238 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testGaussianJunctionTreeB.cpp
 | 
						|
 * @date Jul 8, 2010
 | 
						|
 * @author nikai
 | 
						|
 */
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/slam/BearingRangeFactor.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <gtsam/nonlinear/Ordering.h>
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
#include <gtsam/linear/GaussianMultifrontalSolver.h>
 | 
						|
#include <gtsam/inference/BayesTree.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/base/TestableAssertions.h>
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
#include <gtsam/base/cholesky.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/assign/list_of.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/vector.hpp>
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 Bayes tree for smoother with "nested dissection" ordering:
 | 
						|
   C1     x5 x6 x4
 | 
						|
   C2      x3 x2 : x4
 | 
						|
   C3        x1 : x2
 | 
						|
   C4      x7 : x6
 | 
						|
*/
 | 
						|
TEST( GaussianJunctionTreeB, constructor2 )
 | 
						|
{
 | 
						|
  // create a graph
 | 
						|
  Ordering ordering; ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
 | 
						|
  GaussianFactorGraph fg = createSmoother(7, ordering).first;
 | 
						|
 | 
						|
  // create an ordering
 | 
						|
  GaussianJunctionTree actual(fg);
 | 
						|
 | 
						|
  vector<Index> frontal1; frontal1 += ordering[X(5)], ordering[X(6)], ordering[X(4)];
 | 
						|
  vector<Index> frontal2; frontal2 += ordering[X(3)], ordering[X(2)];
 | 
						|
  vector<Index> frontal3; frontal3 += ordering[X(1)];
 | 
						|
  vector<Index> frontal4; frontal4 += ordering[X(7)];
 | 
						|
  vector<Index> sep1;
 | 
						|
  vector<Index> sep2; sep2 += ordering[X(4)];
 | 
						|
  vector<Index> sep3; sep3 += ordering[X(2)];
 | 
						|
  vector<Index> sep4; sep4 += ordering[X(6)];
 | 
						|
  EXPECT(assert_equal(frontal1, actual.root()->frontal));
 | 
						|
  EXPECT(assert_equal(sep1,     actual.root()->separator));
 | 
						|
  LONGS_EQUAL(5,               actual.root()->size());
 | 
						|
  list<GaussianJunctionTree::sharedClique>::const_iterator child0it = actual.root()->children().begin();
 | 
						|
  list<GaussianJunctionTree::sharedClique>::const_iterator child1it = child0it; ++child1it;
 | 
						|
  GaussianJunctionTree::sharedClique child0 = *child0it;
 | 
						|
  GaussianJunctionTree::sharedClique child1 = *child1it;
 | 
						|
  EXPECT(assert_equal(frontal2, child0->frontal));
 | 
						|
  EXPECT(assert_equal(sep2,     child0->separator));
 | 
						|
  LONGS_EQUAL(4,               child0->size());
 | 
						|
  EXPECT(assert_equal(frontal3, child0->children().front()->frontal));
 | 
						|
  EXPECT(assert_equal(sep3,     child0->children().front()->separator));
 | 
						|
  LONGS_EQUAL(2,               child0->children().front()->size());
 | 
						|
  EXPECT(assert_equal(frontal4, child1->frontal));
 | 
						|
  EXPECT(assert_equal(sep4,     child1->separator));
 | 
						|
  LONGS_EQUAL(2,               child1->size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianJunctionTreeB, optimizeMultiFrontal )
 | 
						|
{
 | 
						|
  // create a graph
 | 
						|
  GaussianFactorGraph fg;
 | 
						|
  Ordering ordering;
 | 
						|
  boost::tie(fg,ordering) = createSmoother(7);
 | 
						|
 | 
						|
  // optimize the graph
 | 
						|
  GaussianJunctionTree tree(fg);
 | 
						|
  VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected(vector<size_t>(7,2)); // expected solution
 | 
						|
  Vector v = Vector_(2, 0., 0.);
 | 
						|
  for (int i=1; i<=7; i++)
 | 
						|
    expected[ordering[X(i)]] = v;
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianJunctionTreeB, optimizeMultiFrontal2)
 | 
						|
{
 | 
						|
  // create a graph
 | 
						|
  example::Graph nlfg = createNonlinearFactorGraph();
 | 
						|
  Values noisy = createNoisyValues();
 | 
						|
  Ordering ordering; ordering += X(1),X(2),L(1);
 | 
						|
  GaussianFactorGraph fg = *nlfg.linearize(noisy, ordering);
 | 
						|
 | 
						|
  // optimize the graph
 | 
						|
  GaussianJunctionTree tree(fg);
 | 
						|
  VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createCorrectDelta(ordering); // expected solution
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianJunctionTreeB, slamlike) {
 | 
						|
  Values init;
 | 
						|
  NonlinearFactorGraph newfactors;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.1, 0.1, M_PI/100.0));
 | 
						|
  SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas(Vector_(2, M_PI/100.0, 0.1));
 | 
						|
 | 
						|
  size_t i = 0;
 | 
						|
 | 
						|
  newfactors = NonlinearFactorGraph();
 | 
						|
  newfactors.add(PriorFactor<Pose2>(X(0), Pose2(0.0, 0.0, 0.0), odoNoise));
 | 
						|
  init.insert(X(0), Pose2(0.01, 0.01, 0.01));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    newfactors = NonlinearFactorGraph();
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
  }
 | 
						|
 | 
						|
  newfactors = NonlinearFactorGraph();
 | 
						|
  newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
 | 
						|
  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
 | 
						|
  init.insert(X(i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
  init.insert(L(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
  init.insert(L(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
  ++ i;
 | 
						|
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    newfactors = NonlinearFactorGraph();
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
  }
 | 
						|
 | 
						|
  newfactors = NonlinearFactorGraph();
 | 
						|
  newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
  newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
  init.insert(X(i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
  ++ i;
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  Ordering ordering = *fullgraph.orderingCOLAMD(init);
 | 
						|
  GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
 | 
						|
 | 
						|
  GaussianJunctionTree gjt(linearized);
 | 
						|
  VectorValues deltaactual = gjt.optimize(&EliminateQR);
 | 
						|
  Values actual = init.retract(deltaactual, ordering);
 | 
						|
 | 
						|
  GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
 | 
						|
  VectorValues delta = optimize(gbn);
 | 
						|
  Values expected = init.retract(delta, ordering);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianJunctionTreeB, simpleMarginal) {
 | 
						|
 | 
						|
  typedef BayesTree<GaussianConditional> GaussianBayesTree;
 | 
						|
 | 
						|
  // Create a simple graph
 | 
						|
  NonlinearFactorGraph fg;
 | 
						|
  fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
 | 
						|
  fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector_(3, 10.0, 1.0, 1.0))));
 | 
						|
 | 
						|
  Values init;
 | 
						|
  init.insert(X(0), Pose2());
 | 
						|
  init.insert(X(1), Pose2(1.0, 0.0, 0.0));
 | 
						|
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(1), X(0);
 | 
						|
 | 
						|
  GaussianFactorGraph gfg = *fg.linearize(init, ordering);
 | 
						|
 | 
						|
  // Compute marginals with both sequential and multifrontal
 | 
						|
  Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
 | 
						|
 | 
						|
  Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
 | 
						|
  
 | 
						|
  // Compute marginal directly from marginal factor
 | 
						|
  GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
 | 
						|
  JacobianFactor::shared_ptr marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
  Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
 | 
						|
  // Compute marginal directly from BayesTree
 | 
						|
  GaussianBayesTree gbt;
 | 
						|
  gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateCholesky));
 | 
						|
  marginalFactor = gbt.marginalFactor(1, EliminateCholesky);
 | 
						|
  marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
  Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual1));
 | 
						|
  EXPECT(assert_equal(expected, actual2));
 | 
						|
  EXPECT(assert_equal(expected, actual3));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |