79 lines
2.8 KiB
Matlab
79 lines
2.8 KiB
Matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
% Atlanta, Georgia 30332-0415
|
|
% All Rights Reserved
|
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
%
|
|
% See LICENSE for the license information
|
|
%
|
|
% @brief Simple robotics example using the pre-built planar SLAM domain
|
|
% @author Alex Cunningham
|
|
% @author Frank Dellaert
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%% Create the same factor graph as in PlanarSLAMExample
|
|
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
|
|
graph = planarSLAMGraph;
|
|
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
|
|
priorNoise = gtsamnoiseModelDiagonal.Sigmas([0.3; 0.3; 0.1]);
|
|
graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph
|
|
odometry = gtsamPose2(2.0, 0.0, 0.0);
|
|
odometryNoise = gtsamnoiseModelDiagonal.Sigmas([0.2; 0.2; 0.1]);
|
|
graph.addRelativePose(i1, i2, odometry, odometryNoise);
|
|
graph.addRelativePose(i2, i3, odometry, odometryNoise);
|
|
|
|
%% Except, for measurements we offer a choice
|
|
j1 = symbol('l',1); j2 = symbol('l',2);
|
|
degrees = pi/180;
|
|
noiseModel = gtsamnoiseModelDiagonal.Sigmas([0.1; 0.2]);
|
|
if 1
|
|
graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel);
|
|
graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel);
|
|
else
|
|
bearingModel = gtsamnoiseModelDiagonal.Sigmas(0.1);
|
|
graph.addBearing(i1, j1, gtsamRot2(45*degrees), bearingModel);
|
|
graph.addBearing(i2, j1, gtsamRot2(90*degrees), bearingModel);
|
|
end
|
|
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);
|
|
|
|
%% Initialize MCMC sampler with ground truth
|
|
sample = planarSLAMValues;
|
|
sample.insertPose(i1, gtsamPose2(0,0,0));
|
|
sample.insertPose(i2, gtsamPose2(2,0,0));
|
|
sample.insertPose(i3, gtsamPose2(4,0,0));
|
|
sample.insertPoint(j1, gtsamPoint2(2,2));
|
|
sample.insertPoint(j2, gtsamPoint2(4,2));
|
|
|
|
%% Calculate and plot Covariance Ellipses
|
|
figure(1);clf;hold on
|
|
marginals = graph.marginals(sample);
|
|
for i=1:3
|
|
key = symbol('x',i);
|
|
pose{i} = sample.pose(key);
|
|
P{i}=marginals.marginalCovariance(key);
|
|
if i>1
|
|
plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
|
|
end
|
|
end
|
|
for i=1:3
|
|
plotPose2(pose{i},'g',P{i})
|
|
end
|
|
for j=1:2
|
|
key = symbol('l',j);
|
|
point{j} = sample.point(key);
|
|
Q{j}=marginals.marginalCovariance(key);
|
|
S{j}=chol(Q{j}); % for sampling
|
|
plotPoint2(point{j},'b',Q{j})
|
|
end
|
|
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
|
|
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
|
|
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
|
|
axis equal
|
|
|
|
%% Do Sampling on point 2
|
|
N=1000;
|
|
for s=1:N
|
|
delta = S{2}*randn(2,1);
|
|
proposedPoint = gtsamPoint2(point{2}.x+delta(1),point{2}.y+delta(2));
|
|
plotPoint2(proposedPoint,'k.')
|
|
end |