams params;
params.factorization = DoglegParams::QR;
params.relativeErrorTol = 1e-3;
params.absoluteErrorTol = 1e-3;
// Optimize
Values::const_shared_ptr result = DoglegOptimizer(graph, initialValues, params).optimized();
\endcode
*
* This interface also exposes an iterate() method, which performs one
* iteration, returning a NonlinearOptimizer containing the adjusted variable
* assignment. The optimize() method simply calls iterate() multiple times,
* until the error changes less than a threshold. We expose iterate() so that
* you can easily control what happens between iterations, such as drawing or
* printing, moving points from behind the camera to in front, etc.
*
* To modify the graph, values, or parameters between iterations, call the
* update() functions, which preserve all other state (for example, the trust
* region size in DoglegOptimizer). Derived optimizer classes also have
* additional update methods, not in this abstract interface, for updating
* algorithm-specific state.
*
* For more flexibility, since all functions are virtual, you may override them
* in your own derived class.
*/
class NonlinearOptimizer {
protected:
NonlinearFactorGraph graph_;
/** A default implementation of the optimization loop, which calls iterate()
* until checkConvergence returns true.
*/
void defaultOptimize();
virtual const NonlinearOptimizerState& _state() const = 0;
virtual const NonlinearOptimizerParams& _params() const = 0;
/** Constructor for initial construction of base classes. */
NonlinearOptimizer(const NonlinearFactorGraph& graph) : graph_(graph) {}
public:
/** A shared pointer to this class */
typedef boost::shared_ptr<const NonlinearOptimizer> shared_ptr;
/// @name Standard interface
/// @{
/** Optimize for the maximum-likelihood estimate, returning a new
* NonlinearOptimizer class containing the optimized variable assignments,
* which may be retrieved with values().
*
* This function simply calls iterate() in a loop, checking for convergence
* with check_convergence(). For fine-grain control over the optimization
* process, you may call iterate() and check_convergence() yourself, and if
* needed modify the optimization state between iterations.
*/
virtual const Values& optimize() { defaultOptimize(); return values(); }
/**
* Optimize, but return empty result if any uncaught exception is thrown
* Intended for MATLAB. In C++, use above and catch exceptions.
* No message is printed: it is up to the caller to check the result
* @param optimizer a non-linear optimizer
*/
const Values& optimizeSafely();
/// return error
double error() const { return _state().error; }
/// return number of iterations
unsigned int iterations() const { return _state().iterations; }
/// return values
const Values& values() const { return _state().values; }
/// @}
/// @name Advanced interface
/// @{
/** Virtual destructor */
virtual ~NonlinearOptimizer() {}
/** Perform a single iteration, returning a new NonlinearOptimizer class
* containing the updated variable assignments, which may be retrieved with
* values().
*/
virtual void iterate() = 0;
/// @}
};
/** Check whether the relative error decrease is less than relativeErrorTreshold,
* the absolute error decrease is less than absoluteErrorTreshold, <em>or</em>
* the error itself is less than errorThreshold.
*/
bool checkConvergence(double relativeErrorTreshold,
double absoluteErrorTreshold, double errorThreshold,
double currentError, double newError, NonlinearOptimizerParams::Verbosity verbosity);
} // gtsam